## SUPPORTING ONLINE MATERIAL

## MATERIALS AND METHODS

## **DNA** pools experiment

We measured DNA concentration in samples of T1D patients and controls using Picogreen reagent in three replicates and normalized it to 10 ng/µl. Then we made 10 pooled samples each comprising equal amounts of DNA from 48 T1D patients and 10 pooled samples each comprising equal amounts of DNA from 48 healthy controls. Thus, altogether we resequenced DNA of 480 T1D patients and 480 healthy controls from Great Britain.

We designed oligonucleotide primers to amplify 144 target regions that covered exons and regulatory sequences of the ten genes (Table S1 and T1Dbase: <u>http://www.t1dbase.org/page/PosterView/454Resequencing</u>). Oligonucleotide primers were synthesized to include region-specific primers at 3' ends (Table S1), with common overhangs at 5' ends to allow for direct introduction into the 454 Sequencing system (overhang 5'GCCTCCCTCGCGCCATCAG3' on all forward primers and overhang 5'GCCTTGCCAGCCCGCTCAG3' on all reverse primers). We amplified each pooled sample in 144 separate PCR reactions using PfuUltra<sup>TM</sup> High-Fidelity DNA Polymerase (Stratagene, La Jolla, CA, USA). We checked presence of a band of expected size on 2% agarose gel and then mixed together 144 PCR products amplified from the same pooled DNA sample, taking 5 µl of each product. Samples were purified on Qiaquick column and eluted in Qiagen Elution Buffer (http://www1.qiagen.com/). These purified samples

were further cleaned with SPRI beads (Agencourt AMPure kit;

<u>http://www.agencourt.com/products/spri\_reagents/ampure/</u>) to remove low molecular weight DNA. Purified sample concentrations were measured by fluorescence using Picogreen reagent (<u>http://www.invitrogen.com/site/us/en/home/Products-and-Services/Applications/Nucleic-Acid-Purification-and-Analysis/</u>) and diluted to 2x10<sup>5</sup> molecules/µl. Each sample was sequenced separately on a GS FLX instrument/ 100 cycle / 70x75 PTP 2Pad format, loading 750K beads per region.

For each of the 20 pooled DNA samples we obtained between 281,270 and 579,102 reads with average length of 250 bases, 9,416,365 reads in total:

| T1D samples | reads, (n) | Control samples | reads, (n) |
|-------------|------------|-----------------|------------|
| CS201b      | 575,009    | B58-1b          | 432,071    |
| CS202a      | 519,752    | B58-2a          | 560,756    |
| CS202b      | 281,270    | B58-2b          | 528,943    |
| CS203a      | 549,490    | B58-3a          | 490,731    |
| CS214a      | 552,040    | B58-3b          | 408,084    |
| CS214b      | 509,358    | B58-4b          | 402,734    |
| CS215a      | 456,437    | B58-5a          | 429,673    |
| CS215b      | 469,428    | B58-5b          | 383,972    |
| CS219a      | 437,871    | B58-6a          | 449,821    |
| CS219b      | 579,102    | B58-6b          | 399,823    |

We extracted reads in the fasta format from the .sff files using sffinfo command. The following sequence analyses were done using pregap4 and gap4 programs in the Staden package (http://staden.sourceforge.net/). We converted reads into .exp format using pregap4. Then we screened all reads against the sequence of 144 target regions using "Screen only" command in gap4 and recorded reads that matched to each target region. Then we assembled reads into 144 contigs using "Normal shotgun assembly" command in gap4 and ran "Shuffle pads" command on all contigs to improve alignment. After that we dumped contigs into text files and used a script to count number of reads carrying

nucleotides A, C, G, T, unknown nucleotides (N) or missing nucleotides (deletions) in each contig position, separately for reads generated from pooled DNA samples of T1D cases or controls. We calculated frequency of reads carrying nucleotides A, C, G, T or missing nucleotides. In each contig reads generated from each pooled DNA sample represented 96 chromosomes, which facilitated distinction of true polymorphisms from artifacts. In the pooled samples it was impossible to distinguish rare insertion/deletion polymorphisms from sequencing errors and here we have analyzed nucleotide substitutions only. We visually analyzed read alignments in the contigs in all putatively polymorphic positions to exclude misalignment.

We calculated allele frequencies separately for reads generated from 960 chromosomes of T1D patients and 960 chromosomes of controls and then estimated the number of chromosomes in the original pools that carry different allelic nucleotides.

To test how read output estimated allele frequency among samples in the DNA pool we analyzed eight SNPs from the sequenced regions that have been genotyped previously (rs1990760, rs3184504, rs2476601, rs1046355, rs3747517, rs5215, rs759011 and rs942200). We calculated correlation only if individual genotypes for at least 47 subjects that contributed to the DNA pool of 48 subjects were available (Fig. S1).

Statistically, resequencing 960 subjects provides 100% probability of detecting a variant at 1% frequency and 98% probability of detecting variants as low as 0.2% frequency. We have empirically assessed our false-negative detection rate for SNPs with confirmed allele frequencies and found that we detected all 37 SNPs that map in our resequenced regions and have known minor allele frequency  $\geq 1\%$  in subjects of the European descent, including eleven with 1% - 5% frequency (dbSNP build 128).

Association test based on 480 cases and 480 controls theoretically has 72% power to detect association at false-positive rate  $\alpha = 0.05$  for allele frequency 2% and OR = 2 or 45% power for allele frequency 1% and OR = 2 (Fig. S5). Given this statistical power, we cannot exclude that low frequency variants with smaller effects in the other nine genes, or that very rare variants in any of the ten genes, might also contribute to T1D. Since 480 cases and 480 controls do not provide statistical power to detect association of very rare variants with minor allele frequency << 1% for effects with OR < 2, we have not determined the false-negative detection rate for such SNPs.

# **Genotyping experiment**

We studied a case-control collection consisting of 8,379 T1D patients and 10,575 controls from Great Britain. The recruitment of these subjects and sample processing have been described elsewhere (S1). We also studied a family collection including 3,165 type 1 diabetes families with one or two affected offspring (941 from Great Britain and Northern Ireland, 1,129 from Finland, 323 from the USA, 360 from Norway and 412 from Romania). The collection of all DNA samples has been approved by relevant ethical committees and written informed consent has been obtained from all participants.

Genotyping was done using TaqMan. We ordered pre-designed assays for the *IFIH1* SNPs rs35667974 and rs35337543 from Applied Biosystems (Warrington, UK). For other SNPs we ordered Assays-by-design. Genotypes were scored by two researchers independently to minimize error. Genotypes of controls and parents did not deviate from Hardy-Weinberg equilibrium above that expected at random (P > 0.05).

Statistical analyses were performed within Stata statistical package

(http://www.stata.com), using additional Stata routines (http://www-

<u>gene.cimr.cam.ac.uk/clayton/software/</u>). All subjects in the case-control analysis were of the European descent, as we have excluded those of the non-European and unknown descent. Additionally, we performed statistical association tests stratifying for 12 geographical regions of Great Britain. We analyzed cases and controls using logistic regression models (S2). The families were analyzed using the transmission disequilibrium test (S3) and conditional logistic regression (S2). A score test was used to combine tests from family and case-control studies as described previously (S1). We report uncorrected *P*-values. Linkage disequilibrium plot of D' was generated using Haploview 4.1 (S4), while r<sup>2</sup> values were calculated using pwld program in Stata. IFIH1 protein sequence alignment in 44 species was obtained from the UCSC genome browser (http://genome.ucsc.edu/).

## Acknowledgements

We acknowledge use of DNA from the British 1958 Birth Cohort collection, funded by the Medical Research Council and the Wellcome Trust. We thank The Avon Longitudinal Study of Parents and Children laboratory in Bristol and the British 1958 Birth Cohort team (S. Ring, R. Jones, M. Pembrey, W. McArdle, D. Strachan and P. Burton) for preparing and providing the control DNA samples. We acknowledge use of DNA and thank the Human Biological Data Interchange for the USA families; Diabetes UK for the UK multiplex families; the Norwegian Study Group for Childhood Diabetes (D. Undlien and K. Ronningen) for the Norwegian families; D. Savage, C. Patterson, D. Carson and P. Maxwell for the Northern Irish families, Genetics of Type 1 Diabetes in Finland (GET1FIN) and J. Tuomilehto, L. Kinnunen, E. Tuomilehto-Wolf, V. Harjutsalo and T. Valle for the Finnish families and C. Guja and C. Ionescu-Tirgoviste for the Romanian families. We thank J. Simons formerly of 454 Life Sciences for suggestions in the early phase of the project and C. Celone for excellent technical assistance with the processing of samples and sequencing. We also thank JDRF/WT Diabetes and Inflammation Laboratory members B. Healy for making a poster page in T1DBase and H. Stevens, P. Clarke, G. Coleman, S. Duley, D. Harrison, S. Hawkins, M. Maisuria, T. Mistry and N. Taylor for preparing DNA samples.

Fig. S1. Correlation between allele frequencies in individually genotyped DNA samples and frequency estimates in the sequenced DNA pools

Individual genotypes for 8 SNPs and 20 pooled DNA samples were analyzed. We calculated correlation only if individual genotypes for at least 47 subjects that contributed to the DNA pool of 48 subjects were available, therefore, 54 data points are shown.



Fig. S2. IFIH1 amino acid alignment in vertebrates

Multiz Alignment of the IFIH1 protein sequence in 44 species showing conserved Isoleucine at position 923 (UCSC genome browser, <u>http://genome.ucsc.edu/</u>). SNP rs35667974/Ile923Val is shown.





Fig. S3. Schematic presentation of the IFIH1 protein (green), its domains (yellow) and variants (white boxes)

Four rare variants (rs35667974/Ile923Val, rs35337543/IVS8+1, rs35744605/Glu627X, rs35732034/IVS14+1) and a common variant (rs1990760/Thr946Ala) associated with T1D independently of each other are shown above the protein. Other tested polymorphisms are shown below the protein. CARD - caspase recruitment domain.



Fig. S4. Linkage disequilibrium in the IFIH1 gene region on chromosome 2, positions 162,690 kb – 163,110 kb

Genes *IFIH1, FAP, GCA* and part of *KCNH7* reside within one linkage disequilibrium block. Linkage disequilibrium plot shows D' calculated for CEU subjects (HapMap data release 23a/phase II on NCBI36 assembly, dbSNP build 126; http://www.hapmap.org/).



Fig. S5. Statistical power calculations for rare variants

Statistical power to detect association of rare variants at  $\alpha = 0.05$  assuming multiplicative model and equal number of cases and controls. Note that samples comprising at least 2,000 cases and 2,000 controls may be needed for >80% power to detect association of rare alleles if they have effects with OR < 2.



Risk allele = 2% frequency

Table S1. Region-specific primers for amplification of 144 target regions in ten genes.

Oligonucleotides used in PCR reaction included region-specific primers with common 5' overhangs.

| Amplicon | Gene    | Forward primer              | Reverse primer            | PCR product, bp |
|----------|---------|-----------------------------|---------------------------|-----------------|
| 1A01     | CLEC16A | GCATCCTCCGCTTGTGCTA         | CGCTCTCACGCCTCCTAGA       | 265             |
| 1A02     | CLEC16A | GCTAATGGTCATGGAACTTGG       | CAAAGAACAGCAATCATTAGAAACC | 231             |
| 1A03     | CLEC16A | ACATGTGGAAGCAAGCCACT        | GCCCAACTTCACCCTGCTA       | 240             |
| 1A04     | CLEC16A | CCTCCAGCATGAGTTAACCTGT      | GTGCCCCTCTGGCAATTACT      | 215             |
| 1A05     | CLEC16A | GCCTGGCTTATGGGCTTAT         | TCGTGACAATCGGAGAACTG      | 251             |
| 1A06     | CLEC16A | AAGTTATTTTTGGTAGCTTGACTTTTT | TCCCCTAACCACCCTGTCTA      | 225             |
| 1A07     | CLEC16A | GGCTGAGGTGGTCATTTCTC        | TTCTTCCCCACTTCTGATGG      | 257             |
| 1A08     | CLEC16A | GGAAGTCAGTGGGACAGGAC        | GTGATAAGGCCTGGGGATTT      | 259             |
| 1A09     | CLEC16A | CTGATCCAGGAAGCAAGAGG        | CACACAGATTAGCAAAATGAGCA   | 250             |
| 1A10     | CLEC16A | GTTGCCTTCGTTGGACTTTC        | GCGTTCATGGGGACACTC        | 276             |
| 1A11     | CLEC16A | CATCCCAGTCTCCATTTTGG        | AGGGACAGAAGAGGCTCTGG      | 258             |
| 1A12     | CLEC16A | ACCCCATGTGCAGGTTAGAG        | CCTTTCTTTGTCCTCCATGC      | 269             |
| 1B01     | CLEC16A | TTCGGTATGAGGAGGTCAGG        | GTGGGGTCTGCTTCCTACAA      | 245             |
| 1B02     | CLEC16A | TAGCCTCAACGTGGATAGGC        | CTTCCCTCCTGTCCTCCTGT      | 260             |
| 1B03     | CLEC16A | GAATTCGTAGTTTGCCCGACT       | TTTATCTGCATAGAACCAGACACC  | 200             |
| 1B04     | CLEC16A | GATGGCCTCTAAAGCCACAA        | AAAAACTCCCTCTGGGATGG      | 234             |
| 1B05     | CLEC16A | CCCCTTCCTCCTTCCAAGT         | GTCTGGGAGTGGTTCTGGAG      | 248             |
| 1B06     | CLEC16A | TGTGGGGCATCTCACTGAA         | AGCAGAGTGGTGTCCCATGT      | 254             |
| 1B07     | CLEC16A | CAGCTTTGGTGTCTCCATCA        | CAGAGCTCCTGGCCATCTT       | 244             |
| 1B08     | CLEC16A | TGCCTTTTCCTTTGCTTCT         | CCACCAAGTGCTCAGAGG        | 279             |
| 1B09     | CLEC16A | TCCCACATGCTCAGAGTGAA        | ACCATGATGAACGAGCTGTG      | 254             |
| 1B10     | CLEC16A | AGGCCTACTCTTTGCTTCCA        | CCCCATATCACTGAGTCACG      | 243             |
| 1B11     | CLEC16A | CCCCTCGTCAGTGCTCAG          | GGAGACCTGCCTGAATTGAC      | 243             |
| 1B12     | CLEC16A | GGTGTCTCAAGGGCTCAGTG        | CGTGTCAGCCGTGTCCTC        | 245             |

| 1C01 | CLEC16A | CCACCATTTCCCTGCTCT          | CACTGGGGTCCCTACCAG         | 252 |
|------|---------|-----------------------------|----------------------------|-----|
| 1C02 | KCNJ11  | TGCCTTCCTTTTCTCCATTG        | GCATGCTTGCTGAAGATGAG       | 204 |
| 1C03 | KCNJ11  | TCATGAAGACTGCCCAAGC         | GCCACCAGGAAGATGCTG         | 256 |
| 1C04 | KCNJ11  | ATGCAGGTGGTACGCAAGAC        | ATCTCATCGGCCAGGTAGG        | 278 |
| 1C05 | KCNJ11  | GACCTGCACCACCACCAG          | AGGCTGTGGTCCTCATCAAG       | 245 |
| 1C06 | KCNJ11  | TTGTGCCCATTGTAGCTGAG        | GCCGGGCTACATACCACAT        | 294 |
| 1C07 | SH2B3   | CAAGCCTTGAGTACCCCAAC        | ATGTCTGTCCGGTCCTTCAC       | 241 |
| 1C08 | SH2B3   | TACAGCAGACCCAACCCTGT        | TGCATCTCTGCTTCTGTGCT       | 248 |
| 1C09 | SH2B3   | ACCTGCCCAGATCCTTAACC        | CCCAGGAGAAGCACCTGTTA       | 258 |
| 1C10 | SH2B3   | AGGCCATTGTCTTCTGGGTA        | ACCAGGAACACTCCATGAGC       | 243 |
| 1C11 | SH2B3   | CATTTCCTGTCCTGCTACCC        | TCCCTCTAGGACCCTGAACTC      | 247 |
| 1C12 | SH2B3   | AGCCCACCATCCTCTCCT          | GCCTCTACCCTCTACCCAGTG      | 256 |
| 1D01 | SH2B3   | TCTGTGTCCTGTCAGCACTTG       | AAGGCACCAGGTGGAAGAT        | 247 |
| 1D02 | SH2B3   | GCTCAGCCCAGAGGGTCT          | ACTTCTGCCTGTGCTCCTCA       | 256 |
| 1D03 | KCNJ11  | CCTGCAGGACGTGTTCA           | CCCCCAAAGCCAATAGTC         | 240 |
| 1D04 | PTPN2   | GCTGTGGAGAATTTAAGAGGGATA    | TTTTCACTACATCCTGCCTCCT     | 210 |
| 1D05 | PTPN2   | GGCACAGAAGTGGGGTTTAT        | CATCGCACTGTCACTCAGG        | 258 |
| 1D06 | PTPN2   | TGAAATGACAGTTGTGGTTTATCA    | CATTTCATTTCCAAAAGAAGTCAAG  | 245 |
| 1D07 | PTPN2   | TTAACAAGGCCTTCCTGGAG        | TATTGGCCCCAAAATGAAAA       | 253 |
| 1D08 | PTPN2   | GCATGTATATATCTGGTTTGTTTTCAT | TTTCGGGCAAGAAAGGTCT        | 252 |
| 1D09 | PTPN2   | GTCTTAAAGCGTAGAAACCATGA     | AAAAATCCATTTTGCAGTAGAAA    | 240 |
| 1D10 | PTPN2   | AACTTCTCCCTTGATTTTCACTTT    | TCAATGAGATTAAAATGAGATCGTAA | 275 |
| 1D11 | PTPN2   | TCCTGGGTTCCAATAACAAG        | TGCAGTTATTTGATGCTATGTGT    | 267 |
| 1D12 | PTPN2   | TGTTTTTCATTTCTCTTCCCTACC    | AGCCTCATCTTTCAGCCTGT       | 246 |
| 1E01 | PTPN2   | TCCTGCTCTGTGTGCACTTC        | AAGCTTGCTGGGCAAAATTA       | 280 |
| 1E02 | PTPN2   | TGCATCTATGTTCGTCTGTGTG      | TGCTCTTCATCCCCTGGA         | 257 |
| 1E03 | PTPN22  | GTAAACCACAGCCTTCAGCA        | CCCTGAGAGGGTCACATACAG      | 244 |
| 1E04 | PTPN22  | GGAAGATTAATTTTTTTTGGAATCT   | GTTGTCAATGCCATGTTCCA       | 252 |

| 1E05 | PTPN22 | ACTTGTTCACTCATGAGCATACACTA | TTTTTGGGTATCTAGAGAAATATGGAA | 231 |
|------|--------|----------------------------|-----------------------------|-----|
| 1E06 | PTPN22 | AGCGGAGGACTAGGTGAGAA       | AAGATGCCTGAACCCTGAAG        | 260 |
| 1E07 | PTPN22 | TTCTGAGTCTGGGATCCATGT      | CCCAAACTGAAAACTATGAAGATG    | 251 |
| 1E08 | PTPN22 | GCTGAATTTGCTTCCAAATGA      | TTTTTCAGCTTCCTAAAAAGAAAAAG  | 271 |
| 1E09 | PTPN22 | TGTGTAAGTGTAATGTCTGTTCTCAT | TGTCTTATGCCCAGCCTGA         | 259 |
| 1E10 | PTPN22 | GGTGGTTTTTCAGCCCTTG        | TGGCCAGACTCTGACATTTG        | 255 |
| 1E11 | PTPN22 | TGTCCCCAGGTATCTTCTTCC      | TGTTTTGAAAAACCAAACAATTAC    | 259 |
| 1E12 | PTPN22 | GATGCCATGGAAGTACAAGACT     | TTTTGGATGCCTCACCATTA        | 241 |
| 1F01 | PTPN22 | ATCTGGTCCTGTCGTTCACC       | ATAAATCCTGCAACAAATCTGACA    | 240 |
| 1F02 | PTPN22 | CACTGAAAACCAGCCTCTGA       | AAAGAAAGCGTAATGATGACACC     | 240 |
| 1F03 | PTPN22 | TGACTAATTGTGTCTGGGAGATG    | CTTGATTTAGCAGGGTGCAA        | 240 |
| 1F04 | PTPN22 | CTTCTTCCTTTGACTTTAGGACTTCT | CTGCTGCATTTACAGGTTTAGA      | 250 |
| 1F05 | PTPN22 | TAGTTGGGGAGCCTCTTCAG       | TTGAGCCTGCATCTCTACAAAA      | 250 |
| 1F06 | PTPN22 | GGAATCTCAACCACATGATTCT     | AAATCAAGAGACATCTTAGAACTGG   | 243 |
| 1F07 | PTPN22 | CATCATGGCCTCCAAGTG         | AAATGAAATCTAAAATTCTATGCAAAC | 242 |
| 1F08 | PTPN22 | AAGAATTTCCTTTGGATTGTTCTAA  | CTCAAGGCTCACACATCAGC        | 246 |
| 1F09 | PTPN22 | GAACCGAACTATATTCACTTTCTTCC | GGATTTATTGAATGATGGGTGTT     | 250 |
| 1F10 | PTPN22 | GATGCCATTTCATAATTCAGCA     | TCCAATCTTAGGGCTAAATGTCA     | 248 |
| 1F11 | PTPN22 | AAGAGAAAAGGGTGTTGACTTATGA  | CATTTTTGTACCTTTCCATTTAGGT   | 250 |
| 1F12 | PTPN22 | GGTATGCAATGGAACATGTTTTT    | GGCATGTTTCCCAAAACTCT        | 190 |
| 1G01 | PTPN22 | TGGCAAGATGGAAAAACAACT      | AAGGAGGCCTATGGGTGATT        | 332 |
| 1G02 | PTPN22 | TCAACAGTCATCTGAGTCTGTCTT   | AACATAAGGACCTATACATGCAACC   | 249 |
| 1G03 | PTPN22 | TTAAAACATCTTTCTTTTCATTCAAC | GGCACTTATTGGCATTTTGC        | 272 |
| 1G04 | IL2RA  | ATCTTCCCATCCCACATCCT       | GGACTCCCTCTGGTTCTGTG        | 260 |
| 1G05 | IL2RA  | ACAAAAAGTAGGGCATACCATC     | TTTTATTCTGCGGAAACCTCT       | 241 |
| 1G06 | IL2RA  | TGGCCTACAAGGAAGGAAC        | GCCCATTTGTGTCTATAGGG        | 241 |
| 1G07 | IL2RA  | CTGGACAGGTGTGCTTCTCA       | GCGCTAGCAGGAGTTAGCTG        | 249 |

| 1G08 | IL2RA  | TAGCAAGAGGCAACCTGGAC       | GGTCTCCATTTCACCTGTGC     | 277 |
|------|--------|----------------------------|--------------------------|-----|
| 1G09 | IL2RA  | TCCAGGGATACAGGGCTCTAC      | CCAGGGAGATCAAGGGTCTT     | 249 |
| 1G10 | IL2RA  | GGCCCTGACTCCTGTGTTTA       | GTCCAGCGTTTGTCTTCTCC     | 149 |
| 1G11 | IL2RA  | CCTGACTTCCTTTAGCCTCGT      | CTGTCCATATCTCAGCCTGGT    | 202 |
| 1G12 | IL2RA  | CATGGGGAGGGACCTACTTC       | CCTTGGTGATGCCACACTT      | 243 |
| 1H01 | IL2RA  | AGCCTGGCCAACATAGCA         | TCACTTGGGCTTCATGACTTC    | 243 |
| 1H02 | IAN4L1 | CCAGCTCCCAAACGTACATC       | GAATGGGTTTCTGCCACTGT     | 202 |
| 1H03 | IAN4L1 | GGGGAGGACGTTCATAGCTT       | ACTGACTGGGCCCTCAGC       | 242 |
| 1H04 | IAN4L1 | AACACCACCGGCATTGAG         | GGCAGAGAGCAGGTAGCAGT     | 256 |
| 1H05 | IAN4L1 | GCCGATACCCAAGAGCTGTA       | GCAGTTGTCCGTGTTTGCTA     | 243 |
| 1H06 | IAN4L1 | CAGGCCCTGGATGACTATG        | TTCCACTTTGGCCTGGTACT     | 276 |
| 1H07 | IAN4L1 | AGCTCCTGGCTGTGATTGAG       | GCAAAAGCATCAAGTGTTTGAC   | 240 |
| 1H08 | IAN4L1 | GAGCTGAGGGAGAACGAGAG       | CATGCTCCATAGACCACGAG     | 249 |
| 1H09 | IFIH1  | ACAACAGCACCATCTGCTTG       | GCAGGCAGAAAGGTCAGGTA     | 171 |
| 1H10 | IFIH1  | TACATCCAGGTGGAGCCTGT       | AGAGTGGGCTGAAGGAGGTT     | 302 |
| 1H11 | IFIH1  | GACTCGGGAATTCGTGGA         | TGCTTTGCAAAATCTGCCTA     | 280 |
| 1H12 | IFIH1  | GGTTATTCAGAAGATGTTTGATCTTA | TCACTAGGCAGAATTTGAAGAAT  | 269 |
| 2A01 | IFIH1  | TGTATGGCACTATGATTTGCATT    | CCCACATTTTCTCCCTCTGA     | 283 |
| 2A02 | IFIH1  | TGTGCTGTAGAGGTGTGCAGT      | TGCTTCCACTATATGGCGTCT    | 248 |
| 2A03 | IFIH1  | GGCCTACGTTCAGTTTCAGG       | TCCTTGGCAATGTAAACAGC     | 240 |
| 2A04 | IFIH1  | GGCCTACGTTCAGTTTCAGG       | CAATGACACAAATGCCATCA     | 383 |
| 2A05 | IFIH1  | CCTCTTTTCATGCTGGATGC       | TTTCAAGGATTTGAGCTGTACTGA | 257 |
| 2A06 | IFIH1  | TGGATTAAGTGGTGATACCCAAC    | AAAGACAATTTAAGCCACGAACA  | 247 |
| 2A07 | IFIH1  | TGTGCTGATATGGAGAAATGAAC    | TTCAGCTTTGGCTTGCTTC      | 246 |
| 2A08 | IFIH1  | TTTGATGCAGAAGTTGAAAAACA    | AACTGATGATCACAGCACTTGAA  | 249 |
| 2A09 | IFIH1  | CGTTGAATAAAGTGAAAGGGAAA    | AGCCTTTGCCATCTTTCTACTG   | 245 |
| 2A10 | IFIH1  | TTGGAGATTCCAGCAGAGGT       | TTGGAACTACTTTTGCTTTCCA   | 464 |
| 2A11 | IFIH1  | GGCACAATTTTAGGGGGGTTT      | ATCATCACCACCCTCATCACT    | 249 |

| IFIH1 | CAATTCGAATGATAGATGCGTA                                                                                                               | TGGAGAGCTTATGAGAAGCAGTAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IFIH1 | CAAGCTTGTTAACATATCAACTCTAA                                                                                                           | GATCATGCCACTGCTCTTCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| IFIH1 | TTTGATTTACACTGACCAGTTGC                                                                                                              | TGGCTATTTCATTGGTGACG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| IFIH1 | TCGCACTGGAAAAATAAATCTG                                                                                                               | AACAGGAAAAAGGCTTTGTTTTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| IFIH1 | AGGATTTGTATCACAACGTACCC                                                                                                              | CAAATTCAGAGGTGACCAACAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| IFIH1 | AAGACCTCCAAATTTCAGGAGA                                                                                                               | TTTCTCAATTACATGGATATCTTCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| IFIH1 | GAATAACCCATCACTAATAACTTTCC                                                                                                           | TTGAGAGGCTAAAGGAGAGGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| IFIH1 | TCCATGATGATTCTTTCCCTTT                                                                                                               | TTGTGCACCATCATTGTTCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| IFIH1 | GCCAACAGGAATGTTTAATTGC                                                                                                               | CAATCAAGTGCTAATCCTCATCAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AIRE  | GGGAGCTCCACCCTCTAGTC                                                                                                                 | AGACGGTCCTGGAACATCAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AIRE  | ACCCTACCCTGGAGAAAAC                                                                                                                  | CCGGGAAGACTGGAGACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AIRE  | GCACTCACCCCACTGAGA                                                                                                                   | CACCAGGCCAGCACGTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AIRE  | GCCTGCTTCTGGCATAGAGT                                                                                                                 | GTGGTCCTCCTTCCATCTTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AIRE  | GGCCTACACGACTGCCAAG                                                                                                                  | AGAGCCACTCCCCAGAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AIRE  | CTGGTGCCACAGCCATGT                                                                                                                   | CCTGAGTGCCCAGGTAAAGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AIRE  | GCAGAGACTGGGGAGTTCAG                                                                                                                 | AGAACCCCTTTCCATCTTGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AIRE  | CCCTCTGTGAAAAGACATGGT                                                                                                                | CTGCAGGAGACCACAAGGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AIRE  | GTTTCAGGGTCCCAGCAGT                                                                                                                  | CTCCCTCTCCTCCTGTTTCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AIRE  | CTCCTCACTTGCGCCTAGA                                                                                                                  | GTGTGGTTGTGGGGCTGTATG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AIRE  | AGCCCCTCATCCTCTGCT                                                                                                                   | TCTGCCCTGAGATGTGCTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AIRE  | TGGGCTGACCTCTTCTCTTT                                                                                                                 | AGCAGGGACAGCCTGAGTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AIRE  | AACGATGGCCATGATTCTGT                                                                                                                 | AGTAGGTCACCAGGCAAGGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FOXP3 | GGCTCAGGTGGTCGAGTATC                                                                                                                 | GGAAGAAGAGGAGGCATGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FOXP3 | CAAAGCCTCAGACCTGCTG                                                                                                                  | CCCAGTGCCACAGTAAAGGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FOXP3 | CTACCATGTGGGCTTGCAGT                                                                                                                 | CACAGTTCTCCCACCTGCTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FOXP3 | ACCAGGTATGGACGGTGAAT                                                                                                                 | TCTGTGAAGCCATGGGGTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FOXP3 | GGGAGTCAGGGTTTTCGAG                                                                                                                  | GTGTCAGGGGAGGGGATAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FOXP3 | AGGACAGGTCAGTGGACAGG                                                                                                                 | TATTGGGATGAAGCCTGAGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 271                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | IFIH1<br>IFIH1<br>IFIH1<br>IFIH1<br>IFIH1<br>IFIH1<br>IFIH1<br>IFIH1<br>AIRE<br>AIRE<br>AIRE<br>AIRE<br>AIRE<br>AIRE<br>AIRE<br>AIRE | IFIH1CAATTCGAATGATAGATGCGTAIFIH1CAAGCTTGTTAACATATCAACTCTAAIFIH1TTTGATTTACACTGACCAGTTGCIFIH1TCGCACTGGAAAAATAAATCTGIFIH1AAGACTTCGAAAATTAAATCTGIFIH1AAGACCTCCAAATTTCAGGAGAIFIH1GAATAACCCATCACTAATAACTTTCCIFIH1GAATAACCCATCACTAATAACTTTCCIFIH1GCAACAGGAATGTTTAATTGCAIREGGGAGCTCCACCCTCTAGTCAIREGCCACCACCCCTGGAGAAAACAIREGCCTGCTTCTGGCATAGAGTAIREGCCTGCTTCTGGCATAGAGTAIREGCCTGCTCCACCCCACTGAGAAIREGCCTGCTCTGTGAAAAGACATGGTAIREGCCTGCTCTGTGAAAAGACATGGTAIREGCCTCCCCCACGGGAGTTCAGAIRECTCCTCACTGGGCCAAGGACTGCCAAGGAIREGCTCCCCCCACTGTGTAIREGTTTCAGGGTCCCAGCAGTAIREGCCCCCCATCCTCTGTGTAIREAGCCCCTCATCCTCTGCTAIRETGGGCTGACCTCTTCTCTTTAIREAGCCCCCCAGAGATATCFOXP3CAAAGCCTCAGACTGCTGFOXP3CTACCATGTGGACTGCAGTFOXP3ACCAGGTATGGACGGTGAATFOXP3AGGACAGGTCAGGGTTTCGAGFOXP3AGGACAGGTCAGGGTTTCGAGFOXP3AGGACAGGTCAGGGTTTCGAGFOXP3AGGACAGGTCAGGGTTTCGAGFOXP3AGGACAGGTCAGGGTTTCGAGFOXP3AGGACAGGTCAGGGTTTCGAGFOXP3AGGACAGGTCAGGGTTTCGAG | IFIHICAATTCGAATGATAGATGCGTATGGAGAGCTTATGAGAAGCAGTAAIFIHICAAGCTTGTTAACATATCAACTCTAAGATCATGCCACTGCTCTCAIFIHITTTGATTTACACTGACCAGTTGCTGGCTATTCATTGGTGACGIFIHITCGCACTGGAAAATAAATCTGAACAGGAAAAAGGCTTTGTTTAIFIHIAGGATTGATCACAACGTACCCCAAATTCAGAGGTGACCAACAAIFIHIAGGATTATCACAACGTACCCCAAATTCAGGAGGTAACCTACCAACAAIFIHIGAATAACCCATCACTAATAACTTCCTTGAGAGGCTAAAGGAGAGGAAIFIHIGAATAACCCATCACTAATAACTTTCCTTGGCACCATCATTGTTCCIFIHIGCAACAGGAATGTTTAATTGCCAATCAAGTGCTAATCCTCATCACAIREGGGAGCTCCACCCTCTAGTCAGACGGTCCTGGAACATCACAIREGGCACCACCCCCACTGAGACCCGGGAAGACTGGAGACCAIREGCCTGCTTCTGGCAAGAGACCCGGGAAGACTGGAGACCAIREGCCTCACCCCACTGAGACCTGAGTGCCCACGCCACGTCAIREGCCTCACCCCACTGCCAAGAGAGCCACTCCCCCAGAGAIREGCCTGCTTCTGGCATAGAGTCTGCAGGGCAGCACAAAGGAIRECTGGTGCCACAGCCATGTCTGCAGGAGACCACAAGGAAIREGCCCTCATCTCTGCTAGGAGAACCCCTTTCCATCTTGGAIREGCCCTCATCCTCGCTAGAGTGTGGTTGTGGGGCTGTATGAIREGCCCTCATCTCTGCTTCTGCCCTGAGAGCACCACAAGGAAIRETGGGCTGACCTCTTCCTTTAGCAGGGACCACAGGCAGGAGAAIREGGCCCAGGTGTCGAGTATCGGAAGAAGAGGCATGGFOXP3GGCTCAGGTGTGCAGTGTCGCCCAGTGCCACGGGAGTAGFOXP3GGCACAGGCTTGCAGGCAGGTCTGTGAAGGCATAGGFOXP3AGGACAGGTCAGTGGACAGGTCTGTGAGGGGATAGFOXP3AGGACAGGTCAGTGGAGAGGAGAGGTCTGTGAGGGGATAGFOXP3 |

| 2D04 | FOXP3  | GGTCACCTGCATGGAATCTT    | CTACGGTCTTCCCTGGGAGT   | 263 |
|------|--------|-------------------------|------------------------|-----|
| 2D05 | FOXP3  | GCCAGAAACCAAGTTCACCT    | CAGTCTGAGTCTGCCACCAC   | 261 |
| 2D06 | FOXP3  | TTTAAGCCTCTGGGTCACCA    | CCCAGAGCCTGTCAGGATTA   | 250 |
| 2D07 | FOXP3  | TGATTCATCCCCACCCTCT     | GGAATGGAGGAACCCACTCT   | 213 |
| 2D08 | FOXP3  | TAGCCCCTCTAAACCCCAAG    | ATGTGCCTATGAGCCCAGAC   | 254 |
| 2D09 | FOXP3  | GTCTGGGCTCATAGGCACAT    | TCCTCCTTTCCTTGATCTTGA  | 280 |
| 2D10 | KCNJ11 | CTCAGAAGTGAGGCCAGCA     | GCCTTTCTTGGACACAAAGC   | 261 |
| 2D11 | KCNJ11 | ATCATCCCCGAGGAATACG     | GGACATGGTGAAGATGAGCA   | 216 |
| 2D12 | IFIH1  | TCTGTACATTGTGGAGTGGCTAA | TTCAGTAATCCACTGGGAAAGC | 240 |

|         |            |                 |                 |                                     |                   | T1D                |                                                     |                                  | Сс                | ontrols            |                                                     |                           |
|---------|------------|-----------------|-----------------|-------------------------------------|-------------------|--------------------|-----------------------------------------------------|----------------------------------|-------------------|--------------------|-----------------------------------------------------|---------------------------|
| Gene    | rs#        | Major<br>allele | Minor<br>allele | reads<br>with<br>minor<br>allele, n | total<br>reads, n | minor<br>allele, % | estimated<br>chromosomes<br>with minor<br>allele, n | reads with<br>minor<br>allele, n | total<br>reads, n | minor<br>allele, % | estimated<br>chromosomes<br>with minor<br>allele, n | P-value,<br>$\chi^2$ test |
| SH2B3   | rs3184504  | Т               | с               | 19,777                              | 47,620            | 41.5               | 399 / 960                                           | 22,868                           | 43,163            | 53.0               | 509 / 960                                           | 0.00000050                |
| PTPN22  | rs2476601  | С               | t               | 4,496                               | 30,364            | 14.8               | 142 / 960                                           | 2,531                            | 30,042            | 8.4                | 81 / 960                                            | 0.000013                  |
| IFIH1   | rs1990760  | А               | g               | 8,055                               | 25,955            | 31.0               | 298 / 960                                           | 11,606                           | 30,326            | 38.3               | 367 / 960                                           | 0.00086                   |
| CLEC16A | rs2302557  | G               | c               | 4,135                               | 8,353             | 49.5               | 475 / 960                                           | 3,108                            | 7,134             | 43.6               | 418 / 960                                           | 0.0091                    |
| IL2RA   | rs28360490 | Т               | g               | 4,828                               | 59,233            | 8.2                | 78 / 960                                            | 7,269                            | 62,449            | 11.6               | 112 / 960                                           | 0.010                     |
| CLEC16A | rs2286973  | G               | а               | 6,466                               | 18,427            | 35.1               | 337 / 960                                           | 6,084                            | 14,990            | 40.6               | 390 / 960                                           | 0.013                     |
| IL2RA   | rs28360489 | G               | а               | 4,892                               | 58,370            | 8.4                | 80 / 960                                            | 7,268                            | 62,133            | 11.7               | 112 / 960                                           | 0.016                     |
| IL2RA   | rs7076103  | G               | а               | 2,811                               | 19,005            | 14.8               | 142 / 960                                           | 3,230                            | 17,225            | 18.8               | 180 / 960                                           | 0.020                     |
| KCNJ11  | rs5215     | А               | g               | 5,136                               | 14,603            | 35.2               | 338 / 960                                           | 3,871                            | 12,464            | 31.1               | 298 / 960                                           | 0.056                     |
| AIRE    | rs1800521  | Т               | с               | 3,967                               | 10,740            | 36.9               | 355 / 960                                           | 2,757                            | 8,408             | 32.8               | 315 / 960                                           | 0.057                     |
| PTPN22  | rs3761935  | А               | с               | 3,518                               | 19,264            | 18.3               | 175 / 960                                           | 6,655                            | 31,167            | 21.4               | 205 / 960                                           | 0.089                     |
| AIRE    | rs1133779  | Т               | с               | 1,255                               | 2,809             | 44.7               | 429 / 960                                           | 979                              | 2,389             | 41.0               | 393 / 960                                           | 0.097                     |
| KCNJ11  | rs5218     | С               | t               | 4,790                               | 16,534            | 29.0               | 278 / 960                                           | 5,005                            | 15,642            | 32.0               | 307 / 960                                           | 0.15                      |
| IFIH1   | rs11441874 | Т               | a               | 1,390                               | 19,769            | 7.0                | 67 / 960                                            | 1,447                            | 26,350            | 5.5                | 53 / 960                                            | 0.16                      |
| CLEC16A | rs8052325  | А               | g               | 5,649                               | 69,044            | 8.2                | 79 / 960                                            | 6,595                            | 66,437            | 9.9                | 95 / 960                                            | 0.18                      |
| PTPN22  | rs1217418  | С               | t               | 13,809                              | 29,699            | 46.5               | 446 / 960                                           | 16,700                           | 38,298            | 43.6               | 419 / 960                                           | 0.20                      |
| KCNJ11  | rs1800467  | С               | g               | 539                                 | 20,174            | 2.7                | 26 / 960                                            | 581                              | 15,923            | 3.6                | 35 / 960                                            | 0.22                      |
| KCNJ11  | rs5219     | G               | а               | 14,332                              | 37,331            | 38.4               | 369 / 960                                           | 13,310                           | 37,209            | 35.8               | 343 / 960                                           | 0.23                      |
| IAN4L1  | rs759011   | С               | t               | 8,445                               | 31,823            | 26.5               | 255 / 960                                           | 8,317                            | 28,798            | 28.9               | 277 / 960                                           | 0.25                      |

Table S2. Association analysis of common variants in sequenced pools of DNA from T1D patients and controls

| AIRE    | rs1800525  | G | а | 672    | 10,794 | 6.2  | 60 / 960  | 613    | 8,141  | 7.5  | 72 / 960  | 0.26 |
|---------|------------|---|---|--------|--------|------|-----------|--------|--------|------|-----------|------|
| AIRE    | rs878081   | С | t | 5,195  | 27,323 | 19.0 | 183 / 960 | 5,090  | 24,254 | 21.0 | 201 / 960 | 0.28 |
| IAN4L1  | rs1046355  | С | t | 5,117  | 19,682 | 26.0 | 250 / 960 | 5,417  | 19,258 | 28.1 | 270 / 960 | 0.29 |
| AIRE    | rs1800520  | С | g | 1,076  | 14,438 | 7.5  | 72 / 960  | 871    | 13,788 | 6.3  | 61 / 960  | 0.33 |
| PTPN22  | rs1217419  | С | а | 12,122 | 25,470 | 47.6 | 457 / 960 | 10,793 | 23,765 | 45.4 | 436 / 960 | 0.34 |
| IL2RA   | rs11256369 | G | c | 12,321 | 49,266 | 25.0 | 240 / 960 | 11,285 | 48,636 | 23.2 | 223 / 960 | 0.35 |
| AIRE    | rs1055311  | С | t | 1,866  | 6,925  | 26.9 | 259 / 960 | 1,612  | 5,600  | 28.8 | 276 / 960 | 0.37 |
| CLEC16A | rs16957839 | С | t | 4,219  | 45,947 | 9.2  | 88 / 960  | 4,371  | 42,648 | 10.2 | 98 / 960  | 0.43 |
| CLEC16A | rs2302558  | С | t | 2,218  | 23,383 | 9.5  | 91 / 960  | 2,744  | 26,745 | 10.3 | 98 / 960  | 0.57 |
| IFIH1   | rs3747517  | G | а | 12,013 | 47,867 | 25.1 | 241 / 960 | 12,522 | 47,796 | 26.2 | 252 / 960 | 0.58 |
| IL2RA   | rs12358961 | А | t | 16,836 | 49,011 | 34.4 | 330 / 960 | 16,294 | 48,334 | 33.7 | 324 / 960 | 0.77 |
| IAN4L1  | rs9657881  | G | а | 1,010  | 18,910 | 5.3  | 51 / 960  | 977    | 19,369 | 5.0  | 48 / 960  | 0.77 |
| IAN4L1  | rs4725936  | Т | c | 12,886 | 52,009 | 24.8 | 238 / 960 | 14,360 | 56,703 | 25.3 | 243 / 960 | 0.78 |
| AIRE    | rs41277544 | G | а | 1,208  | 26,472 | 4.6  | 44 / 960  | 1,121  | 24,038 | 4.7  | 45 / 960  | 0.92 |

|       |                    |                                 |                 |                 |                                     | Т                 | '1D                   |                                                     |                                     | Со                | ontrols               |                                                     |                             |
|-------|--------------------|---------------------------------|-----------------|-----------------|-------------------------------------|-------------------|-----------------------|-----------------------------------------------------|-------------------------------------|-------------------|-----------------------|-----------------------------------------------------|-----------------------------|
| Gene  | Location           | rs# or<br>ss# (for new<br>SNPs) | Major<br>allele | Minor<br>allele | reads<br>with<br>minor<br>allele, n | total<br>reads, n | minor<br>allele,<br>% | estimated<br>chromosomes<br>with minor<br>allele, n | reads<br>with<br>minor<br>allele, n | total<br>reads, n | minor<br>allele,<br>% | estimated<br>chromosomes<br>with minor<br>allele, n | <i>P</i> -value, exact test |
| IFIH1 | intron 4           | rs35502110                      | С               | t               | 474                                 | 39,047            | 1.2                   | 12 / 960                                            | 506                                 | 33,156            | 1.5                   | 15 / 960                                            | 0.70                        |
| IFIH1 | exon 7, H460R      | rs10930046                      | А               | g               | 403                                 | 43,256            | 0.9                   | 9 / 960                                             | 310                                 | 43,781            | 0.7                   | 7 / 960                                             | 0.80                        |
| IFIH1 | exon 14, I923V     | rs35667974                      | А               | g               | 261                                 | 36,095            | 0.7                   | 7 / 960                                             | 906                                 | 37,475            | 2.4                   | 23 / 960                                            | 0.0049                      |
| IFIH1 | intron 14,+1splice | rs35732034                      | G               | а               | 221                                 | 34,941            | 0.6                   | 6 / 960                                             | 455                                 | 37,386            | 1.2                   | 12 / 960                                            | 0.24                        |
| IFIH1 | exon 7, sSNP       | rs12479043                      | G               | c               | 161                                 | 35,462            | 0.5                   | 4 / 960                                             | 83                                  | 33,280            | 0.2                   | 2 / 960                                             | 0.69                        |
| IFIH1 | intron 8,+1splice  | rs35337543                      | G               | c               | 35                                  | 9,719             | 0.4                   | 3 / 960                                             | 221                                 | 8,808             | 2.5                   | 24 / 960                                            | 0.000044                    |
| IFIH1 | exon 10, E627X     | rs35744605                      | G               | t               | 84                                  | 29,557            | 0.3                   | 3 / 960                                             | 169                                 | 29,844            | 0.6                   | 5 / 960                                             | 0.73                        |
| IFIH1 | exon 5, K349R      | ss107794691                     | А               | g               | 37                                  | 14,332            | 0.3                   | 2 / 960                                             | 58                                  | 14,309            | 0.4                   | 4 / 960                                             | 0.69                        |
| IFIH1 | exon 1, sSNP       | ss119336615                     | G               | а               | 57                                  | 23,188            | 0.2                   | 2 / 960                                             | 1                                   | 20,541            | 0.0                   | 0 / 960                                             | 0.50                        |
| IFIH1 | intron 3           | ss107794692                     | А               | t               | 66                                  | 30,460            | 0.2                   | 2 / 960                                             | 66                                  | 28,675            | 0.2                   | 2 / 960                                             | 1.00                        |
| IFIH1 | intron 4           | ss119336620                     | С               | g               | 48                                  | 39,161            | 0.1                   | 1 / 960                                             | 0                                   | 33,227            | 0.0                   | 0 / 960                                             | 1.00                        |
| IFIH1 | intron 4           | ss119336619                     | С               | g               | 45                                  | 38,774            | 0.1                   | 1 / 960                                             | 40                                  | 39,650            | 0.1                   | 1 / 960                                             | 1.00                        |
| IFIH1 | exon 11, T702I     | ss107794690                     | С               | t               | 22                                  | 21,083            | 0.1                   | 1 / 960                                             | 77                                  | 20,056            | 0.4                   | 4 / 960                                             | 0.37                        |
| IFIH1 | intron 5           | ss119336622                     | G               | а               | 33                                  | 35,210            | 0.1                   | 1 / 960                                             | 29                                  | 35,799            | 0.1                   | 1 / 960                                             | 1.00                        |
| IFIH1 | intron 3           | ss119336618                     | С               | t               | 28                                  | 30,575            | 0.1                   | 1 / 960                                             | 5                                   | 28,684            | 0.0                   | 0 / 960                                             | 1.00                        |
| IFIH1 | exon 7, sSNP       | ss119336624                     | С               | t               | 28                                  | 42,289            | 0.1                   | 1 / 960                                             | 3                                   | 43,784            | 0.0                   | 0 / 960                                             | 1.00                        |
| IFIH1 | intron 12          | ss119336629                     | Т               | c               | 15                                  | 23,643            | 0.1                   | 1 / 960                                             | 1                                   | 21,166            | 0.0                   | 0 / 960                                             | 1.00                        |
| IFIH1 | intron 12          | ss119336630                     | Т               | а               | 29                                  | 47,745            | 0.1                   | 1 / 960                                             | 0                                   | 48,069            | 0.0                   | 0 / 960                                             | 1.00                        |
| IFIH1 | intron 11          | ss119336627                     | Т               | c               | 18                                  | 31,712            | 0.1                   | 1 / 960                                             | 0                                   | 35,470            | 0.0                   | 0 / 960                                             | 1.00                        |

Table S3. Association analysis of rare variants in sequenced pools of DNA from T1D patients and controls

| IFIH1 | exon 2, N160D  | ss119336617 | А | g | 0   | 27,046 | 0.0 | 0 / 960  | 40  | 24,529 | 0.2 | 2 / 960  | 0.50  |
|-------|----------------|-------------|---|---|-----|--------|-----|----------|-----|--------|-----|----------|-------|
| IFIH1 | exon 16, sSNP  | ss119336633 | С | t | 16  | 33,439 | 0.0 | 0 / 960  | 35  | 36,251 | 0.1 | 1 / 960  | 1.00  |
| IFIH1 | exon 13, R820H | ss119336631 | G | а | 10  | 48,168 | 0.0 | 0 / 960  | 34  | 48,145 | 0.1 | 1 / 960  | 1.00  |
| IFIH1 | exon 12, sSNP  | ss119336628 | С | t | 3   | 24,346 | 0.0 | 0 / 960  | 23  | 21,332 | 0.1 | 1 / 960  | 1.00  |
| IFIH1 | exon 16, V988L | ss119336634 | G | t | 4   | 33,792 | 0.0 | 0 / 960  | 45  | 36,255 | 0.1 | 1 / 960  | 1.00  |
| IFIH1 | intron 14      | ss119336632 | А | g | 2   | 35,269 | 0.0 | 0 / 960  | 40  | 37,416 | 0.1 | 1 / 960  | 1.00  |
| IFIH1 | exon 6, E428G  | ss119336623 | А | g | 1   | 19,220 | 0.0 | 0 / 960  | 35  | 26,514 | 0.1 | 1 / 960  | 1.00  |
| IFIH1 | exon 1, R149G  | ss119336616 | А | g | 1   | 23,102 | 0.0 | 0 / 960  | 22  | 20,558 | 0.1 | 1 / 960  | 1.00  |
| IFIH1 | exon 10, R595H | ss119336626 | G | а | 1   | 27,125 | 0.0 | 0 / 960  | 29  | 29,774 | 0.1 | 1 / 960  | 1.00  |
| IFIH1 | intron 7       | ss119336625 | Т | c | 1   | 35,400 | 0.0 | 0 / 960  | 33  | 33,057 | 0.1 | 1 / 960  | 1.00  |
| AIRE  | exon 12, R471C | ss107794714 | С | t | 499 | 30,860 | 1.6 | 16 / 960 | 500 | 23,119 | 2.2 | 21 / 960 | 0.51  |
| AIRE  | intron 5       | rs41277546  | С | t | 343 | 26,698 | 1.3 | 12 / 960 | 532 | 24,489 | 2.2 | 21 / 960 | 0.16  |
| AIRE  | intron 10      | ss107794713 | С | t | 137 | 13,747 | 1.0 | 10 / 960 | 150 | 11,830 | 1.3 | 12 / 960 | 0.83  |
| AIRE  | 3'UTR          | ss107794717 | С | g | 48  | 5,536  | 0.9 | 8 / 960  | 46  | 4,499  | 1.0 | 10 / 960 | 0.81  |
| AIRE  | intron 4       | ss107794708 | G | t | 56  | 6,652  | 0.8 | 8 / 960  | 73  | 7,132  | 1.0 | 10 / 960 | 0.81  |
| AIRE  | intron 13      | ss107794716 | С | t | 262 | 37,459 | 0.7 | 7 / 960  | 39  | 32,013 | 0.1 | 1 / 960  | 0.070 |
| AIRE  | exon 11, T441M | ss107794712 | С | t | 57  | 14,711 | 0.4 | 4 / 960  | 34  | 11,847 | 0.3 | 3 / 960  | 1.00  |
| AIRE  | exon 10, sSNP  | ss107794711 | G | а | 32  | 10,902 | 0.3 | 3 / 960  | 11  | 8,382  | 0.1 | 1 / 960  | 0.62  |
| AIRE  | exon 12, sSNP  | ss107794715 | С | t | 90  | 31,258 | 0.3 | 3 / 960  | 67  | 23,211 | 0.3 | 3 / 960  | 1.00  |
| AIRE  | exon 10, sSNP  | ss119336604 | С | g | 23  | 10,780 | 0.2 | 2 / 960  | 0   | 8,383  | 0.0 | 0 / 960  | 0.50  |
| AIRE  | intron 6       | ss107794710 | G | а | 30  | 14,368 | 0.2 | 2 / 960  | 21  | 13,798 | 0.2 | 1 / 960  | 1.00  |
| AIRE  | exon 3, sSNP   | ss119336600 | G | а | 20  | 10,160 | 0.2 | 2 / 960  | 3   | 8,037  | 0.0 | 0 / 960  | 0.50  |
| AIRE  | exon 8, I309M  | ss119336602 | С | g | 21  | 20,841 | 0.1 | 1 / 960  | 0   | 17,253 | 0.0 | 0 / 960  | 1.00  |
| AIRE  | exon 12, sSNP  | rs7281600   | G | а | 29  | 31,073 | 0.1 | 1 / 960  | 11  | 23,098 | 0.0 | 0 / 960  | 1.00  |
| AIRE  | intron 12      | ss119336606 | G | а | 9   | 31,175 | 0.0 | 0 / 960  | 40  | 23,242 | 0.2 | 2 / 960  | 0.50  |

| AIRE    | exon 4, sSNP    | ss107794707 | С | t | 1   | 6,721  | 0.0 | 0 / 960  | 26  | 7,138  | 0.4 | 3 / 960  | 0.25  |
|---------|-----------------|-------------|---|---|-----|--------|-----|----------|-----|--------|-----|----------|-------|
| AIRE    | exon 5, V199I   | ss119336601 | G | а | 3   | 27,267 | 0.0 | 0 / 960  | 67  | 24,541 | 0.3 | 3 / 960  | 0.25  |
| AIRE    | exon 8, R328W   | ss119336603 | С | t | 1   | 20,124 | 0.0 | 0 / 960  | 21  | 17,221 | 0.1 | 1 / 960  | 1.00  |
| CLEC16A | 3'UTR           | rs11647285  | G | а | 942 | 44,026 | 2.1 | 21 / 960 | 811 | 31,847 | 2.5 | 24 / 960 | 0.76  |
| CLEC16A | intron 11       | ss107794687 | С | t | 431 | 40,186 | 1.1 | 10 / 960 | 808 | 32,947 | 2.5 | 24 / 960 | 0.023 |
| CLEC16A | exon 24, S991N  | ss107794725 | G | а | 213 | 33,615 | 0.6 | 6 / 960  | 112 | 25,129 | 0.4 | 4 / 960  | 0.75  |
| CLEC16A | intron 23       | ss107794688 | С | t | 168 | 33,712 | 0.5 | 5 / 960  | 450 | 25,138 | 1.8 | 17 / 960 | 0.016 |
| CLEC16A | exon 24, A1042T | ss107794727 | G | a | 187 | 45,728 | 0.4 | 4 / 960  | 34  | 32,146 | 0.1 | 1 / 960  | 0.37  |
| CLEC16A | exon 15, Y604I  | ss107794721 | Т | a | 201 | 70,829 | 0.3 | 3 / 960  | 11  | 66,309 | 0.0 | 0 / 960  | 0.25  |
| CLEC16A | exon 24, V977M  | ss107794724 | G | a | 90  | 33,833 | 0.3 | 3 / 960  | 54  | 25,129 | 0.2 | 2 / 960  | 1.00  |
| CLEC16A | exon 22, S901N  | ss107794723 | G | a | 119 | 47,294 | 0.3 | 2 / 960  | 101 | 39,194 | 0.3 | 2 / 960  | 1.00  |
| CLEC16A | 3'UTR           | ss107794728 | G | a | 106 | 44,959 | 0.2 | 2 / 960  | 158 | 32,088 | 0.5 | 5 / 960  | 0.45  |
| CLEC16A | 5UTR            | ss107794719 | G | t | 29  | 12,665 | 0.2 | 2 / 960  | 34  | 10,159 | 0.3 | 3 / 960  | 1.00  |
| CLEC16A | 5UTR            | ss107794718 | G | a | 24  | 12,679 | 0.2 | 2 / 960  | 30  | 10,217 | 0.3 | 3 / 960  | 1.00  |
| CLEC16A | exon 17, R674W  | ss119336668 | С | t | 35  | 20,409 | 0.2 | 2 / 960  | 4   | 17,557 | 0.0 | 0 / 960  | 0.50  |
| CLEC16A | intron 13       | ss119336661 | С | t | 24  | 14,088 | 0.2 | 2 / 960  | 2   | 10,881 | 0.0 | 0 / 960  | 0.50  |
| CLEC16A | exon 3, sSNP    | ss119336650 | С | а | 77  | 46,226 | 0.2 | 2 / 960  | 23  | 42,674 | 0.1 | 1 / 960  | 1.00  |
| CLEC16A | exon 10, E424K  | ss119336659 | G | а | 62  | 40,283 | 0.2 | 1 / 960  | 2   | 42,074 | 0.0 | 0 / 960  | 1.00  |
| CLEC16A | intron 23       | ss107794726 | С | а | 41  | 33,845 | 0.1 | 1 / 960  | 122 | 25,129 | 0.5 | 5 / 960  | 0.22  |
| CLEC16A | exon 22, sSNP   | ss107794722 | G | a | 54  | 47,310 | 0.1 | 1 / 960  | 49  | 39,196 | 0.1 | 1 / 960  | 1.00  |
| CLEC16A | exon 24, sSNP   | ss107794729 | G | а | 51  | 45,887 | 0.1 | 1 / 960  | 95  | 32,143 | 0.3 | 3 / 960  | 0.62  |
| CLEC16A | exon 5, A179V   | ss107794720 | С | t | 43  | 39,135 | 0.1 | 1 / 960  | 42  | 38,202 | 0.1 | 1 / 960  | 1.00  |
| CLEC16A | intron 22       | ss119336672 | С | t | 42  | 28,170 | 0.1 | 1 / 960  | 8   | 21,715 | 0.0 | 0 / 960  | 1.00  |
| CLEC16A | exon 24, V983M  | ss119336674 | G | a | 47  | 33,828 | 0.1 | 1 / 960  | 2   | 25,133 | 0.0 | 0 / 960  | 1.00  |
| CLEC16A | intron 22       | ss119336673 | А | g | 30  | 28,430 | 0.1 | 1 / 960  | 0   | 21,747 | 0.0 | 0 / 960  | 1.00  |

| CLEC16A | intron 7        | ss119336652 | С | t | 45  | 46,388 | 0.1 | 1 / 960  | 9   | 40,432 | 0.0 | 0 / 960  | 1.00 |
|---------|-----------------|-------------|---|---|-----|--------|-----|----------|-----|--------|-----|----------|------|
| CLEC16A | exon 24, A1041T | ss119336677 | G | а | 44  | 45,889 | 0.1 | 1 / 960  | 4   | 32,160 | 0.0 | 0 / 960  | 1.00 |
| CLEC16A | exon 24, sSNP   | ss119336676 | С | t | 40  | 45,672 | 0.1 | 1 / 960  | 5   | 32,143 | 0.0 | 0 / 960  | 1.00 |
| CLEC16A | intron 8        | ss119336654 | G | а | 29  | 36,218 | 0.1 | 1 / 960  | 71  | 32,401 | 0.2 | 2 / 960  | 1.00 |
| CLEC16A | exon 10, sSNP   | ss119336658 | С | g | 31  | 40,149 | 0.1 | 1 / 960  | 0   | 42,071 | 0.0 | 0 / 960  | 1.00 |
| CLEC16A | exon 24, A986G  | ss119336675 | С | g | 26  | 33,773 | 0.1 | 1 / 960  | 0   | 25,131 | 0.0 | 0 / 960  | 1.00 |
| CLEC16A | exon 8, R314W   | ss119336653 | С | t | 27  | 39,783 | 0.1 | 1 / 960  | 10  | 32,417 | 0.0 | 0 / 960  | 1.00 |
| CLEC16A | exon 10, R383Q  | ss119336657 | G | а | 26  | 40,240 | 0.1 | 1 / 960  | 13  | 42,077 | 0.0 | 0 / 960  | 1.00 |
| CLEC16A | exon 15, H607N  | ss119336665 | С | а | 40  | 71,134 | 0.1 | 1 / 960  | 1   | 66,488 | 0.0 | 0 / 960  | 1.00 |
| CLEC16A | exon 20, A813T  | ss119336669 | G | а | 15  | 42,764 | 0.0 | 0 / 960  | 33  | 34,674 | 0.1 | 1 / 960  | 1.00 |
| CLEC16A | exon 22, V893M  | ss119336670 | G | а | 11  | 47,179 | 0.0 | 0 / 960  | 43  | 39,188 | 0.1 | 1 / 960  | 1.00 |
| CLEC16A | exon 15, sSNP   | ss119336664 | G | а | 7   | 70,611 | 0.0 | 0 / 960  | 85  | 66,484 | 0.1 | 1 / 960  | 1.00 |
| CLEC16A | exon 17, sSNP   | ss119336667 | G | а | 2   | 20,703 | 0.0 | 0 / 960  | 23  | 17,755 | 0.1 | 1 / 960  | 1.00 |
| CLEC16A | exon 2, sSNP    | ss119336649 | С | t | 4   | 47,760 | 0.0 | 0 / 960  | 40  | 45,903 | 0.1 | 1 / 960  | 1.00 |
| CLEC16A | exon 11, T484M  | ss119336660 | С | t | 3   | 40,382 | 0.0 | 0 / 960  | 86  | 32,891 | 0.3 | 3 / 960  | 0.25 |
| CLEC16A | intron 14       | ss119336662 | С | t | 3   | 67,334 | 0.0 | 0 / 960  | 79  | 66,482 | 0.1 | 1 / 960  | 1.00 |
| CLEC16A | intron 9        | ss119336656 | G | c | 1   | 35,604 | 0.0 | 0 / 960  | 52  | 38,194 | 0.1 | 1 / 960  | 1.00 |
| CLEC16A | exon 24, sSNP   | ss119336678 | С | t | 1   | 45,808 | 0.0 | 0 / 960  | 23  | 32,134 | 0.1 | 1 / 960  | 1.00 |
| CLEC16A | intron 14       | ss119336663 | А | g | 1   | 67,478 | 0.0 | 0 / 960  | 44  | 66,466 | 0.1 | 1 / 960  | 1.00 |
| CLEC16A | intron 15       | ss119336666 | Т | g | 0   | 37,993 | 0.0 | 0 / 960  | 81  | 38,979 | 0.2 | 2 / 960  | 0.50 |
| CLEC16A | exon 4, H168R   | ss119336651 | А | g | 0   | 24,105 | 0.0 | 0 / 960  | 36  | 26,862 | 0.1 | 1 / 960  | 1.00 |
| CLEC16A | exon 9, Y355H   | ss119336655 | Т | c | 0   | 35,923 | 0.0 | 0 / 960  | 31  | 38,183 | 0.1 | 1 / 960  | 1.00 |
| CLEC16A | exon 22, P937R  | ss119336671 | С | g | 0   | 47,010 | 0.0 | 0 / 960  | 22  | 39,208 | 0.1 | 1 / 960  | 1.00 |
| FOXP3   | exon 6, sSNP    | rs2232367   | С | t | 866 | 27,194 | 3.2 | 31 / 960 | 551 | 20,086 | 2.7 | 26 / 960 | 0.59 |
| FOXP3   | intron 10       | ss107794731 | G | а | 86  | 48,070 | 0.2 | 2 / 960  | 145 | 40,773 | 0.4 | 3 / 960  | 1.00 |

| FOXP3  | exon 12, R397W | rs28935477  | С | t | 42   | 26,035 | 0.2 | 2 / 960  | 30   | 16,416 | 0.2 | 2 / 960  | 1.00 |
|--------|----------------|-------------|---|---|------|--------|-----|----------|------|--------|-----|----------|------|
| FOXP3  | intron 10      | ss119336609 | G | а | 70   | 48,282 | 0.1 | 1 / 960  | 46   | 40,789 | 0.1 | 1 / 960  | 1.00 |
| FOXP3  | intron 6       | ss119336607 | G | а | 31   | 27,349 | 0.1 | 1 / 960  | 1    | 20,098 | 0.0 | 0 / 960  | 1.00 |
| FOXP3  | intron 10      | ss119336610 | С | g | 35   | 33,853 | 0.1 | 1 / 960  | 1    | 29,747 | 0.0 | 0 / 960  | 1.00 |
| FOXP3  | exon 9, V292I  | ss119336608 | G | а | 1    | 31,600 | 0.0 | 0 / 960  | 73   | 20,794 | 0.4 | 3 / 960  | 0.25 |
| IAN4L1 | exon 3, sSNP   | ss107794735 | G | а | 221  | 9,049  | 2.4 | 23 / 960 | 202  | 7,092  | 2.8 | 27 / 960 | 0.67 |
| IAN4L1 | exon 3, I148V  | ss107794733 | А | g | 141  | 50,098 | 0.3 | 3 / 960  | 180  | 48,334 | 0.4 | 4 / 960  | 1.00 |
| IAN4L1 | exon 3, L204P  | ss107794734 | Т | c | 21   | 15,645 | 0.1 | 1 / 960  | 36   | 13,669 | 0.3 | 3 / 960  | 0.62 |
| IAN4L1 | intron 2       | ss119336612 | С | t | 61   | 54,848 | 0.1 | 1 / 960  | 4    | 58,345 | 0.0 | 0 / 960  | 1.00 |
| IAN4L1 | intron 2       | ss119336611 | С | t | 52   | 54,984 | 0.1 | 1 / 960  | 5    | 58,328 | 0.0 | 0 / 960  | 1.00 |
| IAN4L1 | exon 3, sSNP   | ss119336614 | С | а | 1    | 20,915 | 0.0 | 0 / 960  | 20   | 19,314 | 0.1 | 1 / 960  | 1.00 |
| IAN4L1 | exon 3, F87L   | ss119336613 | Т | g | 0    | 33,252 | 0.0 | 0 / 960  | 30   | 29,142 | 0.1 | 1 / 960  | 1.00 |
| IL2RA  | exon 2, sSNP   | rs2228150   | G | а | 1160 | 47,841 | 2.4 | 23 / 960 | 1308 | 45,384 | 2.9 | 28 / 960 | 0.57 |
| IL2RA  | exon 4, sSNP   | rs2228149   | С | t | 1331 | 56,771 | 2.3 | 23 / 960 | 1301 | 50,188 | 2.6 | 25 / 960 | 0.88 |
| IL2RA  | intron 4       | rs11256360  | С | t | 1191 | 54,781 | 2.2 | 21 / 960 | 1322 | 49,959 | 2.6 | 25 / 960 | 0.65 |
| IL2RA  | intron 3       | rs942200    | G | а | 778  | 39,232 | 2.0 | 19 / 960 | 983  | 36,239 | 2.7 | 26 / 960 | 0.37 |
| IL2RA  | 5'UTR          | ss107794686 | G | t | 77   | 22,356 | 0.3 | 3 / 960  | 0    | 19,584 | 0.0 | 0 / 960  | 0.25 |
| IL2RA  | intron 7       | ss107794695 | А | g | 47   | 19,338 | 0.2 | 2 / 960  | 50   | 17,365 | 0.3 | 3 / 960  | 1.00 |
| IL2RA  | intron 6       | ss119336644 | С | g | 83   | 45,462 | 0.2 | 2 / 960  | 0    | 39,793 | 0.0 | 0 / 960  | 0.50 |
| IL2RA  | exon 3, T91M   | ss107794693 | С | t | 93   | 54,034 | 0.2 | 2 / 960  | 81   | 49,553 | 0.2 | 2 / 960  | 1.00 |
| IL2RA  | exon 3, S111N  | rs56054476  | G | а | 72   | 54,096 | 0.1 | 1 / 960  | 63   | 49,549 | 0.1 | 1 / 960  | 1.00 |
| IL2RA  | exon 2, sSNP   | ss119336637 | С | t | 62   | 51,073 | 0.1 | 1 / 960  | 2    | 45,663 | 0.0 | 0 / 960  | 1.00 |
| IL2RA  | intron 5       | ss119336643 | Т | а | 48   | 59,712 | 0.1 | 1 / 960  | 65   | 62,716 | 0.1 | 1 / 960  | 1.00 |
| IL2RA  | exon 7, sSNP   | ss119336646 | G | а | 37   | 46,820 | 0.1 | 1 / 960  | 5    | 39,797 | 0.0 | 0 / 960  | 1.00 |
| IL2RA  | intron 2       | ss119336639 | А | t | 35   | 50,885 | 0.1 | 1 / 960  | 0    | 45,656 | 0.0 | 0 / 960  | 1.00 |

| IL2RA  | intron 7        | ss119336647 | G | а | 4   | 19,241 | 0.0 | 0 / 960  | 26  | 17,499 | 0.1 | 1 / 960  | 1.00 |
|--------|-----------------|-------------|---|---|-----|--------|-----|----------|-----|--------|-----|----------|------|
| IL2RA  | intron 4        | ss119336642 | С | t | 5   | 55,777 | 0.0 | 0 / 960  | 45  | 50,115 | 0.1 | 1 / 960  | 1.00 |
| IL2RA  | exon 1, M15I    | ss119336636 | G | а | 2   | 23,259 | 0.0 | 0 / 960  | 22  | 19,587 | 0.1 | 1 / 960  | 1.00 |
| IL2RA  | intron 2        | ss119336638 | G | а | 3   | 51,141 | 0.0 | 0 / 960  | 133 | 45,650 | 0.3 | 3 / 960  | 0.25 |
| IL2RA  | intron 6        | ss119336645 | С | t | 2   | 46,979 | 0.0 | 0 / 960  | 30  | 39,799 | 0.1 | 1 / 960  | 1.00 |
| IL2RA  | exon 3, V116A   | ss119336641 | Т | c | 2   | 53,732 | 0.0 | 0 / 960  | 67  | 49,543 | 0.1 | 1 / 960  | 1.00 |
| IL2RA  | 5'UTR           | ss119336635 | С | g | 0   | 22,513 | 0.0 | 0 / 960  | 30  | 19,589 | 0.2 | 1 / 960  | 1.00 |
| KCNJ11 | exon, sSNP      | rs8175351   | G | а | 156 | 8,671  | 1.8 | 17 / 960 | 116 | 5,137  | 2.3 | 22 / 960 | 0.52 |
| KCNJ11 | exon, sSNP      | rs5216      | С | g | 354 | 20,199 | 1.8 | 17 / 960 | 236 | 15,950 | 1.5 | 14 / 960 | 0.72 |
| KCNJ11 | exon, S385C     | rs41282930  | С | g | 29  | 8,663  | 0.3 | 3 / 960  | 33  | 5,138  | 0.6 | 6 / 960  | 0.51 |
| KCNJ11 | exon 1, sSNP    | ss119336648 | С | t | 23  | 17,326 | 0.1 | 1 / 960  | 3   | 16,339 | 0.0 | 0 / 960  | 1.00 |
| PTPN2  | intron 3        | ss107794699 | Т | с | 37  | 32,684 | 0.1 | 1 / 960  | 140 | 32,191 | 0.4 | 4 / 960  | 0.37 |
| PTPN2  | exon 9, G401C   | ss119336682 | G | t | 25  | 29,897 | 0.1 | 1 / 960  | 0   | 24,537 | 0.0 | 0 / 960  | 1.00 |
| PTPN2  | intron 4        | ss119336680 | G | а | 22  | 31,994 | 0.1 | 1 / 960  | 1   | 27,793 | 0.0 | 0 / 960  | 1.00 |
| PTPN2  | exon 3, S82G    | ss119336684 | А | g | 23  | 34,228 | 0.1 | 1 / 960  | 31  | 32,199 | 0.1 | 1 / 960  | 1.00 |
| PTPN2  | 3'UTR           | ss119336683 | Т | c | 1   | 41,335 | 0.0 | 0 / 960  | 39  | 37,203 | 0.1 | 1 / 960  | 1.00 |
| PTPN2  | exon 5, sSNP    | ss119336681 | А | g | 0   | 21,836 | 0.0 | 0 / 960  | 24  | 22,016 | 0.1 | 1 / 960  | 1.00 |
| PTPN2  | exon 2, sSNP    | ss119336679 | Т | c | 0   | 40,076 | 0.0 | 0 / 960  | 42  | 42,187 | 0.1 | 1 / 960  | 1.00 |
| PTPN22 | exon 10, R263Q  | rs33996649  | G | а | 517 | 34,506 | 1.5 | 14 / 960 | 744 | 41,689 | 1.8 | 17 / 960 | 0.72 |
| PTPN22 | intron 17       | rs34209542  | Т | c | 270 | 19,001 | 1.4 | 14 / 960 | 610 | 31,218 | 2.0 | 19 / 960 | 0.48 |
| PTPN22 | intron 20       | rs34639107  | Т | а | 311 | 31,289 | 1.0 | 10 / 960 | 267 | 35,866 | 0.7 | 7 / 960  | 0.63 |
| PTPN22 | exon 18, K750N, | ss107794704 | G | c | 96  | 23,006 | 0.4 | 4 / 960  | 55  | 30,137 | 0.2 | 2 / 960  | 0.69 |
| PTPN22 | intron 2        | ss107794700 | А | g | 92  | 27,317 | 0.3 | 3 / 960  | 71  | 27,158 | 0.3 | 3 / 960  | 1.00 |
| PTPN22 | exon 13, H370N  | ss107794702 | С | а | 79  | 35,655 | 0.2 | 2 / 960  | 91  | 34,995 | 0.3 | 2 / 960  | 1.00 |
| PTPN22 | exon 18, R748G  | ss119336709 | А | g | 30  | 23,086 | 0.1 | 1 / 960  | 0   | 30,142 | 0.0 | 0 / 960  | 1.00 |

| PTPN22 | exon 14, P622R | ss119336706 | С | g | 39 | 30,416 | 0.1 | 1 / 960 | 0   | 30,023 | 0.0 | 0 / 960 | 1.00 |
|--------|----------------|-------------|---|---|----|--------|-----|---------|-----|--------|-----|---------|------|
| PTPN22 | exon 10, R266W | ss107794701 | С | t | 37 | 34,122 | 0.1 | 1 / 960 | 77  | 41,656 | 0.2 | 2 / 960 | 1.00 |
| PTPN22 | intron 2       | ss119336687 | G | c | 28 | 27,321 | 0.1 | 1 / 960 | 0   | 27,175 | 0.0 | 0 / 960 | 1.00 |
| PTPN22 | intron 12      | ss119336699 | Т | а | 44 | 43,851 | 0.1 | 1 / 960 | 0   | 46,481 | 0.0 | 0 / 960 | 1.00 |
| PTPN22 | exon 13, sSNP  | ss119336704 | С | t | 34 | 34,025 | 0.1 | 1 / 960 | 1   | 37,000 | 0.0 | 0 / 960 | 1.00 |
| PTPN22 | exon 13, Q456E | ss107794703 | С | g | 46 | 46,035 | 0.1 | 1 / 960 | 113 | 39,778 | 0.3 | 3 / 960 | 0.62 |
| PTPN22 | exon 8, S201F  | ss119336693 | С | t | 33 | 38,841 | 0.1 | 1 / 960 | 4   | 36,915 | 0.0 | 0 / 960 | 1.00 |
| PTPN22 | exon 13, sSNP  | ss119336702 | Т | c | 37 | 44,688 | 0.1 | 1 / 960 | 52  | 39,805 | 0.1 | 1 / 960 | 1.00 |
| PTPN22 | exon 18, sSNP  | ss119336708 | А | g | 18 | 23,298 | 0.1 | 1 / 960 | 0   | 30,137 | 0.0 | 0 / 960 | 1.00 |
| PTPN22 | exon 1, sSNP   | ss119336685 | С | t | 26 | 36,361 | 0.1 | 1 / 960 | 1   | 29,375 | 0.0 | 0 / 960 | 1.00 |
| PTPN22 | intron 9       | ss119336695 | С | t | 25 | 37,403 | 0.1 | 1 / 960 | 1   | 33,773 | 0.0 | 0 / 960 | 1.00 |
| PTPN22 | exon 3, V71A   | ss119336688 | Т | c | 18 | 27,266 | 0.1 | 1 / 960 | 1   | 27,176 | 0.0 | 0 / 960 | 1.00 |
| PTPN22 | exon 13, S576C | ss119336705 | С | g | 21 | 34,054 | 0.1 | 1 / 960 | 0   | 37,011 | 0.0 | 0 / 960 | 1.00 |
| PTPN22 | intron 2       | ss119336686 | Т | c | 16 | 27,321 | 0.1 | 1 / 960 | 1   | 27,154 | 0.0 | 0 / 960 | 1.00 |
| PTPN22 | intron 5       | ss119336690 | А | g | 9  | 21,938 | 0.0 | 0 / 960 | 45  | 23,580 | 0.2 | 2 / 960 | 0.50 |
| PTPN22 | intron 6       | ss119336691 | G | а | 4  | 26,361 | 0.0 | 0 / 960 | 35  | 23,731 | 0.1 | 1 / 960 | 1.00 |
| PTPN22 | exon 15, I650M | ss119336707 | Т | g | 2  | 42,936 | 0.0 | 0 / 960 | 47  | 49,106 | 0.1 | 1 / 960 | 1.00 |
| PTPN22 | intron 12      | ss119336698 | G | c | 2  | 44,389 | 0.0 | 0 / 960 | 38  | 46,476 | 0.1 | 1 / 960 | 1.00 |
| PTPN22 | intron 8       | ss119336694 | А | g | 1  | 37,931 | 0.0 | 0 / 960 | 41  | 36,916 | 0.1 | 1 / 960 | 1.00 |
| PTPN22 | exon 13, sSNP  | ss119336700 | G | а | 1  | 43,200 | 0.0 | 0 / 960 | 45  | 41,549 | 0.1 | 1 / 960 | 1.00 |
| PTPN22 | exon 13, Y528C | ss119336703 | А | g | 0  | 41,180 | 0.0 | 0 / 960 | 86  | 39,031 | 0.2 | 2 / 960 | 0.50 |
| PTPN22 | intron 10      | ss119336696 | Т | g | 0  | 34,345 | 0.0 | 0 / 960 | 72  | 41,669 | 0.2 | 2 / 960 | 0.50 |
| PTPN22 | intron 3       | ss119336689 | А | c | 0  | 30,596 | 0.0 | 0 / 960 | 38  | 38,660 | 0.1 | 1 / 960 | 1.00 |
| PTPN22 | intron 10      | ss119336697 | G | c | 0  | 34,324 | 0.0 | 0 / 960 | 39  | 41,662 | 0.1 | 1 / 960 | 1.00 |
| PTPN22 | intron 7       | ss119336692 | Т | g | 0  | 36,547 | 0.0 | 0 / 960 | 32  | 37,816 | 0.1 | 1 / 960 | 1.00 |

| PTPN22 | exon 13, I444L | ss119336701 | А | t | 0  | 45,881 | 0.0 | 0 / 960 | 21 | 39,801 | 0.1 | 1 / 960 | 1.00 |
|--------|----------------|-------------|---|---|----|--------|-----|---------|----|--------|-----|---------|------|
| SH2B3  | exon 6, E400K  | ss107794706 | G | a | 91 | 22,702 | 0.4 | 4 / 960 | 12 | 20,262 | 0.1 | 1 / 960 | 0.37 |
| SH2B3  | exon 8, N537D  | ss119336716 | А | g | 34 | 23,588 | 0.1 | 1 / 960 | 0  | 16,442 | 0.0 | 0 / 960 | 1.00 |
| SH2B3  | exon 8, L476F  | ss119336715 | С | t | 32 | 25,029 | 0.1 | 1 / 960 | 4  | 19,587 | 0.0 | 0 / 960 | 1.00 |
| SH2B3  | intron 5       | ss119336711 | Т | c | 31 | 35,146 | 0.1 | 1 / 960 | 34 | 30,675 | 0.1 | 1 / 960 | 1.00 |
| SH2B3  | exon 8, R566W  | ss107794689 | С | t | 9  | 23,704 | 0.0 | 0 / 960 | 51 | 16,433 | 0.3 | 3 / 960 | 0.25 |
| SH2B3  | exon 7, sSNP   | ss119336714 | С | t | 8  | 33,433 | 0.0 | 0 / 960 | 29 | 25,318 | 0.1 | 1 / 960 | 1.00 |
| SH2B3  | intron 5       | ss119336712 | С | t | 4  | 33,908 | 0.0 | 0 / 960 | 36 | 30,673 | 0.1 | 1 / 960 | 1.00 |
| SH2B3  | exon 7, A453T  | ss119336713 | G | а | 3  | 33,446 | 0.0 | 0 / 960 | 24 | 25,314 | 0.1 | 1 / 960 | 1.00 |
| SH2B3  | exon 5, sSNP   | ss119336710 | С | t | 3  | 36,726 | 0.0 | 0 / 960 | 24 | 30,659 | 0.1 | 1 / 960 | 1.00 |

| SNP         | Allele <sup>a</sup> |          |       |      |     |     | Cas | se - co | ntrol study |                          |                              |
|-------------|---------------------|----------|-------|------|-----|-----|-----|---------|-------------|--------------------------|------------------------------|
|             | 1>2                 |          | 11    | (%)  | 12  | (%) | 22  | (%)     | MAF,%       | OR (95% CI) <sup>b</sup> | <i>P</i> -value <sup>c</sup> |
| ss107794687 | C>T                 | T1D      | 6,291 | 95.7 | 279 | 4.2 | 6   | 0.09    | 2.2         | 1.01                     | 0.89                         |
| Intron 11   |                     | Controls | 6,299 | 95.7 | 280 | 4.3 | 4   | 0.06    | 2.2         | (0.86-1.19)              |                              |
| ss107794688 | C>T                 | T1D      | 7,248 | 96.6 | 253 | 3.4 | 2   | 0.03    | 1.7         | 0.88                     | 0.13                         |
| Intron 23   |                     | Controls | 7,034 | 96.2 | 273 | 3.7 | 6   | 0.08    | 2.0         | (0.74-1.04)              |                              |

Table S4. Association analysis of the two rare intronic CLEC16A SNPs in T1D patients and controls from Great Britain

a – Major allele is coded 1, minor allele is coded 2

b - Odds ratios (OR) for minor (rarer) alleles are shown

c-two-tailed *P*-value were calculated using logistic regression

|                        | Allele <sup>a</sup> |          |        |        |              | Case - contr | ol study |               |                              |        | Family stud              | у                            | Combined                |
|------------------------|---------------------|----------|--------|--------|--------------|--------------|----------|---------------|------------------------------|--------|--------------------------|------------------------------|-------------------------|
|                        | 1>2                 |          | 11     | (%)    | 12(%)        | 22(%)        | MAF,%    | OR (95% CI) b | <i>P</i> -value <sup>c</sup> | T/NT   | RR (95% CI) <sup>b</sup> | <i>P</i> -value <sup>d</sup> | P-value <sup>e</sup>    |
| Rare polymorphisms     |                     |          |        |        |              |              |          |               |                              |        |                          |                              |                         |
| rs35667974/Ile923Val   | A>G                 | T1D      | 7,853  | (97.8) | 172 (2.1)    | 3 (0.04)     | 1.1      | 0.51          | 1.3 x 10 <sup>-14</sup>      | 67/    | 0.60                     | 5.9 x 10 <sup>-4</sup>       | 2.1 x 10 <sup>-16</sup> |
| Exon 14                |                     | Controls | 9,166  | (95.7) | 404 (4.2)    | 4 (0.04)     | 2.2      | (0.43-0.61)   |                              | 111    | (0.45-0.82)              |                              |                         |
| rs35337543/IVS8+1      | G>C                 | T1D      | 7,945  | (98.0) | 163 (2.0)    | 0 (0.0)      | 1.0      | 0.68          | 1.1 x 10 <sup>-4</sup>       | 51/    | 0.85                     | 0.20                         | 1.4 x 10 <sup>-4</sup>  |
| Intron 8, splice site  |                     | Controls | 9,330  | (97.1) | 280(2.9)     | 0(0.0)       | 1.5      | (0.56-0.83)   |                              | 60     | (0.59-1.23)              |                              |                         |
| rs35744605/Glu627X     | G>T                 | T1D      | 8,109  | (99.1) | 76(0.9)      | 0(0.0)       | 0.46     | 0.69          | 9.0 x 10 <sup>-3</sup>       | 17/    | 0.55                     | 2.8 x 10 <sup>-2</sup>       | 1.3 x 10 <sup>-3</sup>  |
| Exon10                 |                     | Controls | 9,621  | (98.7) | 131(1.3)     | 0(0.0)       | 0.67     | (0.52-0.91)   |                              | 31     | (0.30-0.99)              |                              |                         |
| rs35732034/IVS14+1     | G>A                 | T1D      | 8,047  | (98.6) | 109(1.3)     | 2 (0.03)     | 0.69     | 0.74          | 1.2 x 10 <sup>-2</sup>       | 35/    | 0.63                     | 2.1 x 10 <sup>-2</sup>       | 1.1 x 10 <sup>-3</sup>  |
| Intron 14, splice site |                     | Controls | 9,552  | (98.1) | 180(1.9)     | 1 (0.01)     | 0.93     | (0.59-0.94)   |                              | 56     | (0.41-0.95)              |                              |                         |
| ss107794690/Thr702Ile  | C>T                 | T1D      | 8,064  | (99.4) | 46(0.6)      | 1 (0.01)     | 0.30     | 0.89          | 0.52                         | not    | tested                   |                              |                         |
| Exon 11                |                     | Controls | 9,655  | (99.3) | 65(0.7)      | 0(0.0)       | 0.33     | (0.61-1.28)   |                              |        |                          |                              |                         |
| ss107794691/Lys349Arg  | A>G                 | T1D      | 8,081  | (99.5) | 42(0.5)      | 0(0.0)       | 0.26     | 1.23          | 0.35                         | not    | tested                   |                              |                         |
| Exon 5                 |                     | Controls | 9,674  | (99.6) | 41 (0.4)     | 0(0.0)       | 0.21     | (0.80-1.89)   |                              |        |                          |                              |                         |
| rs10930046/His460Arg   | A>G                 | T1D      | 8,159  | (97.6) | 195 (2.3)    | 2 (0.02)     | 1.2      | 1.20          | 0.062                        | not    | tested                   |                              |                         |
| Exon 7                 |                     | Controls | 10,302 | (98.0) | 206(2.0)     | 1 (0.01)     | 1.0      | (0.99-1.46)   |                              |        |                          |                              |                         |
| Common polymorphisms   | _                   |          |        |        |              |              |          |               |                              |        |                          |                              |                         |
| rs3747517/Arg843His    | G>A                 | T1D      | 4,720  | (56.3) | 3,120 (37.2) | 539(6.4)     | 25.1     | 0.87          | 7.1 x 10 <sup>-10</sup>      | not    | tested                   |                              |                         |
| Exon 13                |                     | Controls | 5,519  | (52.2) | 4,216(39.9)  | 840(7.9)     | 27.9     | (0.83-0.91)   |                              |        |                          |                              |                         |
| rs1990760/Thr946Ala    | A>G                 | T1D      | 3,280  | (42.3) | 3,502(45.1)  | 977 (12.6)   | 35.2     | 0.86          | $2.3 \times 10^{-14}$        | 1,219/ | 0.87                     | $2.6 \times 10^{-4}$         | 9.5 x 10 <sup>-17</sup> |
| Exon 15                |                     | Controls | 3,789  | (37.2) | 4,813 (47.3) | 1,573 (15.5) | 39.1     | (0.81-0.88)   |                              | 1,395  | (0.81-0.94)              |                              |                         |

Table S5. Association analysis of the *IFIH1* polymorphisms in T1D patients and controls and in families comprising one or more offspring with T1D and their parents

a – Major allele is coded 1, minor allele is coded 2

b - Odds ratios (OR) and relative risks (RR) for minor (rarer) alleles are shown

c – two-tailed P-values were calculated using logistic regression

d - one-tailed P-values were calculated using transmission disequilibrium test with robust variance estimates

- e combined *P*-values for the case-control and family data were calculated using a score test as described previously (26)
- 95% CI 95% confidence interval, MAF minor allele frequency, T/NT- number of alleles transmitted and non-transmitted to the affected offspring

Table S6. Testing independence of T1D association of the four rare *IFIH1* variants and the common rs1990760/Thr946Ala SNP Logistic regression analyses in the case-control dataset and conditional logistic regression analyses in the affected families were done to test whether T1D association of the four rare *IFIH1* variants is independent of the common rs1990760/Thr946Ala SNP. Note that adding each of the four rare variants significantly improves the model of T1D association for the rs1990760/Thr946Ala polymorphism in all tests, apart from the rs35337543/IVS8+1 in the families. The most likely reason for no effect of rs35337543/IVS8+1 in the families is lack of statistical power: for example, this variant was not polymorphic in 1,129 Finnish families that substantially contributed to our family dataset.

| SNP                  | Frequency (UK), % | P (case-control)       | P (families) |
|----------------------|-------------------|------------------------|--------------|
| rs35667974/Ile923Val | 2.2               | 4.1 x 10 <sup>-9</sup> | 0.0063       |
| rs35337543/IVS8+1    | 1.5               | 0.00019                | 0.82         |
| rs35744605/Glu627X   | 0.67              | 0.0031                 | 0.0068       |
| rs35732034/IVS14+1   | 0.93              | 0.0072                 | 0.0090       |
| rs1990760/Thr946Ala  | 39.1              | -                      | -            |

# **References for the Supporting Online material**

- S1. D. Smyth *et al.*, *Diabetes* **53**, 3020 (2004).
- S2. H. J. Cordell, D. G. Clayton, *Am J Hum Genet* **70**, 124 (2002).
- S3. R. S. Spielman, R. E. McGinnis, W. J. Ewens, *Am J Hum Genet* **52**, 506 (1993).
- S4. J. C. Barrett, B. Fry, J. Maller, M. J. Daly, *Bioinformatics* **21**, 263 (2005).