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A.  Construction of length-matched background sets against which foreground gene 

sets are evaluated in Lever 

The following procedure is similar to the procedure we described previously in a 

Drosophila context1. We first ordered the search regions in each gene set by length. We 

defined the “foreground regions” to be those regions upstream and downstream of the 

genes that belong to a given foreground Gene Set, and we defined the “non-foreground 

regions” to be the collection of all other regions (i.e., regions not upstream or 

downstream of genes that belong to a given foreground Gene Set). For each foreground 

region, we took the 2 non-foreground regions occurring directly above and below it in the 

length-based ranking as background regions. In the event that two or more foreground 

regions did not have background regions ranked between them, we continued to extend 

above and below them in the ranking so that the center of this local collection of 

background regions was the same as the center of their associated foreground regions. 

Hence, for each foreground region, we were able to initially associate 2 length-matched 

background regions. We measured the AUC statistic for the lengths of the foreground and 

the background gene regions accumulated thus far and repeated the procedure of adding 

more non-foreground regions to the background set of gene regions until this AUC was 

close to 0.5, and until the background set was at least 10 times as large (and up to 40 

times as large) as the foreground set, so that the distribution of the lengths of the 

foreground set of gene regions is similar to that of the background set of gene regions. 

The “PhylCRM_preprocess” program that generates the length-matched background sets 

of gene regions has a user-defined tolerance for what “close” means; in this study, we 

employed a tolerance of ± 0.02, i.e., for all foreground and background gene sets 
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considered in this paper, we required an AUC between 0.48 and 0.52 when ranking the 

foreground and background genes according to their lengths (AUC = 0.5 implies no 

difference between the distribution of lengths of foreground genes and that of the 

background genes). 
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B. Description of PhylCRM scoring scheme 

The increasing number of sequenced genomes provides the opportunity for improved 

identification of regulatory regions by scanning for noncoding loci under negative 

selective pressure. To accomplish this, the evolutionary conservation must be scored in a 

way that the evolutionary history of the organisms is appropriately quantified; 

conservation of a locus between species sharing a recent ancestor should be weighted less 

than conservation between species that diverged long ago.  

 

1.  Scoring scheme and algorithm, one motif 

In this section, we develop the scoring scheme for the case of only of one motif; in 

Section 2 we extend the scoring scheme to incorporate multiple motifs.   

 

We begin with some notation.  Given a base sequence g of length L from the genome 

being searched for TF binding site motif matches, let a(i), i∈{1,..,n} denote the sequences 

aligned to g from each of the n organisms under consideration.  We use (gj…gj+k-1) to 

denote the subsequence of g beginning at position j and of length k, and we use 

( ) ( )( )i
kj

i
j aa 1−+Κ  to denote the corresponding subsequence in the i’th alignment to g.  

Similarly, let H denote the (n + 1) × |L|-dimensional matrix storing both g and the a(i); 

thus, •,0H  = g, •,iH  = a(i), and jH ,• denotes the alignment column at position j (note that 

the • is used here to denote the collection of all values for that index position; see 

Supplementary Fig. 1a online).  Finally, let T be the tree indicating the phylogeny of g 

and the a(i), let {vδ} denote the ancestral vertices in T, and let {τε} denote the branch 

lengths (see Supplementary Fig. 1b online).   
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For a given TF binding site motif of length m, let M(α,j) be the 4×m matrix indicating the 

probability of observing the letter α ∈ {A,C,G,T} at position  j = 1,..,m of the motif (i.e., 

M is the frequency-derived probability matrix2), and let Q(α) denote the genomic 

frequency of letter α.  For each position j∈{1,…,L} of g, we evaluate the degree to which 

(gj,…gj+m-1) matches M with the quantity2: 

Eqn. 1)  
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This quantity is the commonly used position weight matrix score2.  If λ(j) is greater than 

a user-specified cutoff c, which is usually set to 1 or 2 standard deviations below the 

motif mean for the standard likelihood ratio score of the PWM model M and the genomic 

frequencies given by Q, we evaluate the degree to which this motif match is conserved 

throughout the phylogeny using an evolutionary model first suggested by Halpern and 

Bruno3 and developed by Moses, Eisen and colleagues4,5 (henceforth referred to as the 

MEHB model).  In their approach, the degree of evolutionary conservation for the match 

to the TF binding site motif is scored by taking the log-likelihood ratio of observing the 

given collection of sequences throughout the phylogeny under the MEHB model as 

compared to a neutral model of evolutionary change: 

Eqn. 2)  
( )

( )∑
−+

= •

•

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

1

,

,
2 ,

,,
log)(

mj

jk kneutral

kMEHB

QTHP

QMTHP
jϕ  – c 

Here, ( )QMTHP kMEHB ,,,•  represents the probability of observing kH ,• under the 

evolutionary model where nucleotide substitutions occur along T with a frequency 

specified by the MEHB proportionality (i.e., with fewer changes expected at the most 
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conserved positions of the motif; see Supplementary Fig. 1c online), and 

( )QTHP kneutral ,,•  represents the probability of observing kH ,• under a neutral evolutionary 

model (either Jukes-Cantor6 or Hasegawa-Kishino-Yano7).  We have schematized how 

these probabilities are computed for a small phylogenetic tree in Supplementary Fig. 1c 

online.   

 

Let ξ be an array of length L (i.e., the same length as g) and initialized so that, for all j, 

ξ(j) = 0.  When a match to the motif M is made (i.e., λ(j) > c) in g beginning at position j, 

then, for k = j,.., j+m–1, ξ is updated according to: 

Eqn. 3)  ( ) ( )( )kmjk ξϕξ ,/)(max=  

Here, the max is taken so that, in the event of overlapping motif matches, both matches 

contribute to the score, but there is no double-counting of scores. This rationale is 

schematized in Supplementary Fig. 1d online, where ξ(j) is schematized for a sequence 

g and motif M.   Note that we shall refer to quantity ξ (j) as the “positional score for M” 

at j. 

 

We wish to find sub-windows of the base sequence g that have a statistically significant 

over-representation of high-scoring matches to M.  We do this by deriving the probability 

distribution function of the sub-windows of a fixed size within an a priori specified size 

range that best fits our data. We then use this probability distribution function in order to 

evaluate the enrichment of better scoring sub-windows of this size as compared to a given 

query sub-window under consideration. We also use the derived probability distribution 
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functions in order to combine the scores from several motifs of interest in the Fuzzy 

Boolean logic framework (see Section 3. below). 

 

Specifically, for each window size we derive the shape and the parameters of the null 

distribution.  This is done by fitting a mixture model of three probability distribution 

functions – Delta, Uniform and Gamma – on a collection of sequences gb of total length 

Lb that are believed not to be enriched for matches to motif M (we henceforth refer to this 

as the “background” sequence).  Briefly, the Delta function is used to model the jump in 

score that occurs when a window of genomic sequence contains the initial portion of a 

motif at its left-most or right-most edge; the Uniform distribution is used to model the 

increase in score that occurs as the window contains an increasingly greater portion of the 

motif at either of its edges; finally, the Gamma distribution is then used for the bulk of 

the distribution to model an increasing number of binding sites and their evolutionary 

conservation. 

 

Let wj be a window of sequence in g of length |w| and beginning at position j; we wish to 

evaluate whether this window is enriched for instances of M.  Consider the following 

quantity: 

Eqn. 4)  ( ) ( )∑
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For a motif M and fixed a priori window size |w|, we wish to model the distribution of 

scores ( ) ( )∑
−+

=

=Ξ
1

'
'

wj

jj
j jw ξ  under the null hypothesis of no motif enrichment. We shall refer 

to Ξ(wj) as the “window score” of wj and, for a given window wj, we shall determine 
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whether Ξ(wj) is statistically significantly large by estimating the p-value with respect to 

the modeled distribution at Ξ(wj).  

 

In order to see how well the window scores Ξ(wj) are modeled by this mixture of three 

distributions, we considered the four motifs utilized in this paper: MRF, MEF2, SRF and 

Tead (see Supplementary Fig. 2 online).  For this analysis we utilized the foreground 

and background 75-kb regions shown in Supplementary Fig. 4 online, where the 

foreground sequences contain a collection of 27 CRMs known to drive expression in 

muscle and background regions are a collection of 1,080 75-kb regions surrounding 

genes that were not up- or down-regulated during our time-course analysis of 

myogenesis.  In Supplementary Fig. 2 online, we have plotted the empirical distribution 

of Ξ(w100) (blue curve) for each of these four motifs, as well as the fitted mixture model 

(red curve). As can be seen, the match between the fitted and empirical curves is very 

precise (we note that the fit for Tead is somewhat worse, as it is an infrequently occurring 

motif, and there are thus very few windows of genomic sequence comprising the right tail 

of the empirical distribution).  

 

We then define the “output score” for the window to be the negative-log of its 

corresponding p-value: 

Eqn. 5)  output score = –log10P(Ξ(w)). 
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In Supplementary Fig. 2 online, we have plotted the empirical output score (blue curve) 

for each of the four motifs mentioned above, as well as the output score from the fitted 

mixture model (red curve). 

 

Finally, there are two related technical issues that must be addressed in building the array  

of positional scores ξ.  First, due to the difficulties in aligning distant genomes, as well as 

the presence of sequencing gaps resulting from a genome being incompletely sequenced, 

there may not be any alignment to g at position j in genome a(i).  Thus, it is not clear how 

to evaluate Eqn. 2 in the presence of such missing data.  Second, there is the possibility 

that a binding site may be truly present in g but lost (due to evolution) in a(i), particularly 

if a(i) and g are greatly diverged. In such a situation, it is possible that the quantity ϕ of 

Eqn. 2 will be negative, which is undesirable since it is reasonable to assume that 

observing the presence of a motif match in a window wj should increase (not decrease) 

the window score Ξ(wj), even if this match is not well-conserved. We handle these issues 

in a similar fashion by restricting to an appropriate sub-tree of the original tree.  In the 

first scenario, the branches corresponding to genomes with missing alignments are 

removed; in the second scenario, any binding sites not scoring above the user-specified 

cutoff for determining a motif match are removed (Supplementary Fig. 1e online).  We 

note, however, that for the second scenario it is also possible to run the program so that 

the entire phylogeny for which alignments are available is considered, even if there is not 

a motif match in some genomes (such a mode might be used, for example, in attempting 

to identify exclusively those TF binding sites conserved throughout the phylogeny, as 

was done in the original work by Moses et al.5).  
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2. Flexible scoring scheme and algorithm, multiple motifs 

In this section, we assume the case of multiple motifs Mn, n=1,..,N. Let ξn(j) hold the 

positional scores of motif  Mn. We desire a means of measuring whether a given window 

wj is enriched for motif matches. We allow flexibility in the scoring scheme by allowing 

the user to address the situation of potentially overlapping motifs (refer to the “-

DEOVERLAP” option in the algorithms).  A naïve approach would be to first define the 

array: 

Eqn. 6)   ( ) ( ){ }jj nn ξξ maxˆ = . 

The score for a window wj could then be obtained by calculating the significance of: 

Eqn. 7)   ( ) ( )∑
−+

=

=Ξ
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'

'ˆˆ
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jj
j jw ξ . 

This method has the advantage of appropriately handling overlapping motifs.  

Unfortunately, it has the disadvantage that the behavior of the score is dominated by the 

degree of enrichment for the most frequently occurring motifs.  For example, assuming 

similar degrees of degeneracy, a motif of width 6 occurs more than twice as frequently as 

a motif of width 12, but the contribution of each match of the 6-mer motif to Ξ̂  is half 

that of the motif of width 12. 

 

Therefore, we describe an alternative means of scoring multiple motifs when the “-

DEOVERLAP” option is specified (which is the option we employed in this Warner et 

al. paper).  First, define: 
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Eqn. 8)   
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Similar to the case of one motif, this step removes the possibility that the score for 

different motifs could be double-counted at position j, but also ensures that each position 

receives the score of the motif that best matches it.  We shall refer to the nξ~  as the “de-

overlapped” positional score; this de-overlapping step is schematized in Supplementary 

Fig. 3a online.  The de-overlapping step is also performed for the background sequences 

gb.   

 

From now on, let ( )jn wΞ~  be the window score of wj (with or without the “-

DEOVERLAP” option specified), and let ( )||;~ wnn Ξγ  be the corresponding mixture 

distribution of scores nΞ~  (see Eqn. 7) for a motif Mn for a given window length || w  

under the null hypothesis of no enrichment.   

 

3. Combinations of several motifs in Fuzzy logic framework 

We wish to utilize the mixture distributions ( )||;~ wnn Ξγ  for a motif Mn in order to 

determine the statistical significance of observing a given degree of clustering and 

evolutionary conservation for the set of motifs.  In the case of one motif, this computation 

was straightforward, as the statistical significance was directly obtainable from the tail of 

the appropriate mixture of Delta, Uniform and Gamma distributions.  For many motifs 

we have developed a rich vocabulary of scoring schemes, in order to model the 

combinatorial interactions between the TFs under consideration.  
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For simplicity, take the case of two motifs Mn and Mm.  It is possible to calculate 

statistical significance using a “restrictively-defined tail” (Supplementary Fig. 3b 

online): 

Eqn. 9)           ( ) ( ) ( ) ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ ΞΞ⎟

⎠
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∞
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Ξ mn
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(note: ( )mnP ΞΞ ~,~  does not refer to the joint distribution of the random variables nΞ~ and 

mΞ~ ). 

We take the “output score” to be ( ) ( )( ) ( )( ) ( )( )mmnnmmnn PPPP Ξ−Ξ−=ΞΞ− ~log~log~.~log ,  and 

so the output score is additive in the number of motifs.  Hence, a given window can 

achieve significance if it is greatly enriched for matches to either motif one or motif two 

(OR combination).   

 

Conversely, it is also possible to calculate statistical significance of a combination of 

distributions using a “generously defined tail” (Supplementary Fig. 3c online): 

Eqn. 10)              
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Here, if 0~ =Ξn  (the window score is zero), then ( ) 1~ =ΞnnP and so ( ) 1~,~ =ΞΞ mnP  and so 

the window score ( )( ) 0~,~log =ΞΞ− mnP  (and similarly for the case where 0~ =Ξm ).  Thus, 

using this tail, a window must be enriched for both motifs (AND combination) under 

consideration in order to be statistically significant. 
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Finally, it is possible to define the combination of the distributions in more complicated 

ways.  For example, the following combination would assign a high score to windows of 

sequence that are enriched for the first motif but specifically not enriched for the second 

(NOT combination; Supplementary Fig. 3d online): 

Eqn. 11)            
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The cases we have described, Eqns. 9-11, can be thought of as Fuzzy logic rules for the 

discrete Boolean logical functions (Mn OR Mm), (Mn AND Mm), and (Mn AND NOT Mm).   

In general, we define the “output score” for a Fuzzy logic combination of multiple motifs 

to be the negative-log of the corresponding P (see Eqns 9-11): 

Eqn. 12)  output score = ( )( )mnP ΞΞ− ~,~log10 . 

 

We have implemented PhylCRM so that a variety of different tails are possible, in order 

to allow the evaluation of a more nuanced view of cis regulatory logic.  A summary of all 

Fuzzy logic combinations considered is listed below: 

a.  OR combinations of arbitrarily many motifs 

b.  AND combinations of arbitrarily many motifs 

c.  The following four classes of compound combinations involving up to 4 

motifs: 

  1)  (M1 AND NOT M2)  (two motifs) 

  2)  ((M1 AND M2) OR M3)  (three motifs) 

  3)  ((M1 OR M2) AND M3)  (three motifs) 
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  4)  ((M1 AND M2) AND NOT M3)  (three motifs) 

  5)  ((M1 AND M2 AND M3) AND NOT M4)  (four motifs) 

Thus, if one would like to find CRMs enriched for any subset of the motifs under 

consideration, the OR mode is more appropriate; conversely, if one wishes to specifically 

identify CRMs enriched for matches to all the motifs under consideration, the AND mode 

is more appropriate. 
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C.  Evaluation of ability of PhylCRM to identify CRMs 

We obtained a phylogenetic tree of 11 vertebrate genomes from the ENCODE multiple 

sequence alignment working group8 (Supplementary Figure 4a online) and a set of 27 

CRMs previously compiled by Wasserman et al.9 that are known to drive expression in 

muscle and to be regulated by at least one of the four well known myogenic TFs: a) 

MEF2, b) Serum Response Factor (SRF), c) Tead, and d) the myogenic regulatory factors 

(MRFs) MyoD, Myogenin, Myf5 and Myf6 (note that the motifs for the MRFs are 

currently indistinguishable and thus are encompassed by a single, general MRF motif)9. 

Here, we examined windows ranging between 50 and 500 bp (increment size of 50 bp), 

and utilized the phylogenetic tree derived by the ENCODE multiple sequence alignment 

working group8. The tree is input to PhylCRM in Newick format: 

(((((((human:0.006690,chimp:0.007571):0.024272, 

macaque:0.059256):0.107134,(mouse:0.077017,rat:0.081728):0.252613):0.023026,(dog:

0.147731,cow:0.159182):0.03945):0.262899,opossum:0.371073):0.189124,chicken:0.454

691):0.279364,(fugu:0.732855,zebrafish:0.782561):0.156067) 

The versions of the genomes that we used are: 

• human (hg 17) 

• chimp (Nov 2003, panTro1) 

• macaque (Jan 2006, rheMac2) 

• mouse (May 2004, mm7) 

• rat (Jun 2003, rn3) 

• dog (May 2005, canFam2) 

• cow (Mar 2005, bosTau2) 
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• opossum (Jun 2005, monDom2) 

• chicken (Feb 2004, galGal2) 

• zebrafish (May 2005, danRer3) 

• Fugu (Aug 2002, fr1) 

 

We compiled a “foreground” human gene set consisting of the 75-kb sequence regions 

surrounding each of these 27 known CRMs, and also a length-matched random 

“background” set of genomic regions not believed to contain muscle CRMs. We first 

masked out any coding regions and repetitive elements, and then searched the foreground 

and background gene sets with PhylCRM in order to identify windows of sequence 

significantly enriched for clusters of high-scoring, evolutionarily conserved matches to 

these four myogenic motifs. We assigned to each foreground and background region the 

score of its highest scoring PhylCRM window ranging between 10 bp and 500 bp, and 

then determined whether the foreground gene set scored higher than the background gene 

set by evaluating the AUC. 

 

Without the use of phylogenetic conservation, we observed statistically significant 

enrichment for these motifs within this positive control foreground gene set (AUC = 0.64 

± 0.05; P < 0.01 calculated by the Wilcoxon-Mann-Whitney10 (WMW) statistic; 

Supplementary Figure 4b online). When utilizing all 11 available vertebrate genomes, 

the degree of foreground enrichment increased significantly (AUC = 0.81 ± 0.05; P < 10-7 

by WMW; Supplementary Figure 4c online), demonstrating that the use of evolutionary 

conservation can increase discriminatory power.  



 
 

 17

 

Next, we evaluated whether the use of a subset of species in PhylCRM might yield higher 

foreground enrichment than the use of all available vertebrate genomes for this positive 

control set of myogenic CRMs. To evaluate such subsets, we systematically added those 

branches extending from each preceding common ancestor of human (Supplementary 

Figure 4d online). We observed the greatest degree of enrichment when using all 

available vertebrate genomes except those of chicken, pufferfish and zebrafish (AUC = 

0.82 ± 0.05; P < 10-8 by WMW), indicating that a judicious choice of sub-tree could yield 

improved performance. Finally, as a negative control we scanned the foreground and 

background regions with a permuted form of the four considered motifs and observed no 

enrichment (AUC = 0.41 ± 0.06; P > 0.05 by WMW; Supplementary Figure 4e online). 

 

From this analysis, we concluded that PhylCRM can detect enrichment of motifs within 

75-kb regions of genomic sequence within an appropriate gene set, and that the utilization 

of many aligned genomes increases the power of PhylCRM. 



 
 

 18

D.  Comparison of PhylCRM to other CRM prediction methods 

There are many available computational tools for CRM identification, and a full 

comparison of PhylCRM against each of them is beyond the scope of this present study.  

Therefore, we have selected two computational tools against which to compare 

PhylCRM, as they have similar goals of taking as input a collection of TF binding site 

motifs and outputting target CRMs. 

 

We compared the performance of PhylCRM to two other algorithms: Comet (which 

utilizes a hidden Markov model (HMM) based approach and does not utilize information 

on the evolutionary conservation of the TF binding site motifs) and Stubb (which also 

utilizes an HMM-based approach and incorporates information on evolutionary 

conservation across up to two species of interest – one base genome plus one alignment 

genome). We selected two data sets for comparison: 1) the collection of 27 known 

muscle CRMs previously compiled by Wasserman et al.9 (the results of PhylCRM 

analysis for this collection of CRMs is shown in Supplementary Fig. 4 online), and 2) 

the collection of “sarcomeric genes” highlighted in Fig. 3 and Supplementary Fig. 6. 

Thus, these were the two sequence sets that were most carefully examined in this paper.   

 

First, we took as a “foreground” set of sequences the 27 75-kb regions containing each of 

the known muscle CRMs (i.e., we considered the 75-kb regions within which the CRMs 

were located) as well as a length-matched background set of sequences (data #1). Next, 

we took as a “foreground” set of sequences the set of the 75-kb regions around 

transcription start of the 46 known sarcomeric genes, as well as a length-matched set of 
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background sequences (data #2).  Because of computational limitations of the Stubb 

algorithm in handling large amounts of sequence, we had to reduce the size of the 

background data sets from what we used to generate the results shown in the main body 

of this paper (in this comparison, we used the same background to evaluate the results 

from all three programs – PhylCRM, Comet, and Stubb – in order to ensure that they 

were compared in a fair and systematic way). Consequently, the performance of 

PhylCRM shown below is slightly different from the results shown in Supplementary 

Figure 4 online.  

 

We ran the three programs by varying the input parameters in order to obtain the best 

performance from each program.  We compared Comet, PhylCRM and Stubb by utilizing 

the same measure of performance as that utilized in the main text, namely, the AUC 

statistic that indicates the degree to which foreground sequences are ranked higher than 

background sequences (see the table below for a summary of the results).  First, we 

observed that when no phylogeny was utilized the performance of PhylCRM on data #1 

was AUC = 0.70 ± 0.06 (error represents 1 standard deviation determined by applying 

bootstrap) (P < 10-3); this is within the margin of error of the performance observed for 

Comet (AUC = 0.70 ± 0.05, P < 10-4) and for Stubb (AUC = 0.68 ± 0.05, P < 10-3) on 

data #1.  On the sarcomeric gene set (data #2), without utilizing phylogeny, PhylCRM 

(AUC = 0.64 ± 0.05, P < 10-2) was within the margin of error of Comet (AUC = 0.60 ± 

0.05, P > 0.01), but better than Stubb (AUC = 0.49 ± 0.05, P > 0.1). 
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We then examined how PhylCRM compares with Stubb in the case when information on 

the evolutionary conservation of the binding sites is utilized.  We note that Stubb 

currently can consider conservation between only two species, while PhylCRM can 

utilize arbitrarily many genomes.  On data #1, using the phylogenetic tree: 

Human/Chimp/Macaque/Mouse/Rat/Dog/Cow/Opossum, the performance of PhylCRM 

(AUC = 0.81 ± 0.06, P < 10-6) was within the margin of error of Stubb when using 

human and mouse (AUC = 0.80 ± 0.05, P < 10-6). We note that many of the CRMs in 

data set #1 were originally discovered in mouse and other non-human species11, and this 

bias in the creation of this positive control data set may have resulted in their being better 

conserved in mouse. Using the same phylogenetic tree (Human/Chimp/Macaque/Mouse/ 

Rat/Dog/Cow/Opossum) but now considering the Sarcomeric gene set (data #2), 

PhylCRM (AUC = 0.74 ± 0.05, P < 10-6) performed significantly better than Stubb (AUC 

= 0.59 ± 0.04, P > 0.01) when Stubb was run utilizing human and mouse.  

 

Table S1: Summary of algorithm comparison 

Algorithm: Wasserman data: 

(without utilizing 

phylogeny ) 

Wasserman data: 

(with phylogeny) 

Sarcomeric data: 

(without utilizing 

phylogeny) 

Sarcomeric data: 

(with phylogeny 

Stubb AUC = 0.68 ± 0.05 AUC = 0.80 ± 0.05 AUC = 0.49 ± 0.05 AUC = 0.59 ± 0.04 

PhylCRM AUC = 0.70 ±  0.06 AUC = 0.81 ± 0.06 AUC = 0.64 ± 0.05 AUC = 0.74 ± 0.05 

Comet AUC=0.70±0.05 N/A AUC = 0.60 ± 0.05 N/A 

 

From these comparisons we conclude that that PhylCRM performs comparably to the 

other algorithms on the collection of 27 known CRMs, and better on the Sarcomeric gene 
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set.  Additionally, PhylCRM has the added feature of being able to score CRMs using a 

rich vocabulary of Fuzzy Boolean logic rules in order to discover nuanced cis regulatory 

codes (in the preceding comparisons, we utilized the OR combination for simplicity, 

although the performance could possibly be improved with a different combination of TF 

binding site motifs but would have complicated a direct comparison with the other 

algorithms).  We show that in all of the datasets considered, using phylogeny information 

helps to improve the performance (this is also shown in Supplementary Figure 4 

online).  Also, we expect that the performance of PhylCRM will continue to improve on 

these data sets (and other data sets) as more mammalian genomes are sequenced.  
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E. Lever 

The statistical framework of Lever is based upon principles used by other groups for gene 

set enrichment analysis12,13 and utilizes permutation-based corrections for multiple 

hypothesis testing14. However, in contrast to gene set enrichment analysis12,13, in the 

Lever framework genes are ranked by a sequence-based, rather than an expression-based, 

scoring function, and each combination of motifs gives rise to a distinct scoring function. 

For each gene set and scoring function, the ranking power of the function is statistically 

assessed by calculating the enrichment for highly scoring genes within the gene set. Thus, 

Lever simultaneously calculates and assesses the enrichment for many gene sets across 

many motif combinations (i.e., GM-pairs).  

 

1. Statistical assessment for enrichment 

Let g1, g2,…gG be a collection of G genes whose upstream/downstream/intronic regions 

are being searched for CRMs, and let GS1, GS2,…, GSN be a collection of subsets of these 

genes. Within each subset GSj, the genes gi which are elements of it will be labeled as 

either being “foreground” or “background”. To denote this labeling, we use the matrix Y 

where: 

Eqn. 1)    
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The final value (•) of the above equation serves as a set membership indicator, which is 

used for efficient processing in order to assemble all of the required sets of genes. 

Specifically, information on set membership is required in a later permutation-based 

approach for evaluation of statistical significance, during which the assignment of genes 
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to the various gene sets changes. Let jS GSF
j

⊂  and jS GSB
j

⊂  be the sets of all 

foreground and background genes, respectively, within GSj, and let 
jGSF  and 

jGSB  be 

the number of foreground and background genes, respectively, within GSj. Finally, let 

MCk , k = 1,..,M denote a given collection of combinations of motifs, and let the matrix 

X=(Xi,k ), i=1,..,G, k = 1,..,M , where Xi,k denote the PhylCRM score (see 

Supplementary Figures 1-4 online) of the maximum scoring window within the 

flanking sequence of gi when scanning it with a motif combination MCk. 

 

Our goal is to determine which combinations of motifs MCk are significantly enriched 

within the various gene sets GSj. We consider the ranked PhylCRM scores for each 

combination of motifs and utilize the AUC statistic of the ranked scores in order to 

evaluate this enrichment. The AUC statistic is broadly applied for bipartite ranking 

problems and for comparisons of performance of binary classifiers15: 
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where I is the indicator function taking the value of “1” if the statement in brackets is true 

and “0” otherwise. The AUC of a ranking function takes values in the range [0,1], and is 

the probability that a randomly chosen positive instance (a member of the foreground set) 

will rank higher than a randomly chosen negative instance (a member of the background). 

It will take the value “1” if all of the genes in the foreground rank higher than genes in 

the background, the value “0” if all of the genes in the foreground rank lower than genes 
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in the background, and a value close to 0.5 if the ordering of foreground genes is not 

biased toward higher or lower ranks.  

 

2. Adjustment for multiple hypothesis testing 

An explicit goal of Lever is to evaluate many pairings of gene sets and motifs or motif 

combinations simultaneously, in order to identify motif combinations exhibiting 

statistically significant enrichment in specific gene sets (we refer to a matching of a gene 

set and a motif combination (GSj, MCk) as a GM-pair). The evaluation of so many GM-

pairs, however, necessitates a mechanism to correct for multiple hypothesis testing. 

Observe that AUC scores of distinct pairings (GSj, MCk) and (GSj’, MCk’) are not 

independent under the null hypothesis of no enrichment, since GSj and GSj’ may contain 

common genes and MCk and MCk’ may contain common motifs. Consequently, a simple 

Bonferroni correction for multiple hypothesis testing is overly conservative and would 

cause many biologically relevant pairings (GSj, MCk) to be missed. Therefore, we applied 

a permutation-based approach for evaluation of statistical significance that takes into 

account the non-independence of the hypotheses. 

 

For a given gene gi  let ( )NiSiiii YYYYY ,1,2,1, ,,, −= Κ
ϖ

 be the row vector of Y 

indicating membership of gi in each of the sets GSj, j = 1,..,N and let 

( )MiMiiii XXXXX ,1,2,1, ,,, −= Κ
ϖ

 be the row vector of X indicating the PhylCRM 

score of gi for each combination of motifs MCk k = 1,..,M. Let π be a fixed permutation of 

{1,..,G} (where G is the total number of genes).  
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Next, let:  

Eqn. 3)  ( )
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This is the AUC computed for the GM-pair (GSj, MCk) when the class labels are 

permuted. Observe that, as desired, the definition of this permutation preserves all 

correlations in values of AUC statistics between pairings (GSj, MCk) and (GSj’, MCk’) 

resulting from genes being elements of both GSj and GSk and motifs being elements of 

both MCk and MCk’. 

 

We use the permutation approach in order to evaluate the significance of the values 

AUC(GSj, MCk) when controlling for false discovery rate (FDR) and family-wise error 

rate for multiple comparisons. Let { }P
l l 1=

π be a collection of P randomly chosen 

permutations over the gene labels. Because different gene sets GSj , j = 1,..,N contain 

different numbers of genes, and because different motif combinations can result in more 

or fewer ties in PhylCRM scores between distinct genes (for example, AND 

combinations involving many motifs may result in many genes having a PhylCRM score 

of “0”), the variance of AUC(GSj, MCk) is not constant across pairings (GSj, MCk). Let: 
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We normalize the AUC(GSj, MCk) value by applying the z-transformation: 
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Eqn. 6)   ( ) ( )
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Following the method of Subramanian et al.13, for family-wise error rate estimation of 

significance for each value AUC(GSj, MCk)′, we take the maximum of the normalized 

AUC statistics across all gene set and motif combination pairings within a given 

permutation: 

Eqn. 7)  ( ){ }lkjkj MCGSAUCU
l

ππ ,,max ,=  

 

The family-wise error rate estimate of statistical significance of a specific value 

AUC(GSj, MCk)′ is then given by: 
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Similarly, the FDR estimate of statistical significance is obtained by utilizing the entire 

distribution of AUC(GSj, MCk, πl)′ values and by calculating the FDR Q-values, denoted 

as Q in the main text and in the figures: 

 

Eqn. 9) 
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In this paper, we report AUCs along with an error term that corresponds to one standard 

deviation of the bootstrap confidence interval14. 
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3. Correction for AT/GC-rich motifs 

We have observed that many genes of interest have G/C-rich flanking sequences; 

consequently, many gene sets will show artificially high enrichment for G/C-rich motifs. 

For the Lever screens shown in Figure 3 and Supplementary Figures 5-6, we controlled 

for this by first generating many permuted forms of each motif (50 for analyses involving 

the Xie et al.16 motifs, and 100 for analyses involving the four motifs 

MRF/MEF2/SRF/Tead). For each gene of interest, we scored its 75-kb flanking 

noncoding sequence with permuted forms of the motifs. For each gene and each motif or 

combination of motifs, we z-transformed the PhylCRM scores (similarly to Eqns. 4 and 

5) after calculating the mean and variance from the permuted forms of the motifs. This 

approach showed reduction of the artifacts described above.  

 

PhylCRM and Lever software parameter settings 

For all runs and all motifs considered in this study, as the threshold cutoff used by Lever 

and PhylCRM for calling a motif match, we used 2 standard deviations (SDs) below the 

motif average17 and the “-THRESHOLD” setting in both of these programs. For the 

PhylCRM results shown in Supplementary Figure 4, we used the “-DEOVERLAP” 

option for the OR combination of the MRF/MEF2/SRF/Tead motifs. We observed very 

similar trends without the “-DEOVERLAP” option, i.e. without removing the overlaps 

between different motifs. In the rest of this study, we applied PhylCRM and Lever  

without the “-DEOVERLAP” option.  For PhylCRM and Lever runs involving the 

MRF/MEF2/SRF/Tead motifs, we used windows ranging between 10 and 500 bp, and for 
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runs involving the Xie et al.16 motifs we used a window range of 25 to 500 bp since some 

of those motifs can be wider than 10 bp.  

 

Gene sets examined in this study 

For the Lever scans shown in Supplementary Figure 5, we examined each of the k-

means expression clusters as an input library of foreground gene sets (we excluded 

cluster C13 because it contained only 12 genes). For those shown in Supplementary 

Figures 5 and Figure 3, we added to this collection by additionally considering gene sets 

based upon shared GO annotation terms (we considered the Biological Process, 

Molecular Function and Cellular Component terms). Specifically, significantly over-

represented GO categories among the up- and down-regulated genes were determined 

using FuncAssociate18. Only the significantly (FDR ≤ 0.05) up- or down-regulated genes 

belonging to each of those GO categories were considered in constructing the 

corresponding reduced GO category gene sets. Nonredundant gene lists were created by 

matching Refseq sequences to common gene names using DAVID19 and removing 

redundancies. Finally, we considered only those gene sets that contained at least 15 

members. Also, if two gene sets were found to contain identical genes, one of the gene 

sets was dropped. 

 

We noticed that numerous sarcomere-related GO categories, such as actin cytoskeleton, 

contractile fiber, structural constituent of muscle, muscle contraction, and muscle 

development, were enriched among the up-regulated genes. Sarcomeric genes might be 

especially likely to be co-regulated, as they are all components of a single protein 
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complex utilized in muscle. However, the GO category “sarcomere” contained only 12 

genes observed to be up-regulated in our study. Therefore, knowing that GO annotation 

of mammalian genes can be quite incomplete, we manually compiled from the literature a 

list of 46 sarcomeric genes that were up-regulated during the differentiation of myoblasts 

into myotubes.  This list of 46 genes included two genes (ACTA1 and CSRP3) for which 

probes were not included on the microarrays utilized studying gene expression profiling, 

but for which RT-PCR experiments confirmed their up-regulation (Supplementary 

Figure 8). 
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F. Further discussion of interpretation of CRM enrichment results from Lever 

We note that Lever identifies CRM enrichment within a given gene set. Of the six tested 

CRMs, the four that showed significant binding by MEF2, MyoD, and myogenin were 

the ones that are located next to genes involved in sarcomeric function, whereas the two 

that did not show significant binding by these factors are not. The MEF2 AND MRF 

motif combination within the up-regulated sarcomeric gene set was one of our top 10 

GM-pairs in terms of AUC and Q-value from our Lever screen of 101 myogenic gene 

sets and the four known myogenic motifs MRF, MEF2, SRF and Tead (data provided in 

Supplementary Table 3c). Ranking by AUC values, the top 10 GM-pairs from that 

screen were: 

Gene set Boolean Motif combination 
FDR Q-
value (Q) AUC 

CONTRACTILE FIBER_up OR(MRF,MEF2) 0 0.864706 
CONTRACTILE FIBER_up AND(MRF,MEF2) 0 0.856747 

CONTRACTILE FIBER_up 
COMPOUND(MRF AND (MEF2MEF2 
OR SRF)) 0.000028 0.846021 

CONTRACTILE FIBER_up OR(MRF,MEF2,SRF) 0.000028 0.842907 

CONTRACTILE FIBER_up 
COMPOUND(MRF AND (MEF2MEF2 
OR Tead)) 0.000037 0.8391 

CONTRACTILE FIBER_up 
COMPOUND(MEF2 OR (MRF AND 
SRF)) 0.000033 0.828893 

MUSCLE DEVELOPMENT_up 
COMPOUND(MEF2 OR (MRF AND 
SRF)) 0 0.828668 

CONTRACTILE FIBER_up 
COMPOUND(MEF2 AND (MRF OR 
SRF)) 0.000077 0.828374 

sarcomere_up AND(MRF,MEF2) 0 0.821739 

CONTRACTILE FIBER_up 
COMPOUND(MEF2 AND (MRF OR 
Tead)) 0.000035 0.819377 

  
For experimental validation, we chose to examine simple Boolean motif combinations 

instead of compound Boolean combinations, because simple Boolean motif combinations 

would be easier to test in subsequent construction and analysis of synthetic CRMs. We 

also expected an AND motif combination to confer greater specificity of gene expression 

regulation than an OR motif combination. The MRF AND MEF2 motif combination for 
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the sarcomere_up gene set (FDR 0, AUC 0.822) scored slightly less well than the MRF 

AND MEF2 motif combination for the CONTRACTILE FIBER_up gene set (FDR Q-

value = 0, AUC 0.857). One of our positive control CRMs was for the gene ACTA1, 

which belongs to the sarcomere_up gene set and not to the CONTRACTILE FIBER_up 

gene set, and we were interested to see if there might be more than 1 functional CRM per 

gene at a given time point in a given cell type. It would be interesting to see if the 

predicted CRMs containing the MRF AND MEF2 motif combination for the 

CONTRACTILE FIBER_up gene set work with just as high a success rate. 

 

To try to estimate what the anticipated CRM success rate might be for a given gene set, 

consider the following example. The figure below shows the degree to which all 46 

sarcomeric genes are enriched for the MRF AND MEF2 TF binding site motif 

combination, as compared to a background set of 1840 ( = 46*40) length-matched 

background genes that were not observed to be up- or down-regulated in this cell-type: 
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In looking at this figure, we see that at a given PhylCRM score threshold where 20% of 

background genes have a positive hit (i.e., a maximum-scoring window that we predict as 

Sensitivity and specificity of MRF AND 
MEF2 for sarcomeric genes. 
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being a CRM) somewhere within their 75 kb regions around transcription start (80% 

specificity), 70% of sarcomeric genes (foreground) have such a positive hit within their 

75 kb regions (i.e., 70% sensitivity). We note that sensitivity values for any given 

specificity can immediately be read off of the ROC curve, although for simplicity we use 

the 80% specificity / 70% sensitivity point for the following discussion.  At this 

threshold, we can compile the following table of summary statistics indicating the 

fraction of true positives (TP), true negatives (TN), false positives (FP) and false 

negatives (FN), and also the positive predictive value (PPV) and misclassification error: 

 
 

Estimation of summary statistics at a given score cutoff 
 
 Predicted Positive Predicted Negative  

Foreground = 46 TP = 32 FN = 14 Sensitivity = TP/(TP + FN) = 
 70% 

Background = 1840 FP = 368 TN = 1472 Specificity = TN/(FP + TN) 
=  
80% 

 PPV = TP/(TP + FP) = 8%  Misclassification error = 
 (FP + FN)/(TP + FP + TN + 
FN) = 20% 

 
Using the cutoff mentioned above, 20% of the background genes have a positive 

PhylCRM hit (i.e., predicted CRM) somewhere within 75 kb of transcription start, and 

30% of the foreground genes do not have a predicted CRM, giving a misclassification 

error of 20% and positive predictive value (PPV) of 8%.  We see three possible 

explanations for these results.  First, some background genes containing a PhylCRM hit 

might be located close to a gene that is expressed in muscle and regulated by MRF AND 

MEF2; such PhylCRM hits would correspond to bona fide myogenic CRMs that were 

incorrectly placed into the background.  Second, many of these PhylCRM hits might 
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represent CRMs that are targeted by TFs binding to the MRF AND MEF2 motifs but that 

do not drive expression in muscle. For example, MEF2 is known to regulate gene 

expression in the brain, and there are several bHLH TFs that are crucial for neuronal cell 

fate specification and are likely to have a binding site motif similar to the MRF motif 

bound by the myogenic bHLH TFs (MyoD, myogenin); thus, many of these hits could be 

true CRMs that drive expression in the brain rather than the muscle.  Finally, it is possible 

that many of the PhylCRM hits are simply false predictions and are not actually CRMs. 

We have given this issue extensive thought, and we do not presently see a reliable means 

of estimating what fraction of MRF AND MEF2 hits adjacent to background genes fall 

into each of these three potential classes. We expect that prioritizing for experimental 

testing those significant PhylCRM hits that contain MRF AND MEF2 motifs and that are 

directly adjacent to sarcomeric genes, will lead to a greatly increased success rate in 

experimental validation of predicted CRMs functional in myogenic differentiation. In 

general, we believe that the results of Lever can be used to prioritize predicted CRMs for 

experimental testing, by picking for testing those candidate CRMs which lie next to genes 

that belong to significant scoring GM-pairs. 
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G. Position Weight Matrices utilized in this study: 
 
We obtained from the supplementary data of Wasserman et al.9 DNA binding site 

sequences corresponding to these 4 motifs from the supplementary data of that study, 

although we added additional myogenic MEF2 sites obtained from a SELEX 

experiment20.  
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H. Detailed experimental protocols, including primer sequences 

Cell culture 

Adult human skeletal myoblasts (Cambrex) were grown in SkGM2 medium (Cambrex) 

for optimal growth and differentiation potential. Myogenic differentiation was stimulated 

by switching the culture medium to DMEM with 2% horse serum (Sigma) when the cells 

reached about 70% confluence. All time points referred to in this study are with respect to 

the time of switching to differentiation medium. Mouse C2C12 cells (ATCC), mouse 3T3 

cells (ATCC), and human lens epithelial cells (gift from Amy Donner) were cultured in 

DMEM (Invitrogen) with 10% fetal bovine serum (Sigma), respectively. HEK293T cells 

were a gift from Karen Cichowski. 

  

RNA purification 

Total RNA was isolated from primary human skeletal muscle cells using TRIzol reagent 

(Invitrogen) according to the manufacturer’s protocols. For microarray experiments, total 

RNA was further purified with RNeasy columns (Qiagen). 

 

Gene expression profiling microarray experiments 

Microarrays were synthesized and hybridized by the Harvard Partners Center for 

Genetics and Genomics. Briefly, each glass slide was spotted with the Human 

OligoLibraryTM Release 1.0 that was designed by Compugen, Inc. and manufactured by 

Sigma-Genosys, Inc. This oligonucleotide library consists of 18,864 60-mers representing 

18,664 unique genes. We extracted mRNA at 6 time points (-48 hrs, -24 hrs, 0 hrs, 12 

hrs, 24 hrs, and 48 hrs relative to serum withdrawal). These time points were selected 
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since prior studies in a related cell type (mouse C2C12 cells) demonstrated their 

effectiveness for capturing key transcriptional events during myogenic differentiation21,22. 

For each time point, four hybridizations, consisting of duplicate hybridizations with Cy3 

and Cy5 dye-reversal, were performed essentially as described previously23. 

 

Preprocessing and clustering of gene expression microarray data 

Scanned TIF images were quantified with GenePix software (Axon Instruments). For 

each feature, the median pixel intensity of the local background was subtracted from the 

spot’s median pixel intensity. We then applied variance stabilizing normalization24 to 

normalize all single channels to each other. False discovery rates (FDRs) were calculated 

using Significance Analysis of Microarrays25 (one class time-series and slope parameters) 

on the four replicate arrays. The arcsinh values of the four replicate arrays for each time 

point were then combined by taking the arithmetic mean and expressed as the fold-

change relative to the first time point (-24 hrs). Changes in arcsinh values correspond to 

the following approximate ratios (arcsinh = linear): 0 = 1/1; 1 = 2.7/1; 2 = 7.5/1; 3 = 20/1, 

4 = 55/1; 5 = 155/1, 6 = 405/1. Genes that were differentially expressed at a 5% FDR 

were clustered using k-means clustering by de Hoon’s Cluster 3.0 software26  

(http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster/software.htm#ctv). Our 

choice of 14 clusters was determined empirically.  

 

Western blotting 

Cell nuclei extracts and cytoplasmic extracts were obtained from human skeletal 

myoblasts at -48, -24, 0, +24, and +48 hours with respect to stimulation of differentiation, 
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according to standard protocols. Equal protein amounts were subjected to standard SDS-

PAGE. Western Blots were performed using SuperSignal West Femto Maximum 

Sensitivity Substrate (Pierce) according to the manufacturer’s instructions. Blocking 

solution consisted of 5% nonfat dry milk in TBS-T (Tris Buffered Saline with 0.1% 

Tween 20) and washing solution was TBS-T.  

 

The following antibodies used in Western blots were purchased from Santa Cruz: Myf5 

(sc-302), MyoD (sc-760), Myogenin (sc-576), Myf6 (sc-784), SRF (sc-335), MEF2C (sc-

13266), MEF2 (sc-10794), MEF2A (sc-313), and lamin B1 (sc-20682). Tead1 (or Tef-1) 

antibody was purchased from BD Biosciences Pharmingen (610923). All antibodies were 

probed at a 1:1,000 dilution in blocking solution, except for the lamin B1 and MEF2C 

antibodies which were probed at a 1:2,000 dilution. Anti-rabbit and anti-mouse HRP-

conjugated secondary antibodies (as supplied by Pierce) were diluted 1:3,000 in blocking 

solution. Anti-goat secondary antibodies (Sigma) were diluted 1:300,000. 

 

The Tead or Tef family of transcription factors are comprised of at least four mammalian 

members, Tead1 (TEF-1), Tead2 (TEF-4), Tead3 (TEF-5), and Tead4 (TEF-3)27. Tead4 

and Tead2 are the only two members detectable in regenerating mouse skeletal 

muscle27,28. Tead1 is broadly expressed in many different embryonic tissues29, but Tead1 

knockout mice have severe cardiac defects suggesting a major role in cardiac 

development30. Tead3 is detectable in skeletal and cardiac muscle but is preferentially 

expressed in the developing placenta31,32. Since the immunogen used to develop the BD 

Pharmingen is 53% identical and 66% similar to Tead4 protein, it is possible that the 
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antibody is cross-reactive with Tead4 or other Tead family members using a sensitive 

Western blot detection system. At the time of submission of this paper, it was believed 

that Tef1 was the relevant Tead family member for myogenic differentiation11, and BD 

Biosciences Pharmingen had no data for or against the cross-reactivity of their Tead1 

antibody.  

 

ChIP 

Chromatin immunoprecipitations were carried out using a modified version of the 

Farnham protocol (http://mcardle.oncology.wisc.edu/Farnham/protocols/chips.html). 5 x 

108 cells fixed at days 0, 1, and 2 of differentiation. 

 

Cells were fixed with 1% formaldehyde at room temperature for 10 minutes with 

occasional agitation of the plates. 2.5 M glycine was added to the cell media for 5 

minutes to stop the crosslinking reaction. The cells were then washed twice with ice-cold 

PBS and incubated in PBS with 20% trypsin-EDTA (Cambrex) for 10 min at 37ºC. 0.5 

ml of FCS was added to inhibit trypsinization. The cells were then scraped and collected 

into 50-ml conical tubes and kept on ice. Cells were washed once with ice-cold PBS with 

PMSF (Sigma, 100 μM) and protease inhibitors (20 μl per ml, Sigma P8340), flash 

frozen in ethanol/dry ice, and kept @-70ºC until chromatin immunoprecipitation. 

 

Frozen cells were thawed on ice, resuspended in ice-cold cell lysis buffer (5 mM PIPES 

pH 8.0, 85 mM KCl, 0.5% NP40, 1:50 protease inhibitor mix [Sigma catalog # P8340]), 

and incubated on ice for 10 minutes. Nuclei release was aided by dounce 
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homogenization. Nuclei were pelleted by centrifugation and resuspended in room 

temperature nuclei lysis buffer (50 mM Tris-Cl pH 8.1, 10 mM EDTA, 1% SDS, 1:50 

protease inhibitor mix), followed by incubation on ice for 10 minutes. The nuclei were 

then sonicated to achieve chromatin fragments with an average length of 1,000 bp. The 

sonication conditions used were 9 sonications of 15-second pulses separated by 1-minute 

incubation on ice. Samples were centrifuged at high speed to remove cellular debris. The 

supernatant containing the sonicated chromatin was transferred to a 50-ml conical tube 

and diluted 1:10 with ice-cold dilution buffer (0.01% SDS, 1.1% Triton X-100, 1.2 mM 

EDTA, 16.7 mM Tris-Cl pH 8.1, 167 mM NaCl, 1:50 protease inhibitor mix). Chromatin 

was precleared by adding 50 μl of Protein A beads/Salmon Sperm DNA (Upstate Protein 

A/Salmon Sperm DNA, cat# 16-157) per ml and incubating on a rotating platform at 4ºC. 

3 ug of antibody was used for each immunoprecipitation. The following antibodies were 

purchased from Santa Cruz: MyoD (sc-760), Myogenin (sc-576), SRF (sc-335), and 

MEF2 (sc-10794). 60 μl of Protein A/salmon sperm DNA beads were added to each 

sample and incubated on a rotating platform at 4°C for 1-2 hours. Samples were then 

microcentrifuged for 1 min and placed into fresh microcentrifuge tubes. 

 

Immunoprecipitates were washed twice with ice-cold wash buffer 1 (20 mM Tris, pH 8.1, 

150 mM NaCl, 2 mM EDTA, 0.1 % SDS, 1% Triton X-100), once with wash buffer 2 (20 

mM Tris, pH 8.1, 500 mM NaCl, 2 mM EDTA, 0.1 % SDS, 1% Triton X-100), once with 

wash buffer 3 (10 mM Tris, pH 8.1, 250 mM LiCl, 2 mM EDTA, 1% NP-40, 1% 

deoxycholate), and once with ice-cold 4 M LiCl/TE. After the last wash and spin, all 

remaining buffer was carefully removed with a sterile 1-ml pipette. 
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Antibody/protein/DNA complexes were eluted by adding 100 μl of IP elution buffer 1 

(1% SDS, 1 mM EDTA, 10 mM Tris, pH 8.1) and incubated @65°C for 15 min. Samples 

were microcentrifuged for 3 minutes. Supernatants were then transferred to fresh 

microcentrifuge tubes. Samples were then eluted again with 150 μl of elution buffer 2 

and incubated at 65°C for 15 min. Samples were then combined and incubated overnight 

at 65°C to reverse formaldehyde crosslinks. 

 

To each tube, 250 μl TE and 5 μl of proteinase K (20 mg/ml) were added. The tubes were 

then incubated at 37ºC for 1 hour. To each tube, 55 μl of 4M LiCl was added. The 

samples were then extracted twice with 500 μl phenol/chloroform/isoamyl alcohol and 

once with 500 μl of chloroform. Then, 1 μl (10 mg) of glycogen to each sample and the 

samples were ethanol precipitated. After drying the pellets, the samples were resuspended 

in 150 ul of 10 mM Tris 8.5. Each IP was performed in triplicate for each individual 

chromatin sample. 

 

In our ChIP assays, as positive controls we examined five previously described muscle 

CRMs, and as negative controls we examined two noncoding regions with no significant 

matches and eight noncoding regions with only a single significant match, to any of these 

five motifs.  The positive control regions were as follows: 

 

CAV3 (0.2 kb upstream of transcriptional start): 

• myotube specific promoter; previously confirmed myogenin (MYF) binding 

site in mouse C2C12 cells33 
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COX6A2 (0.3 kb upstream of transcriptional start): 

• myotube specific promoter; previously confirmed MRF (E-box) and MEF2 

binding sites in mouse Sol8 and C2C12 cells34 

 

ACTA1 (0.3 kb upstream of transcriptional start): 

• promoter region 

• 3 previously confirmed SRF sites in primary chicken muscle culture35 

• previously confirmed Tead1 site in rat cardiomyocytes36 

 

TNNT2 (0.1 kb upstream of transcriptional start): 

• conserved Tead1 (M-CAT) site in chicken promoter was previously shown to 

be important for chicken skeletal muscle37 

• MEF2 site was previously shown to be important for rat cardiac muscle 

expression38 

• CArG boxes (SRF sites) were previously confirmed by footprinting in rat 

cardiomyocytes38 

 

DMD (6.4 kb into 1st introns): 

• myotube-specific enhancer 

• three MRF sites and one MEF2 site required for activation in myotubes39 

 

Primer sequences: 
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Gene Name Forward Primer Reverse Primer 

ChIP primers  

ACTA1 ACCCTCGCCCCACCCCATCC GGCCGCTTGTCCCTCTGCTC 

BDKRB2 GCCCGGGCTCTTGCTCCAG CTCCTCAGGGCCTCAGTTTCTTCAT 

CAV3 GCCCTCTGCACCCTCTCCTG CCGGCTGGGGCTGAAAATAC 

CLC TCCAGGGGGCAAATGAGGGTAAT CATAAGAGACTGGGCGCGGTGGTTC 

COX6A2 GCCTGTAATCCCAGCACTGT AGCTGTTGTCCTGTGCCTCT 

CPM TGTGCCACGTGTCCTTTCATCATCAGTA GCACCCAAATCCCCATCTCAGTCC 

CSRP3 GTGGGGGCCTGGAGAAATGAT AGCCACAGAACCAACCCACCTC 

DMD CTGCGACAAAATGGGCACTCAATA CTGCGACAAAATGGGCACTCAATA 

GAP43 CTGAGGCGGGGAGAGGAGAG TGGGAAGTGGTTATTATGGGATTG 

HBZ GGCCTTGTCTGTCTTTTCCTCCATA GGCAGCTCAGCACCCATCCT 

HSPB3 GGACTAGTGCCTTCAACAGC TAAAACAACGTGGGGGAGTA 

EDG5 CTAGCCCATGTCCCCTCCCTGTGTAA TCCCCCTGGCTGCTTGGTAGAGAAT 

KRT2A GCCCCTCACCGCCCTCTCCT ATTATGCGCCTTGTCGATGCTCTC 

MEF2C AGGGCAGTCATGGAGAGGTC TTATGGCAAGGGAGAACTGG 

MGLL CAAGGGGGATGGCACTAAACC CTCCTACAGCCTGCGATGAAAAG 

MTP TTGGGTACTATCGGTGGAGA GTGGGCAGAAAGGAGTTGAG 

PTHR1 GGGGGTCCAAAGCGGGTCCTGTT TCCTGGCCCCCTCCTCCCTTCAAA 

TNNT2 TCTTTACCCCCAGCATCAGT GGGACAAGGCTACAGGAACA 

TOP2A AAGTCTGCCCCACGGTCCTGA CTCTGGGCCCTGCTTGCTCTTC 

RT-PCR primers  

DMD GCGCCTCCTAGACCTCCTC ACCCGCAGTGCCTTGTTG 

ACTA1 GCCCGAGCCGAGAGTAGCAGTTGT CTCGCGGTTGGCCTTGGGATTG 

COX6A2 CCAAAGGAGGCCACGGAGGAGCAG GGTGGCCCGAGTGGAGATAGGAGTTGA 

CAV3 TTGACCTGGTGAACCGAGAC CGTGGACAACAGACGGTAGC 

TNNT2 CTGAGCGGGAAAAGAAGAAGAAGATT GTGGGGGCAGGCAGGAGTG 

MYOD AGCACTACAGCGGCGACT GCGACTCAGAAGGCACGTC 

MYOG TAAGGTGTGTAAGAGGAAGTCG CCACAGACACATCTTCCACTGT 

MEF2C CTCCCAGTCGGCTCAGTCATTG CGAAGGGGTGGTGGTACGGTCTCTA 

MEF2D AAGCGGAAGTTTGGCCTGATGAAGAA GCCGCTGGGATTGCTGAACTGC 

SRF ACTGCCTTCAGTAGGAACAA TTCAAGCACACACACTCACT 

TEAD4 TGTGGCAGGCGCAAAATCATCC GTCCGGGTCCTGCTGCTGCTC 

HSPB3 GGGGCTCGCCACTGACTGAA AGACTGCGCTGCCCTGGTTTT 
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CSRP3 CTCTTCCCACAGATGGCACA GAGAAGGTTATGGGAGGTGGC 

CACNG1 ATGTCCCAGACCAAAATGCTG CAGGTAGTGTTGTGGTGCTC 

PDLIM3 ACTCCCTCCGGGATTGACTG AGCTTAGCCGCAACTTTCAAG 

ARGBP2 AACACAGGGCGTGATTCTCAG TGGTCGAACGCTTCTAAAACC 

RPS18 GATGGGCGGCGGAAAATAG GCGTGGATTCTGCATAATGGT 

Cloning primers  

DMD_BAM CACCGGATCCCACGGCCATACAACCTCTACCTC GGATCCTTCATCTCCACTGTCCCCATTCTA 

PDLIM3_BAM CACCGGATCCCTACCCGCCAGTGCTGTGTTGAG GGATCCGGGAAGGCCTGGGGGAGAAG 

MGLL_BAML ACGCGGATCCCAAGGGGGATGGCACTAAACC ACGCGGATCCCTCCTACAGCCTGCGATGAAAAG 

CSRP3_BAM ACGCGGATCCGTGGGGGCCTGGAGAAATGAT ACGCGGATCCAGCCACAGAACCAACCCACCTC 

Primers for cloning into pLKO.1 vector (RNAi) 

MYOG_shRNA_1 

CCGGGCCCACAATCTGCACTCCCTTCTCGAGAAG

GGAGTGCAGATTGTGGGCTTTTTG 

AATTCAAAAAGCCCACAATCTGCACTCCCTTCTCG

AGAAGGGAGTGCAGATTGTGGGC 

MYOG_shRNA_2 

CCGGGCACATCTGTTCTAGTCTCTTCTCGAGAAG

AGACTAGAACAGATGTGCTTTTTG 

AATTCAAAAAGCACATCTGTTCTAGTCTCTTCTCG

AGAAGAGACTAGAACAGATGTGC 

MYOG_shRNA_3 

CCGGCCCAGACGAAACCATGCCCAACTCGAGTTG

GGCATGGTTTCGTCTGGGTTTTTG 

AATTCAAAAACCCAGACGAAACCATGCCCAACTC

GAGTTGGGCATGGTTTCGTCTGGG 

MEF2D_shRNA_1 

CCGGCCCTGGTGACATCATCCCTTACTCGAGTAA

GGGATGATGTCACCAGGGTTTTTG 

AATTCAAAAACCCTGGTGACATCATCCCTTACTCG

AGTAAGGGATGATGTCACCAGGG 

MEF2D_shRNA_2 

CCGGCAATGGCAACAGCCTAAACAACTCGAGTT

GTTTAGGCTGTTGCCATTGTTTTTG 

AATTCAAAAACAATGGCAACAGCCTAAACAACTC

GAGTTGTTTAGGCTGTTGCCATTG 

MEF2D_shRNA_3 

CCGGCACATCAGCATCAAGTCAGAACTCGAGTTC

TGACTTGATGCTGATGTGTTTTTG 

AATTCAAAAACACATCAGCATCAAGTCAGAACTC

GAGTTCTGACTTGATGCTGATGTG 

SRF_3882F 

CCGGCCCTTGGTGTATCCCTAATTACTCGAGTAA

TTAGGGATACACCAAGGGTTTTTG 

AATTCAAAAACCCTTGGTGTATCCCTAATTACTCG

AGTAATTAGGGATACACCAAGGG 

SRF_2110F 

CCGGGCTCAATTTGCTATGAGTATTCTCGAGAAT

ACTCATAGCAAATTGAGCTTTTTG 

AATTCAAAAAGCTCAATTTGCTATGAGTATTCTCG

AGAATACTCATAGCAAATTGAGC 

SRF_2934F 

CCGGGAGAGGAGATTGATGTCCTTTCTCGAGAAA

GGACATCAATCTCCTCTCTTTTTG 

AATTCAAAAAGAGAGGAGATTGATGTCCTTTCTCG

AGAAAGGACATCAATCTCCTCTC 

HNF4alpha 

CCGGCCGACAATGTGTGGTAGACAACTCGAGTTG

TCTACCACACATTGTCGGTTTTTG 

AATTCAAAAACCGACAATGTGTGGTAGACAACTC

GAGTTGTCTACCACACATTGTCGG 

 

Quantitative RT-PCR 
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Total RNA was reverse-transcribed using SuperScript III (Invitrogen) according to the 

manufacturer’s protocols. Quantitative PCRs were performed using iQTM SYBR® Green 

Supermix (BioRad) and 0.2 μM primers with an iCycler iQ Real-Time PCR Detection 

System (BioRad). 

 

Quantitative ChIP-PCR 

ChIPs were performed in biological triplicate using a modified version of the Farnham 

protocol40. The following antibodies were used in ChIPs: MyoD (sc-760), myogenin (sc-

576), SRF (sc-335), and MEF2 (sc-10794), all from Santa Cruz Biotechnology, Inc. We 

included SRF since we observed that several of our predicted CRMs contained SRF motif 

matches. Tead was not included since a suitable antibody was not available. As positive 

controls, we examined five previously described muscle CRMs. Negative control 

genomic regions were chosen based on their not having any significant PhylCRM hits 

when considering the MRF, MEF2, SRF, or Tead motifs, and their being adjacent to 

genes called “present” in the expression microarray data but not up- or down-regulated at 

a FDR less than 0.1. Quantitative ChIP-PCRs were performed essentially as described 

above, except using 6 μl of immunoprecipitated DNA. 

 

Luciferase reporter assays 

Putative and control CRMs were cloned either upstream (BglII) or downstream (BamHI) 

of the luciferase reporter gene into pGL3-Promoter vector (Promega) in their native 

genomic orientation (i.e., upstream versus downstream of transcription, Watson versus 

Crick strand). As a positive control, we used one of the five previously known muscle 
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CRMs used in our ChIPs. A negative control human noncoding genomic region not 

enriched for matches to these four motifs was indistinguishable from the corresponding 

enhancer-less empty vector negative control. C2C12 cells were cultured in 6-well plates 

(9.4 cm2 per well) 24 hours prior to transfection at 3 x 104 cells per well for myoblasts or 

1.5 x 105 cells per well for myotubes. The cells were then co-transfected in triplicate with 

1 μg of experimental vector (pGL3-P with or without inserted region) and 50 ng of the 

normalization vector (pRL-TK) using FuGENE 6 transfection reagent (Roche) according 

to the manufacturer’s protocols. Cell extracts were obtained from an aliquot of the 

proliferating myoblasts 24 hours after transfection. The remaining cell cultures were then 

switched to differentiation medium, and cell extracts were obtained after 96 hours in 

differentiation medium. Luciferase reporter assays were performed using the Dual-

Luciferase® Reporter Assay System (Promega) according to the manufacturer’s 

protocols. Firefly luminescence intensities were normalized by the luminescence 

intensities of the internal Renilla control. We used C2C12 cells in these assays instead of 

primary adult human skeletal myoblasts because the primary cells failed to differentiate 

robustly after transfection. 

 

shRNA knockdowns 

Short hairpin RNA (shRNA) constructs directed against mouse RNA transcripts were 

generated essentially as described previously41. Lentiviral reagents were kindly provided 

by Karen Cichowski. For lentiviral production, HEK293T cells were transfected with the 

∆8.2 lentiviral construct (encoding gag, pol, rev), VSVG, and either empty pLKO.1 

vector or the pLKO.1 vector containing a sequence for a shRNA specific for each of the 
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muscle genes MYOD, MYOG, MEF2D, SRF, and the liver gene HNF4α. Three distinct 

shRNA constructs were created for each gene in order to control for off-targets effects. 

Lentivirus was titered by serial dilution followed by colony formation assays in medium 

containing puromycin. C2C12 cells (7 x104) were plated on 100-mm plates 24 hours prior 

to infection. After infection at 5 multiplicities of infection of lentivirus, C2C12 cells were 

grown in growth media for 24 hours and selected in puromycin for 72 hours. Luciferase 

reporter assays were then performed as described above, except cells were plated onto 

12-well plates and transfected with proportionately less of the reagents. Our MEF2C 

knockdowns resulted in extensive cell death, and thus could not be utilized here. 

 

Creation of synthetic CRMs 

To test the sufficiency of the inferred MRF AND MEF2 cis regulatory code for myogenic 

differentiation, we created a synthetic CRM containing consensus MRF and MEF2 

binding sites arranged as in our newly discovered ACTA1 CRM, but in the context of the 

MGLL negative control flanking sequence. The MGLL negative control region was 

selected as a template into which to place TF binding sites in order to experimentally test 

the MRF AND MEF2 cis regulatory code for myogenic differentiation. To create 

synthetic CRMs, we created variants of a shorter 167-bp MGLL negative control region 

by ligating segments of the original MGLL region or by ligating modified segments of the 

MGLL region such that the new construct would have two consensus MRF sites and one 

consensus MEF2 site. The reconstituted MGLL region served as a negative control. As 

positive controls, we used an SV40 enhancer, one of the five previously known muscle 

CRMs used in our ChIPs (DMD), and a novel CRM that we verified previously CRM 
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(ACTA1, see Fig. 4). The TF binding sites were placed in the modified MGLL region 

such that they mimicked the position and orientation of our newly discovered ACTA1 

CRM. The sense (F) and antisense ® strand of each segment were synthesized as single-

stranded DNA oligonucleotides and were then annealed to form double-stranded DNA. 

The following oligonucleotides were used in the annealing reactions: 

 

MGLL_SEG1_F CCATGATGCATTCACCTCCCACCAGGCCCCACCTTCAACATTG

GGGATTACAGTTCAAAATGAGG 

MGLL_SEG1_R ATTTTGAACTGTAATCCCCAATGTTGAAGGTGGGGCCTGGTGG

GAGGTGAATGCATCATGGAGCT 

MGLL_SEG2_F TTTGGTGGGGACACAGATCCAAACCATATCAACTTGTAGGGGC

AGAAAGACGTCACCTTTAC 

MGLL_SEG2_R AGGTGACGTCTTTCTGCCCCTACAAGTTGATATGGTTTGGATC

TGTGTCCCCACCAAACCTC 

MGLL_SEG3_F TTGAATTGCAACCCTTACCTTTTCATCGCAGGCTGTAGGAGA 

MGLL_SEG3_R GATCTCTCCTACAGCCTGCGATGAAAAGGTAAGGGTTGCAATT

CAAGTAA 

MGLL_SEG1_CAGCTG_F CCATGATGCATTCACCTCCCACCAGGCCCCACCTTCAACATTG

GGGCAGCTGGTTCAAAATGAGG 

MGLL_SEG1_CAGCTG_R ATTTTGAACCAGCTGCCCCAATGTTGAAGGTGGGGCCTGGTGG

GAGGTGAATGCATCATGGAGCT 

MGLL_SEG2_ACTA1_PMEF2_F TTTGGTGGGGACACAGATCCAAACCATATCAACTTGTAGGGGC

AGAACTAAAAATAGTTTAC 

MGLL_SEG2_ACTA1_PMEF2_R ACTATTTTTAGTTCTGCCCCTACAAGTTGATATGGTTTGGATC

TGTGTCCCCACCAAACCTC 

MGLL_SEG3_CAGCTG_F TTGAATTGCAACCCTTACCTTTTCATCGCAGGCTGCAGCTGA 

MGLL_SEG3_CAGCTG_R GATCTCAGCTGCAGCCTGCGATGAAAAGGTAAGGGTTGCAATT

CAAGTAA 
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Segment 1 was designed to have a SacI-compatible end and segment 3 a NheI-compatible 

end such that an entire Seg1-Seg2-Seg3 sequence could be ligated into a pGL3-P vector 

that was previously digested with NheI and SacI and treated with alkaline phosphatase.  

The short MGLL sequence was reconstituted by ligating the following double-stranded 

segments: MGLL_SEG1, MGLL_SEG2, and MGLL_SEG3. The MGLL region with two 

MRF sites and one MEF2 site was created by ligating MGLL_SEG1_CAGCTG, 

MGLL_SEG2_ACTA_PMEF2, and MGLL_SEG3_CAGCTG. 
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