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1 INTRODUCTION
This is supplementary information for the paper Mapping global
sensitivity of cellular network dynamics: sensitivity heat maps and
a global summation law. by D. A. Rand. The latter paper is referred
to henceforth as I.

Suppose that the differential equation being considered is written
as ẋ = f(t, x, k) where x ∈ Rn and the the set of parameters
k1, . . . , ks is collected together into a parameter vector k ∈ Rs. The
systems may depend upon other parameters but for the discussion
here we assume that these other parameters are held fixed and only
k1, . . . , ks are varied. As in I we introduce scaled parameters ηi =
log ki.

Suppose that the solutions of interest, which depends upon the
parameters k is given by x(t) = g(t, k). Here we will concen-
trate on two types of dynamic solutions: periodic oscillations (i.e.
limit cycles) and transcient signals. By the latter we mean solutions
x(t) = g(t, k) of the equation ẋ = f(t, x, k) with a given initial
condition x0 = g(0, k). The system starts in a given state x0 and is
subject to a given perturbation caused by an incoming signal that is
modeled in the time dependence of the right-hand side f(t, x, k) of
the differential equation.

Suppose that we denote the solution of the differential equation
with initial condition x and parameters k by ξ(t, x, k). To determine
the derivatives ∂ξ/∂xi and ∂ξ/∂kj we consider the variational
equation

∂

∂t
X(s, t) = J(t) ·X(s, t) (1)

where J(t) is the Jacobian dxf evaluated at x = g(t, k), X(s, t) is
a n × n matrix and the initial condition is X(s, s) = I . We denote
X(0, t) by X(t). Then the jth column of X(t) is ∂ξ/∂xj evaluated
at (t, g(t), k).

To determine partial derivatives with respect to parameters we
consider the associated equation

Ẏ (t) = J(t) · Y (t) + Kj(t) (2)

where Kj(t) is the n-dimensional vector ∂f/∂kj evaluated at x =
g(t), Y is a n×s matrix and the initial condition is Y (0) = 0. Then

Y (t) =
∂ξ

∂kj
(t, g(t), k).

If X(s, t) is the solution of (1) then by variation of constants,

∂ξ

∂kj
(t, g(t), k) =

Z t

0

X(s, t)Kj(s) ds. (3)
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It is also proved in [1] p. 417 that if f does not depend explicitely
on t (i.e. the equation is autonomous) then X(s, t) · f(g(s), k) =
f(g(t), k).

2 CALCULATING THE UI

We restrict time t to a discrete set of values t1, . . . , tN and for
each parameter kj and each state variable xm consider the column
vectors rm,j = (δgm/δηj(t1), . . . , δgm/δηj(tN )). For each j we
concatenate these into a single column vector rj and then consider
the matrix M whose jth column is rj .

This matrix is a time-discretised version of the linear opera-
tor M that associates to each change of scaled parameters δη =
(δηi, . . . , δηs) the change δg in the solution of interest g which is
in the infinite-dimensional space of appropriate n-dimensional time-
series. Thus δg = M ·δη ≈ M ·δη and ∂g/∂ηj = M ·ej ≈ M ·ej

where ej is the vector all of whose entries are zero except for the
jth which is 1. We therefore call M a discretised derivative matrix.
If the solution g is scaled as in section 2.4 of I then M is scaled
accordingly.

For mutidimensional functions x(t) = (x1(t), . . . , xn(t)) such
as g(t) and δgj/δηi(t) above on the time interval 0 ≤ t ≤ T , we
measure their size using the norm ‖x‖2 =

P
m

R T

0
‖x(t)‖2. It fol-

lows from this that, in the case where the time steps ∆ti = ti+1−ti

are independent of i the σi and Ui(t) of the fundamental obser-
vations are approximated by the the singular value decomposition
(SVD) of the matrix M1 =

p
∆t/TM [2]. The normalisation byp

∆t/T is chosen to ensure that asymptotically (as N → ∞) the
SVD of M is independent of the choice of the time discretisation. It
follows from the choice of norm ‖·‖ above. In the case where they
do depend on i take M1 = T−1Mδ where ∆ is the diagonal matrix
whose components are the numbers

√
∆ti.

We use the version of SVD that is often called thin SVD. Since
M1 has N rows and s columns (i.e. is N × s) this SVD is a decom-
position into a product of the form M = UDV t where U is a N×s
orthonormal matrix (UU t = IN and U tU = Is), V is a s×s ortho-
normal matrix and D = diag(σ1, . . . , σs) is a diagonal matrix. The
elements σ1 ≥ · · · ≥ σs are the singular values of M . The matrix
W of I is the inverse of V and since V is orthogonal W = V t.

The columns Vj of V provide an orthonormal basis for the para-
meter space: (Vj · Vk = δjk). Any change δη of parameters can be
written in this basis as δη =

P
i λiVi where the new coordinates λi

are given by λ = V −1 · δη = W · δη.
The columns Uj of U provide an orthonormal basis for the space

of discretised time-series. As for rj they are in the concatenated
form. To restore them to their form as time-series in n-dimensional
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space, the concatenation must be undone but this is straightfor-
ward. The Uj(ti) then approximate the Uj(t). From M = UDV t

one immediately deduces that M · Vj = σjUj . The fundamental
equation (2) of I follows directly from this because

δg ≈ M · δη + O(||δη||2) =
X

i

λiσiUi + O(||δη||2).

We note that since all the partial derivatives of g are bounded the
results are effectively independent of the choice of N provided it is
chosen large enough and therefore we have that, for large N ,

∂g/∂ηj = M · ej . (4)

But ej =
P

i WijVi and therefore

∂g/∂ηj =
X

i

M ·WijVi =
X

i

WijM · Vi

=
X

i

WijσiUi =
X

i

SijUi. (5)

3 AUTONOMOUS OSCILLATORS
In this section we consider limit cycles of autonomous systems of
the form ẋ = f(x, k) (i.e. where f does not depend explicitely on t).
The limit cycle is given by g(t, k) and x0(k) = g(0, k) is its initial
condition. We will make an innocent assumption on the choice of the
initial condition x0(k) = g(0, x, k). We assume that as k is varied
near to k0, x0(k) varies in a small (n− 1)-dimensional hyperplane
Σ which intersects the the periodic orbit g(t, k0) in a single point
and is transversal to the periodic orbit. (We could instead make the
following weaker assumption: assume that as k is varied near to k0,
if x0(k) = g(t, x, k0) for some t then x0(k) = x0(k0).) The former
condition is a weak one since if Σ is any such (n− 1)-dimensional
hyperplane which intersects the the periodic orbit g(t, k0) trans-
versally and if we choose x0(k) to be the unique point where the
periodic orbit for k meets Σ, then it satifies the condition.

Since the period τ = τ(k) of g can change with the parameters,
∂g/∂kj is not a periodic function of time in general. However, if
γ(t, k) = g(τ̄ t, k) where τ̄ = τ(k)/τ(k0) then ∂γ/∂kj is periodic
with period τ0 = τ(k0), because this is the period of γ which is
independent of k. But

∂γ

∂kj
= τ−1

0 t
∂τ

∂kj

∂g

∂t
+

∂g

∂kj
= τ−1

0 t
∂τ

∂kj
f(g) +

∂g

∂kj
.

Thus we deduce that ∂g/∂kj can be written as p1(t) + tp2(t)
where p1 and p2 are periodic functions with period τ0 and p2(t) =
(∂τ/∂kj)f(g). But then

∂g

∂kj
(t + τ0) − ∂g

∂kj
(t) = τ0p2(t)

= (∂τ/∂kj)f(g(t, k0)).

Since ∂g/∂kj(0) = 0,

∂g

∂kj
(τ0) = (∂τ/∂kj)f(g(t, k0))

and we deduce that the derivative of period τ is given by

∂τ

∂kj
=

1

fm(x0)

∂gm

∂kj
(τ0) (6)

for all m.

4 SUMMATION LAW
We again consider systems of the form ẋ = f(t, x, k). The assump-
tion about the parameters k is that the set of parameters being
considered is a full set of linear parameters k1, . . . , ks. These are
the parameters in front of each term in f and it is further assumed
that there is a linear parameter in front of each term in f so that
f(t, x, ρk) = ρf(t, x, k) for all ρ > 0.

The following equation (7), which we prove in sections 4.1 and
4.2, is the basis of our main summation law:

X
j

kj
∂ξ

∂kj
(t, x0, k) = Φ(t) (7)

where

Φ(t) = tf(t, g(t), k)−
Z t

0

sX(s, t) · ∂f

∂t
(t, g(t), k) ds.

In the case where the equation is autonomous (i.e. f does not
depend explicitely on time t) the term under the integral is zero and
Φ(t) = tf(g(t), k). Other summation laws for such systems will be
discussed in [3].

4.1 Autonomous systems
For autonomous systems of the form ẋ = f(x, k). this result
follows from the fact that since f(x, ρk) = ρf(x, k) for all ρ > 0,

ξ(t, x0(k), ρk) = ξ(ρt, x0(k), k) (8)

and therefore (7) follows by applying Euler’s theorem.

4.2 Forced systems
We now consider systems of the form ẋ = f(t, x, k). The assump-
tion about the parameters k is that f(t, x, ρk) = ρf(t, x, k) for all
ρ > 0.

We can rewrite this as an autonomous system by defining y =
(s, x) ∈ R × Rn and letting F (y) = (ω, f(s, x, k)) where ω is a
new parameter that we introduce. Then the equation

ẏ = F (y) (9)

is equivalent to

ṡ = ω

ẋ = f(s, x, k)

and therefore, since this implies s = ωt, we have that x satisfies

ẋ = f(ωt, x, k) (10)

which for ω = 1 is our original equation. We denote the solution of
(10) by ξω(t, x0, k) (x0 the initial condition) and the solution of (9)
by Ξ(t, y0, k).

The set of parameters ω, k is a full set of linear parameters for
equation (9) and this equation is autonomous. Therefore, we can
apply the result proved above (using the initial condition y0 =
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(0, x0)) to deduce that

ω
∂Ξ

∂ω
(t, y0, k) +

X
j

kj
∂Ξ

∂kj
(t, y0, k) = tF (y(t)) (11)

and y(t) = Ξ(t, y0, k) = (ωt, ξω(t, x0, k)). But

∂Ξ

∂ω
(t, y0, k) = (t,

∂ξω

∂ω
(t, x0, k))

and
∂Ξ

∂kj
(t, y0, k) = (0,

∂ξω

∂kj
(t, x0, k)).

Evaluating these at ω = 1 and substituting them into equation (11)
we deduce thatX

j

kj
∂Ξ

∂kj
(t, y0, k) = tF (y(t))− ∂Ξ

∂ω
(t, y0, k)

= (t, f(ξ(t, x0, k)) − (t,
∂ξω

∂ω

˛̨̨̨
ω=1

(t, x0, k))

= (0, f(ξ(t, x0, k)) − ∂ξω

∂ω

˛̨̨̨
ω=1

(t, x0, k)).

However, by the above results in section 1,

∂ξω

∂ω

˛̨̨̨
ω=1

(t, x0, k) =

Z t

0

X(s, t) · s∂f

∂t
(s, g(s), k) ds.

since g(t) = ξ1(t, x0, k) and the derivative of the right-hand side of
(10) with respect to ω is t∂f/∂t. Thus we deduce that

X
j

kj
∂ξ

∂kj
(t, x0, k) = Φ(t). (12)

4.3 Case of transcient signals
In the case where the solution g(t, k) is defined by its initial con-
dition g(0, k) = x0. Then, the Ci are determined as above with
∂g/∂kj(t) = ∂ξ/∂kj(t, x0, k). Therefore, by equations (5) and
(7)

X
i,j

WijCi(t) =
X

j

∂g

∂ηj
(t)

=
X

j

∂ξ

∂ηj
(t, x0, k) = Φ(t) (13)

4.4 Case of limit cycles
4.4.1 Autonomous systems We firstly consider the autonomous
case. Notation and assumptions are as in section 3.

We have seen that since f(x, ρk) = ρf(x, k) for all ρ > 0,

ξ(t, x0(k), ρk) = ξ(ρt, x0(k), k). (14)

Applying this to the case where t = τ(k) the period of the limitcycle
and where x0(k) is the initial condition as in section 3 we deduce

that
τ(ρk) = ρ−1τ(k)

and hence that X
j

kj
∂τ

∂kj
= −τ. (15)

Moreover, (14) implies that x0(k) = x0(ρk) because this is where
both ξ(t, x0, k) and ξ(t, x0, ρk) intersect Σ for t > 0. Therefore,

X
j

kj
∂x0

∂kj
= 0. (16)

Since g(t, k) = ξ(t, x0(k), k),

X
j

kj
∂g

∂ηj
=

∂ξ

∂x0
·
X

j

kj
∂x0

∂kj
+
X

j

kj
∂ξ

∂kj
(17)

where all derivatives etc are evaluated at t, x0 and k0. But the first
term on the left-hand side is zero by (15) and the second equals
tf(g(t, k)) by (??). Thus,

X
j

kj
∂g

∂kj
(t) = tf(g(t, k)) = Φ(t). (18)

Note that tf(g(t, k)) = tġ(t, k0) which is an infinitesimal period
change (i.e. the derivatative at ω = 1 of ω → g(ωt)).

Now we note the following form of the summation theorem for
periodic orbits of automomous systems. Let γ(t, k) = g(τ̄ t, k) as
above in section 3. Then γ is periodic in t with period τ0 = τk0 .
The summation theorem for γ isX

j

kj
∂γ

∂kj
= 0. (19)

Proof. Since

γ(t, k) = ξ(τ̄ t, x0(k), k) = ξ(t, x0(k), τ̄k)

it follows that

∂γ

∂kj
=

∂ξ

∂x0

∂x0

∂kj
+ τ̄

∂ξ

∂kj
+

∂τ̄

∂kj

X
i

ki
∂ξ

∂ki
.

Thus X
j

kj
∂γ

∂kj
=

∂ξ

∂x0

X
j

kj
∂x0

∂kj
+ τ̄

X
j

kj
∂ξ

∂kj

+
X

j

kj
∂τ̄

∂kj

X
i

ki
∂ξ

∂ki

= 0

by equations (15) and (16).

4.4.2 Forced systems Now we consider the non-autonomous
equation ẋ = f(t, x, k). We assume that f is of period τ in the
sense that f(t + τ, x, k) ≡ f(t, x, k) and suppose that x = g(t, k)
is a periodic solution with period τ . We assume that this solution is
non-degenerate in the sense that 1 is not an eigenvalue of X(τ).
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Let y(t) =
P

j kj∂g/∂kj(t). Since the period τ is independent
of k for k near k0, the derivatives ∂g/∂kj are periodic in time with
period τ and therefore y(t) also has period τ . Moreover, y(t) is a
solution of the equation ẏ = J(t) · y + K(t) where J(t) is as in
section 1 and K(t) =

P
j kj∂f/∂kj(t). The general solution of

this equation is

y(t) = X(t) · c +

Z t

0

X(s, t) ·K(s) ds

for some vector c. Here X(t) and X(s, t) are as in section 1. But
the last term equals

P
j kj∂ξ/∂kj(t) where ξ is as in section 1 and

by equation (7) (see also (12)) this is Φ(t).
If y(t) =

P
j kj∂g/∂kj(t), y(τ) = y(0) and therefore, since

X(0) is the identity, we deduce that (I − X(τ))c = Φ(τ). Since
1 is not an eigenvalue of X(τ), (I − X(τ)) is invertible and c =
(I −X(τ))−1Φ(τ). Therefore,X

j

kj
∂g

∂kj
(t) = X(τ)(I −X(τ))−1Φ(τ) + Φ(t). (20)

5 CLASSICAL CONTROL COEFFICIENTS
5.1 Changes in phases and peak times
Suppose that t = φ(k) is the time when gm has a minimum or
maximum value. Then φ(k) satisfies ġm(φ(k), k) = 0. Therefore,
differentiating this wrt kj we see that

g̈m(φ) · ∂φ

∂kj
+

ġmφ

∂kj
(φ) = 0.

and hence deduce that

∂φ

∂kj
= −

„
∂ġm

∂kj
(φ)

«
/g̈m(φ)

= −

 
∂

∂t

˛̨̨̨
t=φ

∂gm

∂kj

!
/g̈m(φ)

= −

 X
i

SijU̇i,m(φ)

!
/g̈m(φ) (21)

Note that this could have been written in terms of Ui,m instead
of U̇i,m by using the fact that (∂gm/∂kj )̇ = J(φ) · (∂gm/∂kj) to

deduce that
“P

i SijU̇i,m

”
= J(φ) ·

`P
i SijUi,m

´
.

5.2 Amplitude
The maximum value Mm of xm(t) is given by

Mm = gm(tm(k), k), ġm((tm(k), k).

Differentating wrt kj gives

∂Mm

∂kj
= ġm(tm)

∂tm

∂kj
+

∂gm

∂kj
(tm)

=
∂gm

∂kj
(tm)

because ġm(Tm) = 0. Similarly for the minimum value mm. The
formula for amplitude Am follows from the fact that Am = Mm −
mm.

The α-decrease time tα,m is given by gm(tα,m(k), k) −
αg(tm(k), k) = 0. Differentiating wrt kj and solving for
∂tα,m/∂kj gives

∂tα,m(k)

∂kj
=

„
α

∂gm

∂kj
(tα,m)− ∂gm

∂kj
(tm)

«
/ġ(tα,m)

6 OPTIMALITY OF S

If Sij has its usual meaning and the Ui,m(t) are as in the Funda-
mental Observation then let U(t) denote the s × n matrix whose
ith row is the n-dimensional vector Ui(t). (Here, as above, n is the
dimension of the x-state space.) Then

∂g

∂η
(t) = StU(t)

so that
∂gm

∂η
(t) = StU(:, m)(t)

∂gm

∂ηj
(t) = S(:, j)tU(t)

and
∂gm

∂ηj
(t) = S(:, j)tU(:, m)(t) =

X
i

SjiUim(t)

Consider the subspace spanned by the functions given by
∂g/∂ηj(·) on 0 ≤ t ≤ T . Assume these vectors are independent
so that the subspace is s dimensional. Let Ui(·) be any orthonor-
mal basis of this space. Then ∂g/∂η(t) = StU(t) for some matrix
S. The U and S coming from the Fundamental observation have
the property that they maximise the decay rate of the quantities
σ2

i = ||S(:, i)||2 amongst all such U and S.

7 THE RELATIONSHIP BETWEEN S AND THE
FISHER INFORMATION MATRIX

We consider the case where we are fitting a network model described
by the equation ẋ = f(t, x, k) to data. Each of the state variables
xm in the model corresponds to a particular elementary product of
the biological system. We assume that we have experimental time-
series Dm,` for the products gm(t`) of (i.e. measured values Dm,`

of gm(t`) for some for some times t`).
We suppose that we use these data to estimate the parameters of

the equation using least squares or some similar error minimisation
or likelihood maximisation scheme. Thus we seek to adjust parame-
ters so as to minimise H =

P
m

P
` (gm(t`)−Dm`)

2 /Σ2
m.

Assume that η∗ = (η∗1 , . . . , η∗s ) is the parameter value mini-
mising H . If the times are t1, . . . , tN are such that the spacing
∆t = t`+1 − t` is independent of ` and if T` = (tN − t1)/∆t,

H(g∗ + δg∗) =
X
m

T−1
`

X
`

(g∗m(t`) + δg∗m(t`)−Dm,l)
2.

In the mean δg∗q (t`)(g
∗
q (t`)−Dq,l) ≈ 0 and therefore

H(g∗ + δg∗) = H(g∗) +
X

q

T−1
`

X
`

δg∗g(t`)
2

≈ H(g∗) + ‖δg‖ .
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Table 1. This table lists some key observables for oscillators and signalling systems
and gives the expressions in terms of the Ui,m for their control coefficients using the
formula (5) of the main paper I. Most of these formulas are demonstrated in section 5.
For free running oscillators the observable considered is period τ . The partial deriva-
tive ∂τ/∂ηj follows from equation (6). We also note that, for an appropriate definition
of phase change for free-running oscillators ϕ, Cϕ

j = −Cp
j . For forced oscillators the

period is constant if the system is entrained but the phase ϕ(m) of each variable xm(t)
can change as parameters vary and we consider these. The amplitude Am of xm(t) is
the difference between the maximum and minimum values of xm(t). For signalling
systems, I have in mind the case where an incomingF signal S activates a network that
was in a steady state. As a result a time-dependent signal x(t) = (x1(t), . . . , xn(t))
propagates through the network. We consider the time for the signals to reach their
peaks and the α-decrease time. This is the time t = tα,m when the signal gm(t) has
decreased from its peak value gm(Tm) by a factor α i.e. gm(t) = αg(Tm).

CQ
j in terms of eqn. (5) of I t` a`

Oscillators
free-running period τ τ 1/fm(x0)

Forced oscillators
phase Φm of variable m’s max. Φm −1/g′′m(Φm)
phase φm of variable m’s min. φm −1/g′′m(φm)
amplitude Am of variable m Φm, φm 1, -1

Signalling systems
time tm,` for xm to reach `th peak tm,` −1/x′′m(tm,`)

α-decrease time tα,m Tm, tα,m α/g′m(tα,m), −1/g′m(tα,m)

But since δg =
P

i λiσiUi,

‖δg‖ =
X

i

λ2
i σ

2
i = λtD2λ

= δηtW tD2Wδη (since λ = Wδη)

= δηtStSδη

where D is the diagonal matrix with entries the singular components
and the superscript t denotes a transpose. Thus in the mean H(g∗ +
δg∗) ≈ H(g∗)+δηtFδη where F = StS is the Fisher Information
Matrix.

8 SOFTWARE
A Matlab software package has been written to perform the ana-
lyses presented in the main paper. This will be available from
http://wsbc.warwick.ac.uk/www/. The package requires Matlab 7.
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