Supplemental Data

Gene Ontology Analysis of GWAS Data Sets

Provides Insights into the Biology of Bipolar Disorder

Peter Holmans, Elaine K. Green, Jaspreet Singh Pahwa, Manuel A.R. Ferreira, Shaun M. Purcell, Pamela Sklar, The Wellcome Trust Case-Control Consortium, Michael J. Owen, Michael C. O'Donovan, and Nick Craddock

Members of Wellcome Trust Case Control Consortium

Management Committee: Paul R Burton¹, David G Clayton², Lon R Cardon³, Nick Craddock⁴, Panos Deloukas⁵, Audrey Duncanson⁶, Dominic P Kwiatkowski^{3,5}, Mark I McCarthy^{3,7}, Willem H Ouwehand^{8,9}, Nilesh J Samani¹⁰, John A Todd², Peter Donnelly (Chair)¹¹

Data and Analysis Committee: Jeffrey C Barrett³, Paul R Burton¹, Dan Davison¹¹, Peter Donnelly¹¹, Doug Easton¹², David M. Evans³, Hin-Tak Leung², Jonathan L Marchini¹¹, Andrew P Morris³, Chris CA Spencer¹¹, Martin D Tobin¹, Lon R Cardon (Co-chair)³, David G Clayton (Co-chair)²

UK Blood Services & University of Cambridge Controls: Antony P Attwood^{5,8}, James P Boorman^{8,9}, Barbara Cant⁸, Ursula Everson¹³, Judith M Hussey¹⁴, Jennifer D Jolley⁸, Alexandra S Knight⁸, Kerstin Koch⁸, Elizabeth Meech¹⁵, Sarah Nutland², Christopher V Prowse¹⁶, Helen E Stevens², Niall C Taylor⁸, Graham R Walters¹⁷, Neil M Walker², Nicholas A Watkins^{8,9}, Thilo Winzer⁸, John A Todd², Willem H Ouwehand^{8,9}

1958 Birth Cohort Controls: Richard W Jones¹⁸, Wendy L McArdle¹⁸, Susan M Ring¹⁸,

David P Strachan¹⁹, Marcus Pembrey^{18,20}

Bipolar Disorder (Aberdeen): Gerome Breen²¹, David St Clair²¹; (Birmingham): Sian Caesar²², Katherine Gordon-Smith^{22,23}, Lisa Jones²²; (Cardiff): Christine Fraser²³, Elaine K Green²³, Detelina Grozeva²³, Marian L Hamshere²³, Peter A Holmans²³, Ian R Jones²³, George Kirov²³, Valentina Moskvina²³, Ivan Nikolov²³, Michael C O'Donovan²³, Michael J Owen²³, Nick Craddock²³; (London): David A Collier²⁴, Amanda Elkin²⁴, Anne Farmer²⁴, Richard Williamson²⁴, Peter McGuffin²⁴; (Newcastle): Allan H Young²⁵, I Nicol Ferrier²⁵

Coronary Artery Disease (Leeds): Stephen G Ball²⁶, Anthony J Balmforth²⁶, Jennifer H Barrett²⁶, D Timothy Bishop²⁶, Mark M Iles²⁶, Azhar Maqbool²⁶, Nadira Yuldasheva²⁶, Alistair S Hall²⁶; (Leicester): Peter S Braund¹⁰, Paul R Burton¹, Richard J Dixon¹⁰, Massimo Mangino¹⁰, Suzanne Stevens¹⁰, Martin D Tobin¹, John R Thompson¹, Nilesh J Samani¹⁰

Crohn's Disease (Cambridge): Francesca Bredin²⁷, Mark Tremelling²⁷, Miles Parkes²⁷; (Edinburgh): Hazel Drummond²⁸, Charles W Lees²⁸, Elaine R Nimmo²⁸, Jack Satsangi²⁸; (London): Sheila A Fisher²⁹, Alastair Forbes³⁰, Cathryn M Lewis²⁹, Clive M Onnie²⁹, Natalie J Prescott²⁹, Jeremy Sanderson³¹, Christopher G Mathew²⁹; (Newcastle): Jamie Barbour³², M Khalid Mohiuddin³², Catherine E Todhunter³², John C Mansfield³²; (Oxford): Tariq Ahmad³³, Fraser R Cummings³³, Derek P Jewell³³

AJHG, Volume 85

Hypertension (Aberdeen): John Webster³⁴; (Cambridge): Morris J Brown³⁵, David G Clayton²; (Evry, France): G Mark Lathrop³⁶; (Glasgow): John Connell³⁷, Anna Dominiczak³⁷; (Leicester): Nilesh J Samani¹⁰; (London): Carolina A Braga Marcano³⁸, Beverley Burke³⁸, Richard Dobson³⁸, Johannie Gungadoo³⁸, Kate L Lee³⁸, Patricia B Munroe³⁸, Stephen J Newhouse³⁸, Abiodun Onipinla³⁸, Chris Wallace³⁸, Mingzhan Xue³⁸, Mark Caulfield³⁸; (Oxford): Martin Farrall³⁹

Rheumatoid Arthritis: Anne Barton⁴⁰, Ian N Bruce⁴⁰, Hannah Donovan⁴⁰, Steve Eyre⁴⁰, Paul D Gilbert⁴⁰, Samantha L Hider⁴⁰, Anne M Hinks⁴⁰, Sally L John⁴⁰, Catherine Potter⁴⁰, Alan J Silman⁴⁰, Deborah PM Symmons⁴⁰, Wendy Thomson⁴⁰, Jane Worthington⁴⁰

Type 1 Diabetes: David G Clayton², David B Dunger^{2,41}, Sarah Nutland², Helen E Stevens², Neil M Walker², Barry Widmer^{2,41}, John A Todd²

Type 2 Diabetes (Exeter): Timothy M Frayling^{42,43}, Rachel M Freathy^{42,43}, Hana Lango^{42,43}, John R B Perry^{42,43}, Beverley M Shields⁴³, Michael N Weedon^{42,43}, Andrew T Hattersley^{42,43}; (**London**): Graham A Hitman⁴⁴; (**Newcastle**): Mark Walker⁴⁵; (**Oxford**): Kate S Elliott^{3,7}, Christopher J Groves⁷, Cecilia M Lindgren^{3,7}, Nigel W Rayner^{3,7}, Nicholas J Timpson^{3,46}, Eleftheria Zeggini^{3,7}, Mark I McCarthy^{3,7}

Tuberculosis (**Gambia**): Melanie Newport⁴⁷, Giorgio Sirugo⁴⁷; (**Oxford**): Emily Lyons³, Fredrik Vannberg³, Adrian VS Hill³

AJHG, Volume 85

Ankylosing Spondylitis: Linda A Bradbury⁴⁸, Claire Farrar⁴⁹, Jennifer J Pointon⁴⁸, Paul Wordsworth⁴⁹, Matthew A Brown^{48,49}

AutoImmune Thyroid Disease: Jayne A Franklyn⁵⁰, Joanne M Heward⁵⁰, Matthew J Simmonds⁵⁰, Stephen CL Gough⁵⁰

Breast Cancer: Sheila Seal⁵¹, Michael R Stratton^{51,52}, Nazneen Rahman⁵¹

Multiple Sclerosis: Maria Ban⁵³, An Goris⁵³, Stephen J Sawcer⁵³, Alastair Compston⁵³

Gambian Controls (Gambia): David Conway⁴⁷, Muminatou Jallow⁴⁷, Melanie Newport⁴⁷, Giorgio Sirugo⁴⁷; (**Oxford):** Kirk A Rockett³, Dominic P Kwiatkowski^{3,5}

DNA, Genotyping, Data QC and Informatics (Wellcome Trust Sanger Institute, Hinxton): Suzannah J Bumpstead⁵, Amy Chaney⁵, Kate Downes^{2,5}, Mohammed JR Ghori⁵, Rhian Gwilliam⁵, Sarah E Hunt⁵, Michael Inouye⁵, Andrew Keniry⁵, Emma King⁵, Ralph McGinnis⁵, Simon Potter⁵, Rathi Ravindrarajah⁵, Pamela Whittaker⁵, Claire Widden⁵, David Withers⁵, Panos Deloukas⁵; (Cambridge): Hin-Tak Leung², Sarah Nutland², Helen E Stevens², Neil M Walker²,

Statistics (**Cambridge**): Doug Easton¹², David G Clayton²; (**Leicester**): Paul R Burton¹, Martin D Tobin¹; (**Oxford**): Jeffrey C Barrett³, David M Evans³, Andrew P Morris³, Lon

R Cardon³; (**Oxford**): Niall J Cardin¹¹, Dan Davison¹¹, Teresa Ferreira¹¹, Joanne Pereira-Gale¹¹, Ingeleif B Hallgrimsdóttir¹¹, Bryan N Howie¹¹, Jonathan L Marchini¹¹, Chris CA Spencer¹¹, Zhan Su¹¹, Yik Ying Teo^{3,11}, Damjan Vukcevic¹¹, Peter Donnelly¹¹

PIs: David Bentley^{5,54}, Matthew A Brown^{48,49}, Lon R Cardon³, Mark Caulfield³⁸, David G Clayton², Alistair Compston⁵³, Nick Craddock²³, Panos Deloukas⁵, Peter Donnelly¹¹, Martin Farrall³⁹, Stephen CL Gough⁵⁰, Alistair S Hall²⁶, Andrew T Hattersley^{42,43}, Adrian VS Hill³, Dominic P Kwiatkowski^{3,5}, Christopher G Mathew²⁹, Mark I McCarthy^{3,7}, Willem H Ouwehand^{8,9}, Miles Parkes²⁷, Marcus Pembrey^{18,20}, Nazneen Rahman⁵¹, Nilesh J Samani¹⁰, Michael R Stratton^{51,52}, John A Todd², Jane Worthington⁴⁰

¹ Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Adrian Building, University Road, Leicester, LE1 7RH, UK; ² Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Cambridge, CB2 0XY, UK; ³ Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; 4 Department of Psychological Medicine, Henry Wellcome Building, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; ⁵ The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK; ⁶ The Wellcome Trust, Gibbs Building, 215 Euston Road, London NW1 2BE, UK; 7 Oxford Centre for Diabetes, Endocrinology and Medicine, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK; ⁸ Department of Haematology, University of Cambridge, Long Road, Cambridge, CB2 2PT, UK; 9 National Health Service Blood and Transplant, Cambridge Centre, Long Road, Cambridge, CB2 2PT, UK; 10 Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Groby Road, Leicester, LE3 9QP, UK; 11 Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK; 12 Cancer Research UK Genetic Epidemiology Unit, Strangeways Research Laboratory, Worts Causeway, Cambridge CB1 8RN, UK; 13 National Health Service Blood and Transplant, Sheffield Centre, Longley Lane, Sheffield S5 7JN, UK; 14 National Health Service Blood and Transplant, Brentwood Centre, Crescent Drive, Brentwood, CM15 8DP, UK; 15 The Welsh Blood Service, Ely Valley Road, Talbot Green, Pontyclun, CF72 9WB, UK: 16 The Scottish National Blood Transfusion Service, Ellen's Glen Road, Edinburgh, EH17 7QT, UK; 17 National Health Service Blood and Transplant, Southampton Centre, Coxford Road, Southampton, SO16

5AF, UK; ¹⁸ Avon Longitudinal Study of Parents and Children, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK; 19 Division of Community Health Services, St George's University of London, Cranmer Terrace, London SW17 ORE, UK; ²⁰ Institute of Child Health, University College London, 30 Guilford St, London WC1N 1EH, UK; 21 University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK; ²² Department of Psychiatry, Division of Neuroscience, Birmingham University, Birmingham, B15 2QZ, UK; ²³ Department of Psychological Medicine, Henry Wellcome Building, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; 24 SGDP, The Institute of Psychiatry, King's College London, De Crespigny Park Denmark Hill London SE5 8AF, UK; ²⁵ School of Neurology, Neurobiology and Psychiatry, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK; 26 LIGHT and LIMM Research Institutes, Faculty of Medicine and Health, University of Leeds, Leeds, LS1 3EX, UK; ²⁷ IBD Research Group, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 2QQ, UK; ²⁸ Gastrointestinal Unit, School of Molecular and Clinical Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU UK; ²⁹ Department of Medical & Molecular Genetics, King's College London School of Medicine, 8th Floor Guy's Tower, Guy's Hospital, London, SE1 9RT, UK; 30 Institute for Digestive Diseases, University College London Hospitals Trust, London, NW1 2BU, UK; 31 Department of Gastroenterology, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH, UK; ³² Department of Gastroenterology & Hepatology, University of Newcastle upon Tyne, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK; 33 Gastroenterology Unit, Radcliffe Infirmary, University of Oxford, Oxford, OX2 6HE, UK; 34 Medicine and Therapeutics, Aberdeen Royal Infirmary, Foresterhill, Aberdeen, Grampian AB9 2ZB, UK; 35 Clinical Pharmacology Unit and the Diabetes and Inflammation Laboratory, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 2QQ, UK; ³⁶ Centre National de Genotypage, 2, Rue Gaston Cremieux, Evry, Paris 91057.; 37 BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK; 38 Clinical Pharmacology and Barts and The London Genome Centre, William Harvey Research Institute, Barts and The London, Oueen Mary's School of Medicine, Charterhouse Square, London EC1M 6BQ, UK; 39 Cardiovascular Medicine, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK; 40 arc Epidemiology Research Unit, University of Manchester, Stopford Building, Oxford Rd, Manchester, M13 9PT, UK; 41 Department of Paediatrics, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK; 42 Genetics of Complex Traits, Institute of Biomedical and Clinical Science, Peninsula Medical School, Magdalen Road, Exeter EX1 2LU UK; 43 Diabetes Genetics, Institute of Biomedical and Clinical Science, Peninsula Medical School, Barrack Road, Exeter EX2 5DU UK; 44 Centre for Diabetes and Metabolic Medicine, Barts and The London, Royal London Hospital, Whitechapel, London, E1 1BB UK; 45 Diabetes Research Group, School of Clinical Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK; ⁴⁶ The MRC Centre for Causal Analyses in Translational Epidemiology, Bristol University, Canynge Hall, Whiteladies Rd, Bristol BS2 8PR, UK; 47 MRC Laboratories, Fajara, The Gambia: 48 Diamantina Institute for Cancer, Immunology and Metabolic Medicine. Princess Alexandra Hospital, University of Queensland, Woolloongabba, Qld 4102, Australia; ⁴⁹ Botnar Research Centre, University of Oxford, Headington, Oxford OX3

AJHG, Volume 85

7BN, UK; ⁵⁰ Department of Medicine, Division of Medical Sciences, Institute of Biomedical Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; ⁵¹ Section of Cancer Genetics, Institute of Cancer Research, 15 Cotswold Road, Sutton, SM2 5NG, UK; ⁵² Cancer Genome Project, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK; ⁵³ Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK; ⁵⁴ PRESENT ADDRESS: Illumina Cambridge, Chesterford Research Park, Little Chesterford, Nr Saffron Walden, Essex, CB10 1XL, UK.

Tables S1 and S2 are available as Excel files and may also be found online.

Table S3. Top 30 Overrepresented GO Categories: CD Data Set Excluding MHC

GO category	Type	total genes in	#genes on list	expected #genes on	p-value	expected hits/study	Function
category		category	on usi	#genes on list		nus/stuay	
GO06511	PROCESS						ubiquitin-dependent protein catabolic
		142	5	0.56	0.0002	0.5	process
GO19941	PROCESS						modification-dependent protein catabolic
		142	5	0.56	0.0002	0.5	process
GO43632	PROCESS						modification-dependent macromolecule
		142	5	0.56	0.0002	0.5	catabolic process
GO51603	PROCESS						proteolysis involved in cellular protein
		143	5	0.56	0.0002	0.5	catabolic process
GO44257	PROCESS	145	5	0.56	0.0002	0.5	cellular protein catabolic process
	PROCESS	8	2	0.02	0.0002	0.5	cofactor transport
GO15226	FUNCTION	3	2	0.02	0.0002	0.5	carnitine transporter activity
GO15879	PROCESS	3	2	0.02	0.0002	0.5	carnitine transport
	FUNCTION	53	3	0.16	0.0004		ubiquitin thiolesterase activity
	FUNCTION	56	3	0.16	0.0004	0.71	ubiquitin-specific protease activity
GO19783	FUNCTION						small conjugating protein-specific protease
		57	3	0.16	0.0004		activity
	FUNCTION	8	2	0.02	0.0004		vitamin transporter activity
	FUNCTION		2	0.04	0.0006	0.9	cofactor transporter activity
GO30163	PROCESS	177	5	0.67	0.0006	0.9	protein catabolic process
	FUNCTION	66	3	0.19	0.0006	0.9	thiolester hydrolase activity
	PROCESS	11	2	0.06	0.0014	1.61	vitamin transport
GO43285	PROCESS	240	5	0.86	0.0016	1.83	biopolymer catabolic process
	PROCESS	243	5	0.86	0.0020	2.16	cellular macromolecule catabolic process
GO06952		318	5	1.1	0.0028	2.95	defense response
GO06512		383	6	1.52	0.0032	3.28	ubiquitin cycle
	PROCESS	31	2	0.09	0.0038		I-kappaB kinase/NF-kappaB cascade
GO09057	PROCESS	291	5	1.02	0.0040		macromolecule catabolic process
GO06955	PROCESS	343	5	1.16	0.0054		immune response
	FUNCTION	117	3	0.38	0.0058		cysteine-type peptidase activity
	PROCESS	439	6	1.57	0.0066	5.98	cellular catabolic process
GO31347	PROCESS	35	2	0.13	0.0068		regulation of defense response
	CELLULAR	4531	32	22.41	0.0128		cytoplasm
	FUNCTION	52	2	0.18	0.0130	10.4	protein kinase binding
	PROCESS	534	6	1.99	0.0158	12.32	catabolic process
GO65003	PROCESS	343	5	1.48	0.0168	13	macromolecular complex assembly

List of 30 most significantly over-represented GO categories for Crohn's disease, excluding the MHC region (cutoff for significant SNPs: p<1e-4). The type of category, and the expected number of categories with a category-specific over-representation p-value at least as significant as that observed in the absence of any true over-representation, are also shown.

Table S4. Number of Significantly Overrepresented GO Categories Using 20 kb Gene Window: CD Data Set

p-value criterion for SNPs	# top SNPs	#genes	p<0.05		p<0.01		p<0.001	
			#cat p		#cat	p	#cat	p
0.0001	308	140	50	50 0.382		0.075	1	0.609
0.001	1226	480	99 0.280		28	0.195	5	0.159
0.005	3905	1517	145	0.258	37	0.105	11	0.025

Number of GO categories reaching various levels of significance for over-representation on the list of significant SNPs in the WTCCC CD dataset and their corresponding genes, together with p-values indicating whether this number is significantly greater than expected by chance. Only categories containing two or more significant genes are counted. SNPs assigned to genes if they lie within 20kb of that gene. Genotyped SNPs only.

Table S5. Number of Significantly Overrepresented GO Categories: WTCCC BD Data Set

p-value criterion for SNPs	# top SNPs	#genes	p<0.05		p<0.01		p<0.001	
			#cat p		#cat	р	#cat	p
0.0001	667	80	39	0.312	15	0.157	2	0.314
0.001	3622	351	58 0.611		13	0.556	1	0.650
0.005	15569	1261	110	0.370	18	0.535	5	0.144

Number of GO categories reaching various levels of significance for over-representation on the list of significant SNPs in the WTCCC BD dataset and their corresponding genes, together with p-values indicating whether this number is significantly greater than expected by chance. Only categories containing two or more significant genes are counted. SNPs assigned to genes if they lie within that gene. Genotyped and imputed SNPs .

Table S6. Number of Significantly Overrepresented GO Categories: BD Meta-Analysis Data Set, Genotyped SNPs Only

p-value criterion for SNPs	# top SNPs	#genes	p<0.05		<i>p</i> <(0.01	p<0.001	
			#cat p		#cat	p	#cat	p
0.0001	103	31	14	0.512	3	0.583	0	1
0.001	687	176	43 0.437		12	0.342	0	1
0.005	2780	633	79	0.344	20	0.213	5	0.086

Number of GO categories reaching various levels of significance for over-representation on the list of significant SNPs in the BD meta-analysis dataset and their corresponding genes, together with p-values indicating whether this number is significantly greater than expected by chance. Only categories containing two or more significant genes are counted. SNPs assigned to genes if they lie within that gene. Genotyped SNPs only.

Table S7. Number of Significantly Overrepresented GO Categories Using 20 kb Gene Window: BD Meta-Analysis Data Set

p-value criterion for SNPs	# top SNPs	#genes	p<0.05		p<0.01		p<0.001	
			#cat p		#cat	p	#cat	p
0.0001	593	73	19	0.804	8	0.527	0	1
0.001	3759	474	118	0.116	42	0.027	0	1
0.005	15979	1737	185 0.041		74	0.001	24	< 0.001
0.01	29073	2866	257	0.002	72	0.001	10	0.025

Number of GO categories reaching various levels of significance for over-representation on the list of significant SNPs in the BD meta-analysis dataset and their corresponding genes, together with p-values indicating whether this number is significantly greater than expected by chance. Only categories containing two or more significant genes are counted. SNPs assigned to genes if they lie within 20kb of that gene. Genotyped and imputed SNPs.

.

Table S8. Number of Significantly Overrepresented GO Categories: CD Data Set, LD-Pruned SNPs

p-value criterion for SNPs	# significant SNPs	p<0.05		p<0.01		p<0.001	
		#cat p		#cat	p	#cat	p
0.0001	65	53	0.129	32	0.023	17	0.003
0.001	239	73	0.344	22	0.240	2	0.437
0.005	893	130	0.231	28	0.277	4	0.267

Number of GO categories reaching various levels of significance for over-representation on the LD-pruned list of significant SNPs in the WTCCC CD dataset, together with p-values indicating whether this number is significantly greater than expected by chance.

SNPs assigned to genes if they lie within that gene. Genotyped SNPs only.

Table S9. Top 30 Overrepresented GO Categories: CD Data Set, LD-Pruned SNPs

GO	Tuna	total	#sig.	expected	p-value	awnaatad	Function
category	Type			#sig SNPs	p-vaiue	hits/study	
cutegory		category	list	on list		nus/siuuy	
G006955	PROCESS	335	8	1.19	0.0000	0.36	immune response
GO00336		454	9	1.81	0.0002		immune system process
	FUNCTION	48	3	0.15	0.0002		ubiquitin thiolesterase activity
		51	3	0.15			
	FUNCTION	51	3	0.15	0.0002		ubiquitin-specific protease activity
GO19783	FUNCTION	50	2	0.15	0.0002		small conjugating protein-specific protease
CO02504	DDOCEGG	52	3	0.15	0.0002		activity
GO02504	PROCESS						antigen processing and presentation of
			_	0.02	0.0002		peptide or polysaccharide antigen via
		9	2	0.02	0.0002		MHC class II
	FUNCTION	8	2	0.02	0.0002		MHC class II receptor activity
	CELLULAR		2	0.02	0.0002		MHC class II protein complex
GO06878		8	2	0.04	0.0004		cellular copper ion homeostasis
	PROCESS	9	2	0.04	0.0004		copper ion homeostasis
GO06511	PROCESS						ubiquitin-dependent protein catabolic
		126	4	0.49	0.0008	1.2	process
GO19941	PROCESS						modification-dependent protein catabolic
		126	4	0.49	0.0008	1.2	process
GO43632	PROCESS						modification-dependent macromolecule
		126	4	0.49	0.0008	1.2	catabolic process
GO51603	PROCESS						proteolysis involved in cellular protein
		126	4	0.49	0.0008	1.2	catabolic process
GO44257	PROCESS	128	4	0.5	0.0008	1.2	cellular protein catabolic process
GO16790	FUNCTION	60	3	0.19	0.0008	1.2	thiolester hydrolase activity
GO42611	CELLULAR	17	2	0.03	0.0010		MHC protein complex
	PROCESS	297	6	1.15	0.0012		defense response
	PROCESS	71	3	0.27	0.0020		innate immune response
GO19882		30	2	0.06	0.0030		antigen processing and presentation
GO30163		152	4	0.6	0.0032	3.43	protein catabolic process
	FUNCTION	102	3	0.33	0.0038	3.98	cysteine-type peptidase activity
GO07219		29	3	0.29	0.0040		Notch signaling pathway
	PROCESS	29	2	0.09	0.0040		I-kappaB kinase/NF-kappaB cascade
GO06954		173	4	0.66	0.0048		inflammatory response
	FUNCTION	161	4	0.69	0.0050		enzyme inhibitor activity
	PROCESS	218	4	0.09	0.0056	5.53	cellular macromolecule catabolic process
	CELLULAR		4	0.73	0.0030		cell surface
GO09986 GO31347		32	2	0.73			
					0.0072		regulation of defense response
GU43285	PROCESS	211	4	0.8	0.0076	7.12	biopolymer catabolic process

List of 30 most significantly over-represented GO categories for Crohn's disease, based on the LD-pruned SNP map. (cutoff for significant SNPs: p<1e-4). The type of category, and the expected number of categories with a category-specific over-representation p-value at least as significant as that observed in the absence of any true over-representation, are also shown.