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a Station de génétique quantitative et appliquée,
Institut national de la recherche agronomique,

78352 Jouy-en-Josas Cedex, France
b Institute of Cell, Animal and Population Biology

The University of Edinburgh
Edinburgh EH9 3JT, UK

(Received 24 September 1999; accepted 30 November 1999)

Abstract – This paper presents procedures for implementing the EM algorithm to
compute REML estimates of variance covariance components in Gaussian mixed
models for longitudinal data analysis. The class of models considered includes random
coefficient factors, stationary time processes and measurement errors. The EM
algorithm allows separation of the computations pertaining to parameters involved
in the random coefficient factors from those pertaining to the time processes and
errors. The procedures are illustrated with Pothoff and Roy’s data example on growth
measurements taken on 11 girls and 16 boys at four ages. Several variants and
extensions are discussed.

EM algorithm / REML / mixed models / random regression / longitudinal data

Résumé – Estimation EM-REML des paramètres de covariance en modèles
mixtes gaussiens en vue de l’analyse de données longitudinales. Cet article
présente des procédés permettant de mettre en œuvre l’algorithme EM en vue
du calcul d’estimations REML des composantes de variance covariance en modèles
mixtes gaussiens d’analyse de données longitudinales. La classe de modèles considérée
concerne les coefficients aléatoires, les processus temporels stationnaires et les erreurs
de mesure. L’algorithme EM permet de dissocier formellement les calculs relatifs
aux paramètres des coefficients aléatoires de ceux impliqués dans les processus et la
résiduelle. Ces méthodes sont illustrées par un exemple provenant de Pothoff et Roy
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sur des mesures de croissance prises sur 11 filles et 16 garçons à quatre âges différents.
On discute enfin plusieurs variantes et extensions de cette méthode.

algorithme EM / REML / modèles mixtes / régression aléatoire / données
longitudinales

1. INTRODUCTION

There has been a great deal of interest in longitudinal data analysis among
biometricians over the last decade: see e.g., the comprehensive synthesis of both
theoretical and applied aspects given in Diggle et al. [4] textbook. Since the
pioneer work of Laird and Ware [13] and of Diggle [3], random effects models
[17] have been the cornerstone of statistical analysis used in biometry for this
kind of data. In fact, as well illustrated in the quantitative genetics and animal
breeding areas, practitioners have for a long time restricted their attention to
the most extreme versions of such models viz. to the so called intercept or
repeatability model with a constant intra-class correlation, and to the multiple
trait approach involving an unspecified variance covariance structure.

Harville [9] first advocated the use of autoregressive random effects to
the animal breeding community for analysing lactation records from different
parities. These ideas were later used by Wade and Quaas [33] and Wade et al.
[34] to estimate correlation among lactation yields produced over different time
periods within herds and by Schaeffer and Dekkers [28] to analyse daily milk
records.

As well explained in Diggle et al. [3], potentially interesting models must
include three sources of variation: (i) between subjects, (ii) between times
within a subject and (iii) measurement errors. Covariance parameters of such
models are usually estimated by maximum likelihood procedures based on
second order algorithms. The objective of this study is to propose EM-REML
procedures [1, 21] for estimating these parameters especially for those involved
in the serial correlation structure (ii).

The paper is organized as follows. Section 2 describes the model structure
and Section 3 the EM implementation. A numerical example based on growth
measurements will illustrate these procedures in Section 4, and some elements
of discussion and conclusion are given in Section 5.

2. MODEL STRUCTURE

Let yij be the jth measurement (j = 1, 2, . . . , ni) recorded on the ith
individual i = 1, 2, . . . , I at time tij . The class of models considered here
can be written as follows:

yij = x′ijβ+ εij (1)

where x′ijβ represents the systematic component expressed as a linear combina-
tion of p explanatory variables (row vector x′ij) with unknown linear coefficients
(vector β), and εij is the random component.
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As in [3], εij is decomposed as the sum of three elements:

εij =
K∑
k=1

zijkuik + wi(tij) + eij . (2)

The first term represents the additive effect of K random regression factors uik
on covariable information zijk (usually a (k − 1)th power of time) and which
are specific to each ith individual. The second term wi(tij) corresponds to the
contribution of a stationary Gaussian time process, and the third term eij is
the so-called measurement error.

By gathering the ni measurements made on the ith individual such that
yi = {yij}, εi = {εij} and Xi(ni×p) = (xi1, xi2, . . . , xini)

′, (1) and (2) can be
expressed in matrix notation as

yi = Xiβ+ εi, (3)

and

εi = Ziui + Wi + ei, (4)

where Zi(ni×K) = (zi1, zi2, . . . , zij , . . . , zini)
′, zij(K×1) = {zijk}, ui(K×1) =

{uik} for k = 1, 2, . . . , K, Wi = {wi(tij)}, and ei = {eij} for j = 1, 2, . . . , ni.
We will assume that εi ∼ N(0,Vi) with

Vi = ZiGZ′i + Ri (5)

where G(K×K) is a symmetric positive definite matrix, which may alternatively
be represented under its vector form g = vechG. For instance, for a linear
regression, g = (g00, g01, g11)′ where g00 refers to the variance of the intercept,
g11 to the variance of the linear regression coefficient and g01 to their covariance.

Ri in (5) has the following structure in the general case

Ri = σ2Hi + σ2
eIni , (6)

where σ2
eIni = var(ei), and for stationary Gaussian simple processes, σ2 is the

variance of each wi(tij) and Hi = {hij,ij′} the (ni × ni) correlation matrix
among them such that hij,ij′ = f(ρ, dij,ij′) can be written as a function f of a
real positive number ρ and of the absolute time separation dij,ij′ = |tij − tij′ |
between measurements j and j′ made on the individual i.

Classical examples of such functions are the power: f(ρ, d) = ρd; the
exponential: exp(−d/ρ), and the Gaussian: exp(−d2/ρ2), functions. Notice that
for equidistant intervals, these functions are equivalent and reduce to a first
order autoregressive process (AR1).

Ri in (6) can be alternatively expressed in terms of ρ, σ2 and of the ratio
λ = σ2

e/σ
2

Ri = σ2(Hi + λIni) = σ2H̃i. (7)

This parameterisation via r = (σ2, ρ, λ)′ allows models to be addressed both
with and without measurement error variance (or “nugget” in geostatistics).
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3. EM IMPLEMENTATION

Let γ = (g′, r′)′ be the 3+K(K+1)/2 parameter vector and x = (y′,β′,u′)′
be the complete data vector where y = (y′1,y

′
2, . . . , y′i, . . . , y′I)

′ and u =
(u′1,u

′
2 . . . , u′i, . . . , u′I)

′. Following Dempster et al. [1], the EM algorithm
proceeds from the log-likelihood L(γ; x) = ln p(x|γ) of x as a function of
γ. Here L(γ; x) can be decomposed as the sum of the log-likelihood of u as a
function of g and of the log-likelihood of ε∗ = y−Xβ −Zu as a function of r,

L(γ; x) = L(r; ε∗) + L(g; u) + const., (8)
where X(N×p) = (X′1,X

′
2, . . . , X′i, . . . , X′I)

′

and Z(N×KI) = (Z′1,Z
′
2, . . . ,Z

′
i, . . . , Z′I)

′.
Under normality assumptions, the two log-likelihoods in (8) can be expressed

as:

L(g; u) = −1/2

[
KIln2π + Iln|G|+

I∑
i=1

u′iG
−1ui

]
, (9)

L(r; ε∗) = −1/2

[
N ln2π +

I∑
i=1

ln|Ri|+
I∑
i=1

ε∗′i R−1
i ε

∗
i

]
. (10)

The E-step consists of evaluating the conditional expectation of the complete
data log-likelihood L(γ; x) = ln p(x|γ) given the observed data y with γ set
at its current value γ[t] i.e., evaluating the function

Q(γ|γ[t]) = E[L(γ; x)|y,γ = γ[t]], (11)
while the M -step updates γ by maximizing (11) with respect to γ i.e.,

γ[t+1] = arg maxΥQ(γ|γ[t]). (12)

The formula in (8) allows the separation of Q(γ|γ[t]) into two components, the
first Qu(g|γ[t]) corresponding to g, and the second Qε(r|γ[t]) corresponding to
r, i.e.,

Q(γ|γ[t]) = Qu(g|γ[t]) +Qε(r|γ[t]). (13)
We will not consider the maximization of Qu(g|γ[t]) with respect to g in detail;
this is a classical result: see e.g., Henderson [11], Foulley et al. [6] and Quaas
[23]. The (k, l) element of G can be expressed as

(G[t+1])kl = E

(
I∑
i=1

uikuil|y,γ[t]

)
. (14)

If individuals are not independent (as happens in genetical studies), one has to

replace
I∑
i=1

uikuil by u′kA
−1ul where uk = {uik} for i = 1, 2, . . . , I and A is

a (I × I) symmetric, positive definite matrix of known coefficients.
Regarding r, Qε(r|γ[t]) can be made explicit from (10) as

Qε(r|γ[t]) = −1/2

[
I∑
i=1

ln|Ri|+
I∑
i=1

tr(R−1
i Ωi)

]
+ const., (15)
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where Ωi(ni×ni) = E(ε∗i ε
∗′
i |y,γ[t]) which can be computed from the elements

of Henderson’s mixed model equations [10, 11].

Using the decomposition of Ri in (7), this expression reduces to (16)

Qε(r|γ[t]) = −1/2
[
N ln σ2 +

I∑
i=1

ln|H̃i(ρ, λ)|

+σ−2
I∑
i=1

tr{[H̃i(ρ, λ)]−1Ωi}
]

+ const.

In order to maximize Qε(r|γ[t]) in (16) with respect to r, we suggest using
the gradient-EM technique [12] i.e., solving the M -step by one iteration of a
second order algorithm. Since here E(Ωi) = σ2H̃i, calculations can be made
easier using the Fisher information matrix as in [31]. Letting Q̇ = ∂Q/∂r,
Q̈ = E(∂2Q/∂r∂r′) the system to solve can be written

−Q̈∆r = Q̇, (17)

where ∆r is the increment in r from one iteration to the next.

Here, elements of Q̇ and Q̈ can be expressed as:

q̇1 = Nσ−2 − σ−4
I∑
i=1

tr(H̃−1
i Ωi)

q̇2 =
I∑
i=1

tr
[
∂Hi

∂ρ
(H̃−1

i − σ−2H̃−1
i ΩiH̃−1

i )
]

q̇3 =
I∑
i=1

tr(H̃−1
i − σ−2H̃−1

i ΩiH̃−1
i )

and

q̈11 = Nσ−4; q̈12 = σ−2
I∑
i=1

tr
(
∂Hi

∂ρ
H̃−1
i

)

q̈13 = σ−2
I∑
i=1

tr(H̃−1
i ); q̈22 =

I∑
i=1

tr
(
∂Hi

∂ρ
H̃−1
i

∂Hi

∂ρ
H̃−1
i

)

q̈23 =
I∑
i=1

tr
(

H̃−1
i

∂Hi

∂ρ
H̃−1
i

)
; q̈33 =

I∑
i=1

tr(H̃−1
i H̃−1

i )

where 1, 2 and 3 refer to σ2, ρ and λ respectively.
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The expressions for Q̇ and Q̈ are unchanged for models without measurement
error; one just has to reduce the dimension by one and use Hi in place of H̃i.

The minimum of −2L can be easily computed from the general formula given
by Meyer [20] and Quaas [23]

−2Lm = [N − r(X)]ln 2π+ln|G#|+ln|R#|+ln|M#|+y′ R#−1y− θ̂′ R#−1y
where G# = A ⊗ G (A is usually the identity matrix), R# = ⊕Ii=1Ri, (⊗
and ⊕ standing for the direct product and sum respectively) M# = M/σ2

with M the coefficient matrix of Henderson’s mixed model equations in

θ̂ = (β̂
′
, û′)′ i.e., for Ti = (Xi, 0, 0, . . . ,Zi, . . . , 0) and Γ− =

[
0 0
0 G#−1

]
,

M =
I∑
i=1

T′iH̃
−1
i Ti + σ2Γ−.

Here y′R#−1y − θ̂′ R#−1y = [N − r(X)]σ̂2/σ2 which equals to N − r(X) for
σ2 evaluated at its REML estimate, so that eventually

−2Lm = [N − r(X)](1 + ln 2π) +Kln|A|+ Iln|G|+ ln|M|

+[N − dim(M)]ln σ̂2 +
I∑
i=1

ln |H̃i|. (18)

This formula is useful to compute likelihood ratio test statistics for comparing
models, as advocated by Foulley and Quaas [5] and Foulley et al. [7,8].

4. NUMERICAL APPLICATION

The procedures presented here are illustrated with a small data set due
to Pothoff and Roy [22]. These data shown in Table I contain facial growth
measurements made on 11 girls and 16 boys at four ages (8, 10, 12 and 14 years)
with the nine deleted values at age 10 defined in Little and Rubin [14].

The mean structure considered is the one selected by Verbeke and Molen-
berghs [32] in their detailed analysis of this example and involves an intercept
and a linear trend within each sex such that

E(yijk) = µ+ αi + βitj , (19)
where µ is a general mean, αi is the effect of sex (i = 1, 2 for female and male
children respectively), and βi is the slope within sex i of the linear increase
with time t measured at age j (tj = 8, 10, 12 and 14 years).

The model was applied using a full rank parameterisation of the fixed effects
defined as β′ = (µ + α1, α2 − α1, β1, β2 − β1). Given this mean structure,
six models were fitted with different covariance structures. These models
are symbolized as follows with their number of parameters indicated within
brackets:

{1} intercept + error (2)
{2} POW (2)
{3} POW + measurement error (3)
{4} intercept + POW (3)
{5} intercept + linear trend + error (4)
{6} unspecified (10)
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Table I. Growth measurements in 11 girls and 16 boys (from Pothoff and Roy [22]
and Little and Rubin [14]).

Age (years) Age (years)

Girl 8 10 12 14 Boy 8 10 12 14

1 210 200 215 230 1 260 250 290 310
2 210 215 240 255 2 215 230 265
3 205 245 260 3 230 225 240 275
4 235 245 250 265 4 255 275 265 270
5 215 230 225 235 5 200 225 260
6 200 210 225 6 245 255 270 285
7 215 225 230 250 7 220 220 245 265
8 230 230 235 240 8 240 215 245 255
9 200 220 215 9 230 205 310 260
10 165 190 195 10 275 280 310 315
11 245 250 280 280 11 230 230 235 250

12 215 240 280
13 170 260 295
14 225 255 255 260
15 230 245 260 300
16 220 235 250

Distance from the centre of the pituary to the pteryomaxillary fissure (unit 10−4 m).

Table II. Covariance structures associated with the models considered.

Modelsa Zi G Ri

{1} 1ni g00 σ2
e Ini

{2} 0ni — σ2Hi

{3} 0ni — σ2Hi + σ2
e Ini

{4} 1ni g00 σ2Hi

{5} (1ni , ti)
(
g00 g01
g01 g11

)
σ2

e Ini

{6} 0ni — {σe[ti,t
′
i
]
}

a {1} = intercept + error; {2} = POW; {3} = POW + measurement error; {4} =
intercept + POW; {5} = intercept + linear trend + error; {6} = unspecified where

POW is defined as σ2Hi with Hi = {hi,tt′ = ρ|ti−t
′
i|}; ti is the ni × 1 vector of ages

at wich measurements are made on individual i.

Variance covariance structures associated with each of these six models are
shown in Table II. Due to the data structure, the power function f(ρ, d) = ρd

(in short POW) reduces here to an autoregressive first order process (AR1)
having as correlation parameter ρ2.
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EM-REML estimates of the parameters of those models were computed via
the techniques presented previously. Iterations were stopped when the norm√√√√(∑

i

∆γ2
i

)
/

(∑
i

γ2
i

)
of both g and r, was smaller than 10−6. Estimates of

g and r, −2L values and the corresponding elements of the covariance structure
for each model are shown in Tables III and IV.

Random coefficient models such as {5} are especially demanding in terms
of computing efforts. Models involving time processes and measurement errors
require a backtracking procedure [2] at the beginning of the iterative process
i.e., one has to compute r[k+1] as the previous value r[k] plus a fraction ω[k+1] of
the Fisher scoring increment ∆r[k+1] where r[k] is the parameter vector defined
as previously at iteration k. For instance, we used ω = 0.10 up to k = 3 in the
case of model 3.

Model comparisons are worthwhile at this stage to discriminate between all
the possibilities offered. However, within the likelihood framework, one has to
check first whether models conform to nested hypotheses for the likelihood test
procedure to be valid.

E.g. model 3 (POW + m-error) can be compared to model 2 (POW), as
model 2 is a special case of model 3 for σ2

e = 0, and also to model 1 (intercept)
which corresponds to ρ = 1. The same reasoning applies to the 3-parameter
model 4 (intercept + POW) which can be contrasted to model 1 (equivalent
to model 4 for ρ = 0) and also to model 2 (equivalent to model 4 for g00 = 0).

In these two examples, the null hypothesis (H0) can be described as a point
hypothesis with parameter values on the boundary of the parameter space
which implies some change in the asymptotic distribution of the likelihood ratio
statistic under H0 [29, 30]. Actually, in these two cases, the asymptotic null
distribution is a mixture 1/2X2

0 +1/2X2
1 of the usual chi-square with one degree

of freedom X2
1 and of a Dirac (probability mass of one) at zero (usually noted

X2
0 ) with equal weights. This results in a P-value which is half the standard

one i.e., P − value = 1/2Pr[X2
1 > ∆(−2L)obs]; see also Robert-Granié et al.

[26], page 556, for a similar application.
In all comparisons, model 2 (POW) is rejected while model 1 (intercept)

is accepted. This is not surprising as model 2 emphasizes the effect of time
separation on the correlation structure too much as compared to the values
observed in the unspecified structure (Tab. IV). Although not significantly
different from model 1, models 3 (POW + measurement error) and 5 (intercept
+ linear trend) might also be good choices with a preference to the first one
due to the lower number of parameters.

As a matter of fact, as shown in Table III, one can construct several models
with the same number of parameters which cannot be compared. There are
two models with two parameters (models 1 and 2) and also two with three
parameters (models 3 and 4). The same occurs with four parameters although
only the random coefficient model was displayed because fitting the alternative
model (intercept + POW + measurement error) reduces here to fitting the
sub-model 3 (POW + measurement error) due to ĝ00 becoming very small.
Incidentally, running SAS Proc MIXED on this alternative model leads to
ĝ00 = 331.4071, ρ̂ = 0.2395 and σ̂2

e = 1.0268 i.e. to fitting model 4 (intercept +
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POW). However, since the value of −2Lm for model 4 is slightly higher than
that for model 3, it is the EM procedure which gives the right answer.

5. DISCUSSION-CONCLUSION

This study clearly shows that the EM algorithm is a powerful tool for
calculating maximum likelihood estimates of dispersion parameters even when
the covariance matrix V is not linear in the parameters as postulated in linear
mixed models.

The EM algorithm allows separation of the calculations involved in the R
matrix parameters (time processes + errors) and those arising in the G matrix
parameters (random coefficients), thus making its application to a large class
of models very flexible and attractive.

The procedure can also be easily adapted to get ML rather than REML
estimates of parameters with very little change in the implementation, involving
only an appropriate evaluation of the conditional expectation of uikuil and of
ε∗i ε
∗′
i along the same lines as given by Foulley et al. [8]. Corresponding results

for the numerical example are shown in Tables III and IV suggesting as expected
some downward bias for variances of random coefficient models and of time
processes.

Several variants of the standard EM procedure are possible such as those
based e.g., on conditional maximization [15, 18, 19] or parameter expansion
[16]. In the case of models without “measurement errors”, an especially simple
ECME procedure consists of calculating ρ[t+1] for σ2 fixed at σ2[t], with σ2[t+1]

being updated by direct maximization of the residual likelihood (without
recourse to missing data), i.e.,

ρ[t+1] = ρ[t] −

I∑
i=1

tr
[
∂Hi

∂ρ
(H̃−1

i − σ−2H̃−1
i ΩiH̃−1

i )
]

I∑
i=1

tr
(
∂Hi

∂ρ
H̃−1
i

∂Hi

∂ρ
H̃−1
i

) , (20)

σ2[t+1] =

I∑
i=1

[
yi −Xiβ̂(ρ[t],D[t])

]′
[Wi(ρ[t],D[t])]−1[yi −Xiβ̂(ρ[t],D[t])]

N − r(X)

where Wi = Z′iDZi + Hi with D = G/σ2, and which can be evaluated using
Henderson’s mixed model equations by

σ2[t+1] =

I∑
i=1

y′iH
−1
i (ρ[t])yi − θ̂

′
I∑
i=1

T′iH
−1
i (ρ[t])yi

N − r(X)
· (21)

Finally, random coefficient models can also be accommodated to include
heterogeneity of variances both at the temporal and environmental levels [8, 24,
25, 27] which enlarges the range of potentially useful models for longitudinal
data analysis.
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