Supplementary Material for “Stochastic Sampling of the RNA Structural
Alignment Space,”

Arif Ozgun Harmanci®, Gaurav Sharma®®, David H. Mathews"®*

& Department of Electrical and Computer Engineering, University of Rochester, Hopeman 204, RC Box 270126,
Rochester, NY 14627, USA

b Department of Biochemistry and Biophysics, University of Rochester Medical Center, 601 Elmwood Avenue, Box
712, Rochester, NY 14642, USA

¢Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 601 Elmwood
Avenue, Box 630, Rochester, NY 14642, USA

Overview

The algorithmic details of stochastic sampling method are presented. The notations are introduced first. Then the
relationship between the partition function arrays in the PARTS algorithm and the Structural Alignment Atoms (SAAs)
are presented. The details and flow of iterative sampling are presented next followed by the recursions for iterative
sampling utilizing the partition function arrays. The last section presents the computation of the Calinski-Harabasz
index and centroid structures and alignments.

Notation

The two input sequences are denoted by x; and xo and their lengths by Ny and Ns, respectively. Throughout the
description of the recursions, i and j denote nucleotide indices in the first sequence and k and [denote nucleotide
indices in the second sequence. S; and S, are used to denote secondary structures of x; and xo, respectively. A
denotes a sequence alignment between x; and xs. An SAA at sequence indices i, j € x; and k,l € x5 is denoted by
x(%, j, k,1). The partition function arrays are denoted by 1) where an array location is indexed by a quadruple (i, j, k,)
where 7 and j are indices in x; and k and [are indices in Xs.

Relationship between Partition Function Arrays and SAAs

The partition function computation in PARTS utilizes 8 arrays such that an array location (i, 7, k,l) stores the
summation of exponentials of negative pseudo free energies of structural alignments between sequence fragments from
index 7 to j in x; and from index k to [in x5 under constraints on the types of structural alignments that a given array
¢ handles. The set of arrays, ¢, was defined previously in [1] and is briefly summarized here. For an array ¢ and
nucleotide indices i, j, k, [possibilities of base pairing and alignment of nucleotides at indices i, j € x; and k,[€ x5 are
defined by a SAA x(i,7, k,[) that is specific to ¥. The set of possible SAAs x(, j, k, 1) corresponding to each partition
function array 1 at indices , j, k, [are listed below:

1. V(i,4,k,1): Paired nucleotides at (i, j) are aligned to paired nucleotides at (k,1).
2. WL(i, j, k.):
(a) SAAs specified by V(i, j, k,l) array.

*Corresponding Author.
Email addresses: arharman@ece.rochester.edu (Arif Ozgun Harmanci), gaurav.sharma@rochester.edu (Gaurav Sharma),
David-Mathews@urmec.rochester.edu (David H. Mathews).

(b

(
d

Unpaired nucleotide 7 is aligned to unpaired nucleotide at k
¢) Unpaired nucleotide ¢ is inserted
Unpaired nucleotide k is inserted
(e
(f

(g
3. Vbpi(s, j, k,1):

Unpaired nucleotide j is aligned to unpaired nucleotide at [

Unpaired nucleotide j is inserted

— — L L T

Unpaired nucleotide [is inserted

(a) Base pair nucleotides at (i, j) are inserted

(b) Base pair nucleotides at (k,[) are inserted
4. Vbau(i,j, k,1):

(a) Paired nucleotides at (7,) are aligned to unpaired nucleotides at k, [, respectively.

(b) Paired nucleotides at (k,l) are aligned to unpaired nucleotides at i, j, respectively.
5. Whbau(i, j, k,1):

(a) Paired nucleotides at (i, j) are aligned to unpaired nucleotides at k, I, respectively.

(b) Paired nucleotides at (k,[) are aligned to unpaired nucleotides at 4, j, respectively.
6. Wbpi(i, j, k,1):

(a) Base pair nucleotides at (7, j) are inserted
(

b) Base pair nucleotides at (k,l) are inserted

7. SS(i, 4, k,1):

Unpaired nucleotide j is aligned to unpaired nucleotide at [
Unpaired nucleotide j is inserted

(
(f) Unpaired nucleotide [is inserted

WMBL, WMB, Vmhe, and Wmbhi arrays are computed by processing of above arrays [1] and they do not directly
specify SAAs at indices i, j, k, [.

Iterative Sampling of SAAs utilizing Partition Function Arrays

Iterative sampling algorithm is implemented via a recursive stochastic traceback of partition function arrays computed
by PARTS algorithm [1]. Recursive stochastic traceback utilizes the dependencies in partition function arrays to
compute P(x(4, 7, k,1)|Sext (¢, J, k,1)). This algorithm is similar to maximum a posteriori (MAP) traceback of PARTS
algorithm with two main differences: 1) Stochastic traceback utilizes the partition function arrays whereas MAP
traceback utilizes MAP arrays. 2) The stochastic traceback algorithm probabilistically generates a different structural
alignment every time it operates on two RNA sequences. MAP traceback, however, always computes the same MAP
structural alignment.

Recursions for Stochastic Traceback

A random selection operator, denoted by RandChoose(E;, Eo, - - - , Ey), is utilized in the stochastic traceback recursions
to probabilistically chooses an index out of [1,2, ..., N| where the probability that an index 7 is sampled is proportional
to the magnitude of E;. The probability of choosing index ¢ is therefore:

E;
Zk Ej,

Algorithm 1 shows the algorithm for the RandChoose operator. The pseudo random number generation in Algorithm
1 is accomplished by rand algorithm [2]. At the beginning of generation of a sample of structural alignments, ran3 is
seeded with the number of seconds since the epoch as returned by time function. The number of seconds provides a
constantly changing seed value for the pseudo random number generator, which ensures that the consecutively generated
sample of structural alignments are not identical.

P(RandChoose(E1,Eg, -+ ,Ex) =1) = (1)

Generate a pseudo random number « € [0,1] ;
Set o =ax Y, Ey;

Compute C; = 271 Ey and set Cp =0 ;

Find index i such that C;_1 < a < Cj; ;
return ¢ ;

Algorithm 1: RandChoose Algorithm

Set s = RandChoose(W(1, N1, 1, No), WMB(1, Ny, 1, N3)) ;
if s =1 then
| PUSH {1, Ny, 1, N, W} ON STACK;
else
| PUSH {1, Ny, 1, N, WMB} ON STACK;
while STACK NOT EMPTY do
POP {i, j, k,l, ARRAY_ID};
L TRACEBACK {4, j, k,l, ARRAY_ID};

Algorithm 2: Main Stochastic Traceback Loop
Algorithm 2 shows the main stochastic traceback loop. Stochastic traceback utilizes a stack to ensure correct traceback
of multibranched structures. A structural alignment is built by recursively backtracking the partition function arrays
starting with W(1, N1,1, N3) and WMB(1, Ny, 1, N3). At each recursion, {i,j, k,1, 1} is popped from stack and used
to initiate a stochastic traceback in accordance with partition function recursions given in [1]. The structures Sy, S
and sequence alignment A are updated based on the constraints that (i, j, k,) imposes on pairing and alignment of
nucleotides at indices i, j, k,[. The stochastic traceback for each partition function array {, j, k,, 1} is listed below:

o {i,j, k.1, o} ={i,j, k.1, V}

// Set appropriate structure and alignment elements ;

ADD (i,7) to Sy, (k,1) to Sa, {(i,k, ALN), (4,1, ALN)} to A4;

/* Sample one of 5 components from decomposition of V(i,j,k,l) as described in [1]. V(4,7 k,1)
has 5 components in total: W, WMB, Wmhi;, Wmhis, and SS */

s = RandChoose(W(i + 1,7 — 1,k + 1,1 — 1), // Indexed with i=1

WMB(i+1,5—1,k+1,1—1), // Indexed with i =2

Wmhiy (i + 1,5 — 1,k+ 1,1 — 1), // Indexed with i =3

Wmhis (i 4+ 1,5 —1,k+ 1,1 — 1), // Indexed with i =4

SS(i+1,j—1,k+1,1—-1));// Indexed with i =5

// Resolve which component of V(i,j,k,l) is sampled and push it on stack;

switch s do

case [

| PUSH {i+1,7—1,k+1,1—1, W} ON STACK;
case 2

|_ PUSH {i+1,j—1,k+ 1,1 — 1, WMB} ON STACK;
case 3

|_ PUSH {i+ 1,7 — 1,k+ 1,1 — 1, Wmhi; } ON STACK;
case 4

| PUSH {i+1,7—1,k+1,l—1, Wmhis} ON STACK;,
case 5

| PUSH {i+1,7—-1,k+1,1—1,SS} ON STACK;

Algorithm 3: Algorithm for Stochastic Traceback of V (i, j, k, 1)

L4 {Z.)j7k7l) w} = {i7.j)k7l7 SS}

Set s = RandChoose(my, (i + 1) mo(i + 1,k,INS1) SS(i + 1, j, k,1)
Tuy (K + 1) (i, k + 1,INS2) SS(i, 7,k + 1,1),
Tuy (0 + 1) my,(k+1) ma(i+1,k+ 1,ALN) SS(i + 1,4,k + 1,1)) ;
switch s do
case I
ADD (i+ 1,k, INS1) to A;
| PUSH {i+1,j,k,1,SS};
case 2
ADD (i, k + 1, INS2) to A;
| PUSH {i+1,j,k,1,SS};
case 3
ADD (i+ 1,k + 1, ALN) to A;
| PUSH {i+1,j,k+1,1,SS};

Algorithm 4: Stochastic Backtrack Algorithm for SS(i, 7, k,)

o {i,j, k.1 ¥} = {i,j, k1, WL}

ky = my, (1) 7y, (k) wo(i, k, ALN);
ko = my, (1) 7a(i, k — 1,INS1);
ks = mu, (k) ma(i — 1, k, INS2);
s = RandChoose(V (3, j, k, 1),
Vmbhe(i, j, k, 1), k1 x WL(i + 1,7,k + 1,1),
ko x WL(i + 1,4, k,1),
ks x WL(i, 7,k + 1,1)) ;
switch s do
case I
| PUSH {i,j,k,1,V};
case 2
| PUSH {i,j,k,I, Vmhe},
case 3
ADD (i, k, ALN) to A;
| PUSH {i+1,j,k+1,1,WL};
case 4
ADD (i, k — 1, INS1) to A;
| PUSH {i+1,j,k, I, WL};
case 5
ADD (i —1,k, INS2) to A;
| PUSH {i¢,4,k+ 1,1, WL};

Algorithm 5: Stochastic Backtrack Algorithm for WL(i, j, k, 1)

L4 {Z.)j7k7l) w} = {i7.j)k7l7 W}

ki = Tu, () Ty (1) ma(g, 1, ALN);
ko = mu, (J) ma(y, 1, INST);
ks = mu, (1) ma (4,1, INS2);
s = RandChoose(WL(4, j, k, 1),
kv W(i,j—1,k1—1),
ko W(i,j—1,k,1),
k3 W(iaj7k7l - 1)) ;
switch s do
case 1
| PUSH {i,j,k,I,WL};
case 2
ADD (4,1, ALN) to A;
| PUSH {i,j —1,k,1—1,W};
case 3
ADD (4,1, INS1) to A;
| PUSH {i,j — 1,k, I, W};
case 4
ADD (4,1, INS2) to A;
| PUSH {i,j,k,1—1,W};

Algorithm 6: Stochastic Backtrack Algorithm for W(i, j, k,)

o {i,j,k,l, v} = {i,j,k,I, WMBL}

/* Components of WMBL(4,j,k,l) are all possible concatenations of WL and WMBL arrays in the
form of WL(4,%p, k, kp) x (WL(ip + 1,7, kp +1,1) + WMBL(4, + 1, j, kp + 1,1)), i <ip<j, k<k, <l
WMBLComponents|] = {WL(4,7 + 1,k, k + 1) x (WL + 2,5,k +2,1) + WMBL(+ 2, 5, k + 2,1)),
WL(Z, i+ 3,k k+3) x (WL(i+4,j,k+4,1)+ WMBL(i + 4, j,k+4,1)),- - -,
WL(i,ip, k, kp) X (WL(ip + 1,7, kp +1,1) + WMBL(3p + 1,4, kp + 1,1)),-- -,
WL(4,j — 2,k, 1 —2) x (WL(j — 1,4,0 — 1,1) + WMBL(j — 1,5, — 1,1)} ;
// Sample from WMBLComponents array. s = RandChoose(WMBLComponents) ;
Find 4, and k, such that
WL(i,ip, k, kp) X (WL(ip + 1,7, kp, + 1,1) + WMBL(4p + 1,4, kp + 1,1)) = WMBLComponents|[s] ;
// Push WL component
PUSH (i, 4y, k, kp,WL);
// Sample again for WL(i, +1,j,k, + 1,1) and WMBL(4, + 1, k, + 1,1)
s = RandChoose(WL(i, + 1, j, kp + 1,1), WMBL(i, + 1,4, kp, + 1,1))
switch s do
case I
| PUSH {i, + 1,4, ky, + 1,1, WL};
case 2
| PUSH {i, + 1,4, k, + 1,1, WMBL};

*/

Algorithm 7: Stochastic Backtrack Algorithm for WMBL(¢, 7, k,)

o {i,j,k,l, ¥} = {i,j,k,l, WMB}

k1 =y, (J) mu, (1) ma(7,1, ALN);
ko = Tuy (]) ﬂ-a(ja la INSl)7
ks = mu, (k) ma (4,1, INS2);
s = RandChoose(WMBL(i, j, k, 1),
k1 x WMB(i,7 — 1, k, 1 — 1),
ko x WMB(i,5 — 1, k, 1),
ks x WMB(i, j, k, 1 — 1)) ;
switch s do
case I
| PUSH {i,j,k,|,WMBL} ;
case 2
ADD (j,1,ALN) to A ;
PUSH {i,j — 1,k,l — 1, WMB} ;
case 3

ADD (j,1,INS1) to A;
L PUSH {4,j — 1,k,l, WMB} ;
case 4

ADD (j,1,INS2) to A;
L PUSH {3, j, k,l — 1, WMB} ;

Algorithm 8: Stochastic Backtrack Algorithm for WMB(3, 7, k, 1)

b {Z'ajvkvla 1/1} = {i7ja kvl7 prll}

k = 7y, (i,5) mali,k — 1,INS1) ma(j,1,INS1) ;
ADD (i,) to Sy;

ADD (i, k — 1, INS1) to A;

ADD (4,1, INS1) to A;

s = RandChoose(k x Vmhe(i + 1,5 — 1, k, 1),
ExV(@i+1,7—1,k,1),

kEx Wmhis(i + 1,5 — 1,k,1)) ;

switch s do

case 1

| PUSH {i+1,5 —1,k,1,Vmhe};
case 2

| PUSH {i+1,7 -1,k 1, V};
case 3

|_ PUSH {i+ 1,7 — 1, k,l, Wmbhis };

Algorithm 9: Stochastic Backtrack Algorithm for Vpiy (4, j, k, 1)

o {i,j,k, 1, v} ={i,j,k,1, Vbpia}

k=mp, (k1) mq(i —1,k,INS2) 7,(j,1,INS2);
ADD (k. 1) to Sa;

ADD (i — 1,k, INS2) to A;

ADD (j,1, INS2) to A;

s = RandChoose(k x Vmhe(i, j, k + 1,1 — 1),
kX V(i,jk+1,0—1),

k x Wmhis (4,5, k + 1,1 — 1)) ;

switch s do

case 1

| PUSH {4,j,k+ 1,0l —1,Vmhe};

case 2

| PUSH {i,j,k+1,01—1,V};

case 3
| PUSH {i,j,k+ 1,0l — 1, Wmbhi, };

Algorithm 10: Stochastic Backtrack Algorithm for Vbpia (4, j, k,1)

o {i,j,k, 1, ¢} ={i,j,k,1, Wbpiy}

ADD (i,) to Sy;

ADD (i, k — 1, INS1) to A;

ADD (4,1, INS1) to A;

ADD (k,1) to Sy ;

k=mp, (4,5) ma(i,k —1,INS1) m,(j,1,INS1)
OpenWScore = W(i+ 1,5 — 1,k 1) = V(i+ 1,7 —1,k, 1) — Vmhe(i + 1,5 — 1,k,1)
s = RandChoose(k x OpenWScore,

Ex WMB(i+1,j — 1,k,1),

kEx Wmhiy (i + 1,5 — 1, k,1),
kExSS1(i+1,5—1,k,1));

switch s do

case 1

| PUSH {i+1,j —1,k,l,OpenW};
case 2

|_ PUSH {i+ 1,7 — 1, k,l, Wmbhis };
case 3

| PUSH {i+1,5—1,k, 1, Wmhi, };
case 4

| PUSH {i+1,5—1,k,1,SS:1};

Algorithm 11: Stochastic Backtrack Algorithm for Whbpis (4, 7, k,1)

o {i,j,k, 1, ¥} ={i,j,k,1, Whbpis}

ADD (k,1) to Sa;

ADD (i — 1, k, INS2) to A;

ADD (4,1, INS2) to A;

ADD (k,1) to Sy ;

k=mpy, (k1) mq(i —1,k,INS2) m,(j,1,INS2)
OpenWScore = W(i, j,k+ 1,1 —1) = V(i,j,k+ 1,1 — 1) — Vmhe(d, j, k + 1,1 — 1)
s = RandChoose(k x OpenWScore,

kx WMB(i,j,k+ 1,1 — 1),

k x Wmhi; (i, j, k + 1,1 — 1),

k xSS(i,5,k+1,1—1));
switch s do

case 1

| PUSH {4,5,k+ 1,1 —1,0penW};
case 2

| PUSH {i,j,k+ 1,0 — 1, Wmbhi, };
case 3

| PUSH {i,j,k+ 1,1 — 1, Wmhi, };
case 4
| PUSH {i,5,k+1,1—1,8S:};

Algorithm 12: Stochastic Backtrack Algorithm for Whpis (7, 7, &, 1)

L4 {Z.)j7 k7l5 w} = {i7.j) k? l7 Openw}

k1 = mu, (§) muy (1) ma(d, 1, ALN);
ko = mu, () ma(j,1,INS1);
ks = mu, (1) wa(J,1,INS2);
s = RandChoose(WL(4, j, k, 1) — V(4, j, k, 1) — Vmhe(s, j, k,),
kv x W(i,j— 1,k 1 —1),
ko x W(i,j —1,k,1),
ks x W(i, j, k,l — 1)) ;
switch s do
case 1
| PUSH {i,j,k,1,OpenWL};
case 2
ADD (4,1, ALN) to A;
| PUSH {i,j —1,k,1—1,W};
case 3
ADD (4,1, INS1) to A;
| PUSH {i,j — 1,k,1, W},
case 4
ADD (4,1, INS2) to A;
| PUSH {i,j,k,1—1,W};

Algorithm 13: Stochastic Backtrack Algorithm for OpenW(i, j, k, 1)

o {i,j,k, 1, v} ={i,j,k,1, Open WL}

k1 = my, (1) X Ty, (k) 7a(i, k, ALN);
ko = my, (1) X ma (i, k — 1,INS1);
ks = mu, (k) X ma(i — 1, k, INS2);
s = RandChoose(k; x WL(’L + 1,5, k+1,1),
ko x WL(i + 1,4, k,1),
ks x WL(i, 7,k + 1,1)) ;
switch s do
case 1

ADD (i, k, ALN) to A;
| PUSH {i+1,j,k+ 1,1, WL};
case 2

ADD (i, k — 1, INS1) to A;
| PUSH {i+1,j,k, [, WL};
case 3

ADD (i —1,k, INS2) to A;
| PUSH {i¢,5,k+ 1,1, WL};

Algorithm 14: Stochastic Backtrack Algorithm for OpenWL(i, j, k, 1)

o {Z.ajvk7la ¢} = {ivja k7l7 WbaU.1}

ADD (i,) to Sy;

ADD (i, k, ALN) to A;

ADD (4,1, ALN) to A;

kzﬂpl(i7j) ﬂ—uz(k) Wuz(l) Wa(iakvALN) Wa(j7l7ALN));

s = RandChoose(k x (W(i +1,j —1,k+1,1—-1)—-V(i+1,j—1,k+1,1—1) — Vmhe(i + 1,5 — 1,k + 1,1 — 1)),
ExWMB(i+1,j—1,k+1,1—1),

ke x Withiy (i +1,§ — 1,k +1,0— 1),

ExSS(i+1,j—1,k+1,1—1));

switch s do

case 1

| PUSH {i+1,j—1,k+1,l—1, Wopen}
case 2

| PUSH {i+1,7—-1,k+1,1—1, WMB};
case 3

| PUSH {i+1,7—1,k+1,l—1, Wmbhi, };
case 4

|_ PUSH {i+ 1,5 —1,k+1,1—1,SS};

Algorithm 15: Stochastic Backtrack Algorithm for Wbauy (4, 7, k, 1)

L4 {Z.ajvk7la ¢} = {ivja k7l7 WbaUQ}

ADD (k,1) to So;

ADD (i, k, ALN) to A;

ADD (4,1, ALN) to A;

k= mp, (k1) my, (1) muy (5) ma(i, k, ALN) 7o (j,1, ALN);

s = RandChoose(k x (W(i + 1,7 —1,k+1,1—-1)—-V(@i+1,j—1,k+1,1—1)—Vmhe(i + 1,5 — 1,k + 1,1 — 1)),
kx WMB(i +1,7 — 1,k +1,0— 1),

kx Wmhiy(i +1,j — 1,k+1,0— 1),

kxSS(i+1,j—1,k+1,0—1));

switch s do

case 1

| PUSH {3, k,1, Wopen}

case 2

|_ PUSH {i+1,j—1,k+ 1,1 — 1, WMB};
case 3

| PUSH {i+1,7—1,k+1,l—1, Wmhis};
case 4

|_ PUSH {i+ 1,5 —1,k+1,1—1,SS};

Algorithm 16: Stochastic Backtrack Algorithm for Wbaus(i, 7, k,)

® {Z.ajkaa ¢} = {i7j, k,l, Vbaul}

10

ADD (i,) to Sy;

ADD (i, k, ALN) to A;

ADD (4,1, ALN) to A;

s = RandChoose(k x Vmhe(i + 1,5 — 1,k + 1,0 — 1),
ExV(@i+1,7—1Lk+1,1-1),

kx Wmhis(i+ 1,5 — 1,k+1,1—1));

k=mp (4,7) Tu,(k) muy(l) ma(i, k, ALN) mo(j,1, ALN);
switch s do

case 1

| PUSH {i+1,5—1,k+1,1—1,Vmhe};
case 2

| PUSH{i+1,7—-1,k+1,1-1,V}
case 3

|_ PUSH {i+ 1,7 — L,k+ 1,1 — 1, Wmbhis };

Algorithm 17: Stochastic Backtrack Algorithm for Vbauy (i, j, k, 1)

b {Z.ajkaa ¢} = {i7j; k,l, Vbaug}

ADD (k,1) to So;

ADD (i, k, ALN) to A;

ADD (4,1, ALN) to A4;

s = RandChoose(k Vmhe(i+1,j — 1,k + 1,1 — 1),
ExV(i+1,j—1,k+1,01—1),

ko x Wmhig (i + 1,5 — 1,k +1,0— 1)) ;

k=mp, (k1) my, (3) Ty, (§) ma(i, k, ALN) mo(j,1, ALN);
switch s do

case 1

|_ PUSH {i+ 1,5 —1,k+ 1,1 — 1, Vmhe};
case 2

| PUSH{i+1,7—-1,k+1,1-1,V}
case 3

| PUSH {i+1,7—1,k+1,l—1, Wmbhi, };

Algorithm 18: Stochastic Backtrack Algorithm for Vbaus(i, j, k, 1)

o {i,j.k,1, ¥} = {i,j, k1, Wmhi}

s = RandChoose(Wmbhiy (4, j, k, 1), Wmbhis (2, 7, k, 1)) ;
switch s do

case 1

| PUSH {i,j,k,1, Wmbhi, } ;

case 2

| PUSH {3,j,k,1, Wmhis} ;

Algorithm 19: Stochastic Backtrack Algorithm for Wmbhi(s, j, k, 1)

4 {i’jvkvla 1/1} = {i7ja kvl7 Wmhll}

11

s = RandChoose(Wbauy (4, j, k, 1), Wbpiy (i, 7, k, 1)) ;
switch s do
case 1
| PUSH {i,j,k,1, Whau, };
case 2
| PUSH {,j,k,1, Wbpi; };

Algorithm 20: Stochastic Backtrack Algorithm for Wmbhis (2, j, k, 1)

s = RandChoose(Wbaus (i, j, k, 1), Whbpia (i, 7, k, 1)) ;
switch s do
case 1
| PUSH {i,j,k,1, Whaus};

case 2
|_ PUSH {4, j, k,1, Whpis };

Algorithm 21: Stochastic Backtrack Algorithm for Wmbhis (4, j, k, 1)

b {iajvkala 1/}} = {i7j, k,l, the}

s = RandChoose(Vmhe (4, 4, k, 1), Vmhes (i, 7, k, 1)) ;
switch s do
case 1
| PUSH {i, . k.1, Vmhe, };

case 2
| PUSH {i,j,k, 1, Vmhes};

Algorithm 22: Stochastic Backtrack Algorithm for Vmbhe(i, j, k, 1)

. {i’j7k7la w} = {iyj, k7l, thel}

s = RandChoose(Vbau (i, j, k, 1), Vbpii (4, j, k, 1)) ;
switch s do
case 1
| PUSH {i,j,k, 1, Vbaus };

case 2
|_ PUSH {4, j, k,1, Vbpij };

Algorithm 23: Stochastic Backtrack Algorithm for Vmhe; (i, j, k, 1)

b {iajvkaly 1/}} = {i7j, k,l, theg}

s = RandChoose(Vbaus (4, j, k, 1), Vbpia(i, 4, k, 1)) ;
switch s do
case 1
| PUSH {i, j, k.1, Vbau};

case 2
|_ PUSH {i,j, kv l7pr12}7

Algorithm 24: Stochastic Backtrack Algorithm for Vmhes (i, j, k, 1)

12

Computation of Calinski-Harabasz (CH) Index and Cluster Centroid Struc-
ture and Alignment

The stochastic sampling of the structural alignments yields a set of n representative structural alignments Sy, Ss, ..., Sy,
which in turn provide a corresponding set of structures Sq.1,S1,2,...,S1,, for x; and 821,822, ...,S2,, for x; and a set
of alignments A, As,...,A,. Each sample of secondary structures or sequence alignments is hierarchically clustered
using the diana algorithm [3]. This clustering process arranges the n sample elements (structures or alignments) in a
hierarchical tree or dendrogram. For a hierarchical clustering tree of a sample of size n, the tree is cut at an appropriate
height hj to generate a set of k clusters denoted by C}. The m*™ cluster in C}, is denoted by Cy,,, for 1 < m < k. Ckm
is the set of the sample indices of structures in m*™ cluster buch that Cg,, (i) is used to denote the sample index of i*®

element in m" cluster in Cj. The number of elements in m" cluster in Cj, is denoted by n,,. The optimal cutting

height hy,,, and a corresponding cluster count kop; are determined to maximize the Calinski-Harabasz (CH) Index [4]
defined as:
(BGSS(Ck))
k—1
CH(k) = (WGSS(ck)) (2)
n—1

where BGSS stands for “between-groups sum of squares distance” and WGSS stands for “within-group sum of square
distance.” BGSS and WGSS are computed as:

k
WGSS(Cy) = Y (nm (3)
and
BGSS(Cy) = (k —1)d2 + Z —d2) (4)

where d2 denotes the average of squared distances between all n(n — 1) / 2 pairs of elements and d2, denotes the average
of squared distances between all n,,(n,, — 1)/2 pairs of elements in m*® cluster in Cj.. 2 and d2 are computed as:

— 2
P =———— 3" tr((Ms — Mp)(M, — M,)"
nln = 1) r((b)(b)) (5)
1<a<n
a<b
and 5
G= oy 2 (Mo, @ ~ Moy,)Moy, @ ~ Moy, ®)") (6)
mATm 1<a<n,
“a<b

where M; represents the matrix representation of element at sample index i, tr(...) denotes the trace of the matrix
in the argument, and (...)T represents the transpose of the matrix in the argument. For the clustering of secondary
structures of an RNA sequence of length N, M, is an upper triangular matrix of size N x N defined as:

1 if r < s and nucleotides at indices r and s are paired in i*® structure
0 otherwise

M, (r, s) = { (7)

For the clustering of sequence alignments of two RNA sequences of lengths N7 and Ny, M; is a matrix of size
N x N3 defined as:

1 if nucleotides at indices and s are aligned in i*? alignment
M;(r, s) = . (8)
0 otherwise
The term tr((Mc,, (@) —Mc,.,. 1)) Mc,,. (a) ~Mc,. 1))") in Equations (5) and (6) formulates the squared distance
between elements a and b in sample. The squared distances is squared base pair distance and squared aligned position
distance for structures and for alignments, respectively.

13

For the optimal number of clusters that maximize CH(k), the centroid structure of cluster Cy,,, in Cj, is the structure
that has the smallest average base pair distance to all the structures in Cg,,:

Nm

. 1
Scent = asl;"grsmn TL_ Z tr((Ms — MCkm(a))(MS — MCk,m(a))T) (9)
€Sal m

a=1

where S,y represents the set of all possible secondary structures of the sequence, Scent denotes the centroid structure,
and Mg is the upper triangular matrix representing the structure S as defined above by matrix representation of
secondary structures. Two nucleotides at indices r, s are paired in the centroid structure of m'" cluster if more than
| %4~] of structures in the cluster have nucleotides at indices r, s paired. Because if more than [“3* | of structures in the
cluster have nucleotides at indices r, s paired, a structure with nucleotides at r, s paired has lower average distance to
structures in the cluster than a structure that has nucleotides at r, s unpaired. Thus, the set of base pairs (7, s) in the
centroid structure can be defined as:

Seens = {(r, 1S Moy, (s > o J} (10)
a=1

These computations are similar to the computation of centroid structures described by Ding et al. [5]. Computation
of cluster centroid for sequence alignments can be similarly formulated.

References

[1] Harmanci, A. O., Sharma, G., and Mathews, D. H. (2008) PARTS: Probabilistic alignment for RNA joinT secondary
structure prediction. Nucleic Acids Res., 36, 2406—2417.

[2] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992) Numerical Recipes in C, Cambridge
University Press, Cambridge, U.K. second edition.

[3] Kaufman, L. and Rousseeuw, P. J. (2005) Finding Groups in Data; An Introduction to Cluster Analysis, Wiley,
New York, NY.

[4] Calinski, R. and Harabasz, J. (1974) A dendrite method for cluster analysis. Commun. Stat., 3, 1 — 27.

[5] Ding, Y., Chan, C. Y., and Lawrence, C. E. (2005) RNA secondary structure prediction by centroids in a Boltzmann
weighted ensemble. RNA, 11, 1157-1166.

14

