Supplemental Data

Noncoding Mutations of *HGF* Are Associated

with Nonsyndromic Hearing Loss, DFNB39

Julie M. Schultz, Shaheen N. Khan, Zubair M. Ahmed, Saima Riazuddin, Ali Ahmed Waraya, Dhananjay Chhatre, Matthew F. Starost, Barbara Ploplis, Stephanie Buckley, David Velásquez, Madhulika Kabra, Kwanghyuk Lee, Muhammad J. Hassan, Ghazanfar Ali, Muhammad Ansar, Manju Ghosh, Edward R. Wilcox, Wasim Ahmad, Glenn Merlino, Suzanne M. Leal, Sheikh Riazuddin, Thomas B. Friedman, Robert J. Morell AJHG, Volume 85

Figure S1. Pedigrees of 36 Families Cosegregating Profound Deafness and

c.482+1986_1988delTGA within Intron 4 of *HGF*

Filled symbols represent individuals with prelingual, severe to profound, hearing loss. Asterisks indicate subjects enrolled in the protocol who contributed DNA samples. The pedigree for family DEM4011 was reported.¹⁶ The exact relationship between families DEM4333A and DEM4333B was not determined at the time of family history interview.

Figure S2. Differences in Weights of *Hgf* Conditional Knockout Mice and Littermate

Controls Weighed before ABR Testing

Conditional knockout mice were significantly smaller than littermate controls. Vertical bars indicate standard deviations.

AJHG, Volume 85

Figure S3. RT-PCR of Hgf and Met from Mouse cDNAs

Mouse MTC panels I and III (Clontech) and cDNA from mouse cochlea were amplified with PCR primers for *Hgf* (forward 5'-cgacaagggctttgatgataa-3', reverse 5'-agggcaataatcccaaggaa-3'), *Met* (forward 5'-tgtcaaggttgctgatttcg-3', reverse 5'-ggacgtagtgttccccaatg-3') and *Actb* (forward 5'-agtgtgacgttgacatccgta-3', reverse 5'-gtttgctccaaccaactgct-3'). Mouse genomic DNA and TE are included as controls. *Hgf* and *Met* are ubiquitously expressed in all mesenchymal and epithelial tissues, respectively.

Exon	Forward Primer	Reverse Primer	Product (bp) ^a
1	gttgcagggatctgtttggt	gaggggagttgagggaaagt	582
2	gctcctaacccctggaaatc	ggtagcagtttttgcgctct	508
3	tgcatttgtttctatattgtcca	gagggaggaaggaatcaag	461
4	acagcgactgctctctgga	aaaccttgccgtaatacaattca	502
IVS4	gatgtttatggccgagagga	ggctttaagagagacaagtgagg	500
5	tcagcaaattcacaggctca	tagttgcatttgcacgaaca	517
6	gcgtcgtggccctatagtaa	ccctgctgatgattttgtgtt	669
7	actcgatttggaacctcagc	tccaaaaatgcaaaagattgg	555
A (7b)	tgtgcagcatcacaaagtca	gccctgtattcaaagaaatgaaa	471
8	tgaatgaaaggaaaattggaatg	tttgaggaccaaatcccaga	558
9	aggccaatgttttgaaatgg	caaaaccagtgcagcaagaa	580
10	tctcgatctcctgacctcgt	cttggaggttggaaccaaaa	600
11	atctttgccatctgcttgct	ttgggaataaatgccagacc	583
12	aagtagctgggtgtggtggt	gcattgtgccccaaattaaa	622
13	tgagggtggtgagggattag	gggtacaaccttcaggacca	514
14	gtgtgttcgggatggctatt	gcaaaattttccccaactga	598
15	tgetttacetgageatttttea	atcagactgttggcccaatg	654
16	catttggacattcccacctt	acctcacatggtcctgatcc	518
17	tggatgcacaattcctgaaa	ggagttccggctctacacac	571
18	cagttgcagttattctctttttctg	ccaacatcagaaagcagcttag	640

 Table S1. Primer Sequences Used to Amplify and Sequence HGF Genomic DNA

^a All PCR products were amplified with 1.5 mM $MgCl_2$ and 57°C annealing temperature, except exons 5 and 8, where 2.5 mM $MgCl_2$ was used.

Table S2	Control	Chromosomes	Screened	for	Mutations	of HGF
----------	---------	-------------	----------	-----	------------------	--------

Mutation ^a	Pakistani	Indian	Coriell Human	Coriell	Total
			Diversity Panel	Caucasian	
				Panel	
Δ3	2/858	0/262	0/168	0/400	2/1688
Δ10	0/858	0/262	0/168	0/400	0/1688
c.495G>A (p.S165S)	0/474		0/172	0/394	0/1040

^a $\Delta 3 = c.482 + 1986_{1988}$ delTGA; $\Delta 10 = c.482 + 1991_{2000}$ delGATGATGAAA

	rs4732399	rs10231299	rs5745752	rs2286194	B39 ^a	rs1558001	rs969705	rs12155338
~Mb ^b	81.12	81.12	81.17	81.19	81.22	81.25	81.26	81.34
PKDF002	CC	TT	GG	AA	Δ3	GG	CC	ТТ
PKDF084	CC	TT	GG	AA	Δ3	GG	CC	TT
PKDF121	CC	TT	GG	AA	Δ3	GG	CC	TT
PKDF157	CC	TT	GG	AA	Δ3	GG	CC	TT
PKDF204	TT	CC	GG	AA	Δ3	GG	CC	TT
PKDF239 ^c	CC	TT	GG	AA	Δ3	GG	CC	TT
PKDF351 ^c	CC	TT	GG	AA	Δ3	GG	CC	TT
PKDF352	CC	TT	GG	AA	Δ3	GG	CC	TT
PKDF402	CC	TT	GG	AA	Δ3	GG	TT	AA
PKDF711	CC	TT	GG	AA	Δ3	GG	CC	TT
PKDF841	CC	TT	GG	AA	Δ3	GG	CC	AA
PKDF847	CC	TT	GG	AA	Δ3	GG	CC	AA
PKDF879	CC	TT	GG	AA	Δ3	GG	CC	TT
PKDF1113	CC	TT	GG	AA	Δ3	GG	CC	TT
PKSR36a	CC	ТТ	GG	AA	Δ3	GG	CC	TT
PKSR53a	CC	TT	GG	AA	Δ3	GG	CC	TT
PKSR2b	CC	TT	GG	AA	Δ3	GG	CC	TT
IDM13	СС	ТТ	GG	AA	Δ3	GG	CC	TT
Kla2	СС	TT	GG	AA	Δ3	GG	CC	TT
DEM4011	CC	TT	GG	AA	Δ3	GG	CC	TT
DEM4017A	CC	TT	GG	AA	Δ3	GG	CC	TT
DEM4018	СС	TT	GG	AA	Δ3	GG	CC	AA
DEM4048	CC	TT	GG	AA	Δ3	GG	CC	TT
DEM4050	CC	CC	GG	AA	Δ3	GG	CC	TT
DEM4058	CC	TT	GG	AA	Δ3	GG	CC	TT
DEM4071	CC	TT	GG	AA	Δ3	GG	CC	TT
DEM4142	CC	TT	GG	AA	Δ3	GG	CC	TT
DEM4174	CC	TT	GG	AA	Δ3	GG	CC	TT
DEM4199	СС	CC	GG	AA	Δ3	GG	CC	ТТ
DEM4201	CC	TT	GG	AA	Δ3	GG	CC	TT
DEM4212	СС	TT	GG	AA	Δ3	GG	CC	TT
DEM4320	СС	ТТ	GG	AA	Δ3	GG	CC	ТТ
DEM4332	CC	TT	GG	AA	Δ3	GG	CC	TT
DEM4333	CC	TT	GG	AA	Δ3	GG	CC	ТТ
(A,B)								
PKDF601	CC	TT	AA	AA	Δ10	AA	TT	TT
PKDF210	CC	CC	GG	TT	G>A	GG	CC	AA

Table S3. SNP Genotypes in 221,150 bp Surrounding HGF Mutations

^a *HGF* mutations: Δ3=c.482+1986_1988delTGA; Δ10=c.482+1991_2000delGATGATGAAA; G>A=c.495G>A (p.S165S)

^b Nucleotide location in megabases according to human genome reference sequence (NCBI build 36.1)

^c Pedigrees that define the proximal and distal breakpoints for the minimal *DFNB39* interval