Supporting Information

Olm et al. 10.1073/pnas.0902204106

<

Fig. S1. Cytotoxicity of redox-active selenocompounds is inhibited by DTNB and MSG. (A) H157 cells treated with seleno-L-cystine (10 μ M) and in combination with DTNB (500 μ M) or MSG (60 μ M). (B) H157 cells treated with GSSeSG (3 μ M) and in combination with DTNB (500 μ M) or MSG (60 μ M). ***P < .001 in relation to treatment with selenocompounds.

Fig. S2. Hepatoma and neuroblastoma cells display similar patterns in response to selenite compared with lung cancer cells when extracellular redox state or x_c ystine antiporter activity is modulated. Viability was measured by XTT in HUH7 hepatoma or SH5YSH neuroblastoma cells treated with 5 μ M selenite for 20 h. TCEP (75 μ M) was used as an extracellular reductant, and DTNB (500 μ M) was used as an extracellular thiol scavenger. MSG (60 mM) was used as an inhibitor of the x_c cystine/glutamate antiporter. TCEP (75 μ M) with MSG was used as an extracellular thiol impact control. Error bars display \pm 0.95 confidence intervals. ***(xxx)P < .001, *in relation to selenite, *in relation to selenite + MSG.

DN A C

Table S1. Selenite sensitivity and selenium uptake by human lung cancer cell

PNAS PNAS

Cell line	Туре	IC-50 selenite, μM	Selenium uptake, ng/mg total protein
H157	Non-small cell lung carcinoma	4	280 ± 6
U2020	Small cell lung carcinoma	6	60 ± 9
H611	Non-small cell lung carcinoma	22	NA (<10)