Supplementary Figure 1: Bulky tags stabilise NGN on N- and C-termini therefore N-terminal blocking may be attempted using cotranslational acetylation.

(A) Degradation assays in interphase egg extract were performed using NGN, N- or C-terminally Myc-tagged (MT) NGN, as indicated, or NeuroD and analysed by autoradiography (left panels) and quantitative phosphorimage analysis (right graphs). Half-lives for degradation were calculated using first-order kinetics (table).

(B) Acetylation mutant description and prediction of cotranslational acetylation using the online prediction tool Terminator (http://www.isv.cnrs-gif.fr/Terminator)

Supplementary Figure 2: NGN is degraded in an N-terminal-dependent manner through polyubiquitination.

(A) Degradation assays in interphase egg extract were performed using NGNKO, or the N-terminus deletion mutant $\Delta 1$ -20NGNKO and analysed by autoradiography (left panels) and quantitative phosphorimage analysis (right graph). Half-lives for degradation were calculated using first-order kinetics (table).

(B) Degradation assays in interphase egg extract were performed using NGNKO, the N-terminal ubiquitin fusion UbNGNKO and the N-terminal lysineless ubiquitin fusion UbKONGNKO and analysed by autoradiography (left panels) and quantitative phosphorimage analysis (right graph). Half-lives for degradation were calculated using first-order kinetics (table).

Supplementary Figure 3: Single lysine mutants of NGN do not significantly affect NGN protein stability. Degradation assays were performed in interphase egg extract using the single lysine mutants, as indicated. Half-lives for degradation calculated using first-order kinetics. Errors were calculated as the standard error of the mean from a triplicate data set.

SUPPLEMENTARY FIGURE 1

А

В

Construct	N-terminal sequence (first 20 amino acids)	Predicted N- terminus of the mature protein	Likelihood (%)
NGN	MVLLKCEYRDEEEDLTSASP	V	90
Ac1NGN	MSESKCEYRDEEEDLTSASP	Ac-S	85
Ac2NGN	MAESKCEYRDEEEDLTSASP	Ac-A	74
Ac3NGN	MPLLKCEYRDEEEDLTSASP	Р	100

.

SUPPLEMENTARY FIGURE 2

45.3 +/- 4 min	
63.4 +/- 4.4 min	

В

Half life	
22.5 +/- 1.2 min	
10.5 +/- 1 min	
110.8 +/- 10.7 min	

SUPPLEMENTARY FIGURE 3

