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Overview

The algorithmic details of stochastic sampling method are presented. The notations are introduced first. Then the
relationship between the partition function arrays in the PARTS algorithm and the Structural Alignment Atoms (SAAs)
are presented. The details and flow of iterative sampling are presented next followed by the recursions for iterative
sampling utilizing the partition function arrays. The last section presents the computation of the Calinski-Harabasz
index and centroid structures and alignments.

Notation

The two input sequences are denoted by x1 and x2 and their lengths by N1 and N2, respectively. Throughout the
description of the recursions, i and j denote nucleotide indices in the first sequence and k and l denote nucleotide
indices in the second sequence. S1 and S2 are used to denote secondary structures of x1 and x2, respectively. A

denotes a sequence alignment between x1 and x2. An SAA at sequence indices i, j ∈ x1 and k, l ∈ x2 is denoted by
χ(i, j, k, l). The partition function arrays are denoted by ψ where an array location is indexed by a quadruple (i, j, k, l)
where i and j are indices in x1 and k and l are indices in x2.

Relationship between Partition Function Arrays and SAAs

The partition function computation in PARTS utilizes 8 arrays such that an array location ψ(i, j, k, l) stores the
summation of exponentials of negative pseudo free energies of structural alignments between sequence fragments from
index i to j in x1 and from index k to l in x2 under constraints on the types of structural alignments that a given array
ψ handles. The set of arrays, ψ, was defined previously in [1] and is briefly summarized here. For an array ψ and
nucleotide indices i, j, k, l possibilities of base pairing and alignment of nucleotides at indices i, j ∈ x1 and k, l ∈ x2 are
defined by a SAA χ(i, j, k, l) that is specific to ψ. The set of possible SAAs χ(i, j, k, l) corresponding to each partition
function array ψ at indices i, j, k, l are listed below:

1. V(i, j, k, l): Paired nucleotides at (i, j) are aligned to paired nucleotides at (k, l).

2. WL(i, j, k, l):

(a) SAAs specified by V(i, j, k, l) array.
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(b) Unpaired nucleotide i is aligned to unpaired nucleotide at k

(c) Unpaired nucleotide i is inserted

(d) Unpaired nucleotide k is inserted

(e) Unpaired nucleotide j is aligned to unpaired nucleotide at l

(f) Unpaired nucleotide j is inserted

(g) Unpaired nucleotide l is inserted

3. Vbpi(i, j, k, l):

(a) Base pair nucleotides at (i, j) are inserted

(b) Base pair nucleotides at (k, l) are inserted

4. Vbau(i, j, k, l):

(a) Paired nucleotides at (i, j) are aligned to unpaired nucleotides at k, l, respectively.

(b) Paired nucleotides at (k, l) are aligned to unpaired nucleotides at i, j, respectively.

5. Wbau(i, j, k, l):

(a) Paired nucleotides at (i, j) are aligned to unpaired nucleotides at k, l, respectively.

(b) Paired nucleotides at (k, l) are aligned to unpaired nucleotides at i, j, respectively.

6. Wbpi(i, j, k, l):

(a) Base pair nucleotides at (i, j) are inserted

(b) Base pair nucleotides at (k, l) are inserted

7. SS(i, j, k, l):

(a) Unpaired nucleotide i is aligned to unpaired nucleotide at k

(b) Unpaired nucleotide i is inserted

(c) Unpaired nucleotide k is inserted

(d) Unpaired nucleotide j is aligned to unpaired nucleotide at l

(e) Unpaired nucleotide j is inserted

(f) Unpaired nucleotide l is inserted

WMBL, WMB, Vmhe, and Wmhi arrays are computed by processing of above arrays [1] and they do not directly
specify SAAs at indices i, j, k, l.

Iterative Sampling of SAAs utilizing Partition Function Arrays

Iterative sampling algorithm is implemented via a recursive stochastic traceback of partition function arrays computed
by PARTS algorithm [1]. Recursive stochastic traceback utilizes the dependencies in partition function arrays to
compute P (χ(i, j, k, l)|Sext(i, j, k, l)). This algorithm is similar to maximum a posteriori (MAP) traceback of PARTS
algorithm with two main differences: 1) Stochastic traceback utilizes the partition function arrays whereas MAP
traceback utilizes MAP arrays. 2) The stochastic traceback algorithm probabilistically generates a different structural
alignment every time it operates on two RNA sequences. MAP traceback, however, always computes the same MAP
structural alignment.
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Recursions for Stochastic Traceback

A random selection operator, denoted by RandChoose(E1,E2, · · · ,EN ), is utilized in the stochastic traceback recursions
to probabilistically chooses an index out of [1, 2, . . . , N ] where the probability that an index i is sampled is proportional
to the magnitude of Ei. The probability of choosing index i is therefore:

P (RandChoose(E1,E2, · · · ,EN ) = i) =
Ei

∑

k Ek

(1)

Algorithm 1 shows the algorithm for the RandChoose operator. The pseudo random number generation in Algorithm
1 is accomplished by ran3 algorithm [2]. At the beginning of generation of a sample of structural alignments, ran3 is
seeded with the number of seconds since the epoch as returned by time function. The number of seconds provides a
constantly changing seed value for the pseudo random number generator, which ensures that the consecutively generated
sample of structural alignments are not identical.

Generate a pseudo random number α ∈ [0, 1] ;
Set α = α×

∑

k Ek ;

Compute Ci =
∑i

1Ek and set C0 = 0 ;
Find index i such that Ci−1 ≤ α ≤ Ci; ;
return i ;

Algorithm 1: RandChoose Algorithm

Set s = RandChoose(W(1, N1, 1, N2),WMB(1, N1, 1, N2)) ;
if s = 1 then

PUSH {1, N1, 1, N2,W} ON STACK;
else

PUSH {1, N1, 1, N2,WMB} ON STACK;

while STACK NOT EMPTY do
POP {i, j, k, l, ARRAY ID};
TRACEBACK {i, j, k, l, ARRAY ID};

Algorithm 2: Main Stochastic Traceback Loop

Algorithm 2 shows the main stochastic traceback loop. Stochastic traceback utilizes a stack to ensure correct traceback
of multibranched structures. A structural alignment is built by recursively backtracking the partition function arrays
starting with W(1, N1, 1, N2) and WMB(1, N1, 1, N2). At each recursion, {i, j, k, l, ψ} is popped from stack and used
to initiate a stochastic traceback in accordance with partition function recursions given in [1]. The structures S1, S2

and sequence alignment A are updated based on the constraints that ψ(i, j, k, l) imposes on pairing and alignment of
nucleotides at indices i, j, k, l. The stochastic traceback for each partition function array {i, j, k, l, ψ} is listed below:

• {i, j, k, l, ψ} = {i, j, k, l, V}
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// Set appropriate structure and alignment elements ;
ADD (i, j) to S1, (k, l) to S2, {(i, k,ALN), (j, l,ALN)} to A;
/* Sample one of 5 components from decomposition of V(i, j, k, l) as described in [1]. V(i, j, k, l)

has 5 components in total: W, WMB, Wmhi1, Wmhi2, and SS */

s = RandChoose(W(i+ 1, j − 1, k + 1, l − 1), // Indexed with i = 1
WMB(i+ 1, j − 1, k + 1, l− 1), // Indexed with i = 2
Wmhi1(i+ 1, j − 1, k + 1, l − 1), // Indexed with i = 3
Wmhi2(i+ 1, j − 1, k + 1, l − 1), // Indexed with i = 4
SS(i+ 1, j − 1, k + 1, l− 1)) ; // Indexed with i = 5
// Resolve which component of V(i, j, k, l) is sampled and push it on stack ;
switch s do

case 1
PUSH {i+ 1, j − 1, k + 1, l− 1,W} ON STACK;

case 2
PUSH {i+ 1, j − 1, k + 1, l− 1,WMB} ON STACK;

case 3
PUSH {i+ 1, j − 1, k + 1, l− 1,Wmhi1} ON STACK;

case 4
PUSH {i+ 1, j − 1, k + 1, l− 1,Wmhi2} ON STACK;

case 5
PUSH {i+ 1, j − 1, k + 1, l− 1, SS} ON STACK;

Algorithm 3: Algorithm for Stochastic Traceback of V(i, j, k, l)

• {i, j, k, l, ψ} = {i, j, k, l, SS}

Set s = RandChoose(πu1
(i+ 1) πa(i+ 1, k, INS1) SS(i+ 1, j, k, l)

πu2
(k + 1) πa(i, k + 1, INS2) SS(i, j, k + 1, l),

πu1
(i+ 1) πu2

(k + 1) πa(i+ 1, k + 1,ALN) SS(i+ 1, j, k + 1, l)) ;
switch s do

case 1
ADD (i+ 1, k, INS1) to A;
PUSH {i+ 1, j, k, l,SS};

case 2
ADD (i, k + 1, INS2) to A;
PUSH {i+ 1, j, k, l,SS};

case 3
ADD (i+ 1, k + 1, ALN) to A;
PUSH {i+ 1, j, k + 1, l, SS};

Algorithm 4: Stochastic Backtrack Algorithm for SS(i, j, k, l)

• {i, j, k, l, ψ} = {i, j, k, l, WL}
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k1 = πu1
(i) πu2

(k) πa(i, k,ALN);
k2 = πu1

(i) πa(i, k − 1, INS1);
k3 = πu2

(k) πa(i− 1, k, INS2);
s = RandChoose(V(i, j, k, l),
Vmhe(i, j, k, l), k1 × WL(i+ 1, j, k + 1, l),
k2 × WL(i+ 1, j, k, l),
k3 × WL(i, j, k + 1, l)) ;
switch s do

case 1
PUSH {i, j, k, l,V};

case 2
PUSH {i, j, k, l,Vmhe};

case 3
ADD (i, k, ALN) to A;
PUSH {i+ 1, j, k + 1, l,WL};

case 4
ADD (i, k − 1, INS1) to A;
PUSH {i+ 1, j, k, l,WL};

case 5
ADD (i− 1, k, INS2) to A;
PUSH {i, j, k + 1, l,WL};

Algorithm 5: Stochastic Backtrack Algorithm for WL(i, j, k, l)

• {i, j, k, l, ψ} = {i, j, k, l, W}

k1 = πu1
(j) πu2

(l) πa(j, l,ALN);
k2 = πu1

(j) πa(j, l, INS1);
k3 = πu2

(l) πa(j, l, INS2);
s = RandChoose(WL(i, j, k, l),
k1 W(i, j − 1, k, l− 1),
k2 W(i, j − 1, k, l),
k3 W(i, j, k, l− 1)) ;
switch s do

case 1
PUSH {i, j, k, l,WL};

case 2
ADD (j, l, ALN) to A;
PUSH {i, j − 1, k, l− 1,W};

case 3
ADD (j, l, INS1) to A;
PUSH {i, j − 1, k, l,W};

case 4
ADD (j, l, INS2) to A;
PUSH {i, j, k, l− 1,W};

Algorithm 6: Stochastic Backtrack Algorithm for W(i, j, k, l)

• {i, j, k, l, ψ} = {i, j, k, l, WMBL}
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/* Components of WMBL(i, j, k, l) are all possible concatenations of WL and WMBL arrays in the

form of WL(i, ip, k, kp) × (WL(ip + 1, j, kp + 1, l) + WMBL(ip + 1, j, kp + 1, l)), i < ip < j, k < kp < l */

WMBLComponents[] = {WL(i, i+ 1, k, k + 1) × (WL(i+ 2, j, k + 2, l) + WMBL(i+ 2, j, k + 2, l)),
WL(i, i+ 3, k, k + 3) × (WL(i+ 4, j, k + 4, l) + WMBL(i+ 4, j, k + 4, l)), · · · ,
WL(i, ip, k, kp) × (WL(ip + 1, j, kp + 1, l) + WMBL(ip + 1, j, kp + 1, l)), · · · ,
WL(i, j − 2, k, l− 2) × (WL(j − 1, j, l − 1, l) + WMBL(j − 1, j, l − 1, l)} ;
// Sample from WMBLComponents array. s = RandChoose(WMBLComponents) ;
Find ip and kp such that
WL(i, ip, k, kp) × (WL(ip + 1, j, kp + 1, l) + WMBL(ip + 1, j, kp + 1, l)) = WMBLComponents[s] ;
// Push WL component

PUSH (i, ip, k, kp,WL);
// Sample again for WL(ip + 1, j, kp + 1, l) and WMBL(ip + 1, j, kp + 1, l)
s = RandChoose(WL(ip + 1, j, kp + 1, l),WMBL(ip + 1, j, kp + 1, l))
switch s do

case 1
PUSH {ip + 1, j, kp + 1, l,WL};

case 2
PUSH {ip + 1, j, kp + 1, l,WMBL};

Algorithm 7: Stochastic Backtrack Algorithm for WMBL(i, j, k, l)

• {i, j, k, l, ψ} = {i, j, k, l, WMB}

k1 = πu1
(j) πu2

(l) πa(j, l,ALN);
k2 = πu1

(j) πa(j, l, INS1);
k3 = πu2

(k) πa(j, l, INS2);
s = RandChoose(WMBL(i, j, k, l),
k1 × WMB(i, j − 1, k, l− 1),
k2 × WMB(i, j − 1, k, l),
k3 × WMB(i, j, k, l− 1)) ;
switch s do

case 1
PUSH {i, j, k, l,WMBL} ;

case 2

ADD (j, l,ALN) to A ;
PUSH {i, j − 1, k, l− 1,WMB} ;
case 3

ADD (j, l, INS1) to A;
PUSH {i, j − 1, k, l,WMB} ;

case 4
ADD (j, l, INS2) to A;
PUSH {i, j, k, l− 1,WMB} ;

Algorithm 8: Stochastic Backtrack Algorithm for WMB(i, j, k, l)

• {i, j, k, l, ψ} = {i, j, k, l, Vbpi1}
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k = πp1
(i, j) πa(i, k − 1, INS1) πa(j, l, INS1) ;

ADD (i, j) to S1;
ADD (i, k − 1, INS1) to A;
ADD (j, l, INS1) to A;
s = RandChoose(k × Vmhe(i+ 1, j − 1, k, l),
k × V(i+ 1, j − 1, k, l),
k × Wmhi2(i+ 1, j − 1, k, l)) ;
switch s do

case 1
PUSH {i+ 1, j − 1, k, l,Vmhe};

case 2
PUSH {i+ 1, j − 1, k, l,V};

case 3
PUSH {i+ 1, j − 1, k, l,Wmhi2};

Algorithm 9: Stochastic Backtrack Algorithm for Vpi1(i, j, k, l)

• {i, j, k, l, ψ} = {i, j, k, l, Vbpi2}

k = πp2
(k, l) πa(i− 1, k, INS2) πa(j, l, INS2);

ADD (k, l) to S2;
ADD (i− 1, k, INS2) to A;
ADD (j, l, INS2) to A;
s = RandChoose(k × Vmhe(i, j, k + 1, l − 1),
k × V(i, j, k + 1, l − 1),
k × Wmhi2(i, j, k + 1, l− 1)) ;
switch s do

case 1
PUSH {i, j, k + 1, l− 1,Vmhe};

case 2
PUSH {i, j, k + 1, l− 1,V};

case 3
PUSH {i, j, k + 1, l− 1,Wmhi2};

Algorithm 10: Stochastic Backtrack Algorithm for Vbpi2(i, j, k, l)

• {i, j, k, l, ψ} = {i, j, k, l, Wbpi1}
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ADD (i, j) to S1;
ADD (i, k − 1, INS1) to A;
ADD (j, l, INS1) to A;
ADD (k, l) to S1 ;
k = πp1

(i, j) πa(i, k − 1, INS1) πa(j, l, INS1)
OpenWScore = W(i+ 1, j − 1, k, l)− V(i+ 1, j − 1, k, l)− Vmhe(i+ 1, j − 1, k, l)
s = RandChoose(k × OpenWScore,
k × WMB(i+ 1, j − 1, k, l),
k × Wmhi1(i+ 1, j − 1, k, l),
k × SS1(i+ 1, j − 1, k, l)) ;
switch s do

case 1
PUSH {i+ 1, j − 1, k, l,OpenW};

case 2
PUSH {i+ 1, j − 1, k, l,Wmhi2};

case 3
PUSH {i+ 1, j − 1, k, l,Wmhi1};

case 4
PUSH {i+ 1, j − 1, k, l, SS1};

Algorithm 11: Stochastic Backtrack Algorithm for Wbpi1(i, j, k, l)

• {i, j, k, l, ψ} = {i, j, k, l, Wbpi2}

ADD (k, l) to S2;
ADD (i− 1, k, INS2) to A;
ADD (j, l, INS2) to A;
ADD (k, l) to S2 ;
k = πp2

(k, l) πa(i− 1, k, INS2) πa(j, l, INS2)
OpenWScore = W(i, j, k + 1, l− 1) − V(i, j, k + 1, l− 1) − Vmhe(i, j, k + 1, l− 1)
s = RandChoose(k × OpenWScore,
k × WMB(i, j, k + 1, l − 1),
k × Wmhi1(i, j, k + 1, l− 1),
k × SS(i, j, k + 1, l − 1)) ;
switch s do

case 1
PUSH {i, j, k + 1, l− 1,OpenW};

case 2
PUSH {i, j, k + 1, l− 1,Wmhi2};

case 3
PUSH {i, j, k + 1, l− 1,Wmhi1};

case 4
PUSH {i, j, k + 1, l− 1, SS1};

Algorithm 12: Stochastic Backtrack Algorithm for Wbpi2(i, j, k, l)

• {i, j, k, l, ψ} = {i, j, k, l, OpenW}
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k1 = πu1
(j) πu2

(l) πa(j, l,ALN);
k2 = πu1

(j) πa(j, l, INS1);
k3 = πu2

(l) πa(j, l, INS2);
s = RandChoose(WL(i, j, k, l) − V(i, j, k, l) − Vmhe(i, j, k, l),
k1 × W(i, j − 1, k, l− 1),
k2 × W(i, j − 1, k, l),
k3 × W(i, j, k, l− 1)) ;
switch s do

case 1
PUSH {i, j, k, l,OpenWL};

case 2
ADD (j, l, ALN) to A;
PUSH {i, j − 1, k, l− 1,W};

case 3
ADD (j, l, INS1) to A;
PUSH {i, j − 1, k, l,W};

case 4
ADD (j, l, INS2) to A;
PUSH {i, j, k, l− 1,W};

Algorithm 13: Stochastic Backtrack Algorithm for OpenW(i, j, k, l)

• {i, j, k, l, ψ} = {i, j, k, l, OpenWL}

k1 = πu1
(i) × πu2

(k) πa(i, k,ALN);
k2 = πu1

(i) × πa(i, k − 1, INS1);
k3 = πu2

(k) × πa(i− 1, k, INS2);
s = RandChoose(k1 × WL(i+ 1, j, k + 1, l),
k2 × WL(i+ 1, j, k, l),
k3 × WL(i, j, k + 1, l)) ;
switch s do

case 1
ADD (i, k, ALN) to A;
PUSH {i+ 1, j, k + 1, l,WL};

case 2
ADD (i, k − 1, INS1) to A;
PUSH {i+ 1, j, k, l,WL};

case 3
ADD (i− 1, k, INS2) to A;
PUSH {i, j, k + 1, l,WL};

Algorithm 14: Stochastic Backtrack Algorithm for OpenWL(i, j, k, l)

• {i, j, k, l, ψ} = {i, j, k, l, Wbau1}
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ADD (i, j) to S1;
ADD (i, k, ALN) to A;
ADD (j, l, ALN) to A;
k = πp1

(i, j) πu2
(k) πu2

(l) πa(i, k,ALN) πa(j, l,ALN));
s = RandChoose(k × (W(i+ 1, j − 1, k + 1, l− 1) − V(i+ 1, j − 1, k + 1, l − 1) − Vmhe(i+ 1, j − 1, k + 1, l− 1)),
k × WMB(i+ 1, j − 1, k + 1, l− 1),
k × Wmhi1(i+ 1, j − 1, k + 1, l− 1),
k × SS(i+ 1, j − 1, k + 1, l− 1)) ;
switch s do

case 1
PUSH {i+ 1, j − 1, k + 1, l− 1,Wopen}

case 2
PUSH {i+ 1, j − 1, k + 1, l− 1,WMB};

case 3
PUSH {i+ 1, j − 1, k + 1, l− 1,Wmhi1};

case 4
PUSH {i+ 1, j − 1, k + 1, l− 1, SS};

Algorithm 15: Stochastic Backtrack Algorithm for Wbau1(i, j, k, l)

• {i, j, k, l, ψ} = {i, j, k, l, Wbau2}

ADD (k, l) to S2;
ADD (i, k, ALN) to A;
ADD (j, l, ALN) to A;
k = πp2

(k, l) πu1
(i) πu1

(j) πa(i, k,ALN) πa(j, l,ALN);
s = RandChoose(k × (W(i+ 1, j − 1, k + 1, l− 1) − V(i+ 1, j − 1, k + 1, l − 1) − Vmhe(i+ 1, j − 1, k + 1, l− 1)),
k × WMB(i+ 1, j − 1, k + 1, l− 1),
k × Wmhi1(i+ 1, j − 1, k + 1, l− 1),
k × SS(i+ 1, j − 1, k + 1, l− 1)) ;
switch s do

case 1
PUSH {i, j, k, l,Wopen}

case 2
PUSH {i+ 1, j − 1, k + 1, l− 1,WMB};

case 3
PUSH {i+ 1, j − 1, k + 1, l− 1,Wmhi2};

case 4
PUSH {i+ 1, j − 1, k + 1, l− 1, SS};

Algorithm 16: Stochastic Backtrack Algorithm for Wbau2(i, j, k, l)

• {i, j, k, l, ψ} = {i, j, k, l, Vbau1}
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ADD (i, j) to S1;
ADD (i, k, ALN) to A;
ADD (j, l, ALN) to A;
s = RandChoose(k × Vmhe(i+ 1, j − 1, k + 1, l− 1),
k × V(i+ 1, j − 1, k + 1, l− 1),
k × Wmhi2(i+ 1, j − 1, k + 1, l− 1)) ;
k = πp1

(i, j) πu2
(k) πu2

(l) πa(i, k,ALN) πa(j, l,ALN);
switch s do

case 1
PUSH {i+ 1, j − 1, k + 1, l− 1,Vmhe};

case 2
PUSH {i+ 1, j − 1, k + 1, l− 1,V};

case 3
PUSH {i+ 1, j − 1, k + 1, l− 1,Wmhi2};

Algorithm 17: Stochastic Backtrack Algorithm for Vbau1(i, j, k, l)

• {i, j, k, l, ψ} = {i, j, k, l, Vbau2}

ADD (k, l) to S2;
ADD (i, k, ALN) to A;
ADD (j, l, ALN) to A;
s = RandChoose(k Vmhe(i+ 1, j − 1, k + 1, l− 1),
k × V(i+ 1, j − 1, k + 1, l− 1),
k × Wmhi1(i+ 1, j − 1, k + 1, l− 1)) ;
k = πp2

(k, l) πu1
(i) πu1

(j) πa(i, k,ALN) πa(j, l,ALN);
switch s do

case 1
PUSH {i+ 1, j − 1, k + 1, l− 1,Vmhe};

case 2
PUSH {i+ 1, j − 1, k + 1, l− 1,V};

case 3
PUSH {i+ 1, j − 1, k + 1, l− 1,Wmhi1};

Algorithm 18: Stochastic Backtrack Algorithm for Vbau2(i, j, k, l)

• {i, j, k, l, ψ} = {i, j, k, l, Wmhi}

s = RandChoose(Wmhi1(i, j, k, l),Wmhi2(i, j, k, l)) ;
switch s do

case 1
PUSH {i, j, k, l,Wmhi1} ;

case 2
PUSH {i, j, k, l,Wmhi2} ;

Algorithm 19: Stochastic Backtrack Algorithm for Wmhi(i, j, k, l)

• {i, j, k, l, ψ} = {i, j, k, l, Wmhi1}
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s = RandChoose(Wbau1(i, j, k, l),Wbpi1(i, j, k, l)) ;
switch s do

case 1
PUSH {i, j, k, l,Wbau1};

case 2
PUSH {i, j, k, l,Wbpi1};

Algorithm 20: Stochastic Backtrack Algorithm for Wmhi2(i, j, k, l)

s = RandChoose(Wbau2(i, j, k, l),Wbpi2(i, j, k, l)) ;
switch s do

case 1
PUSH {i, j, k, l,Wbau2};

case 2
PUSH {i, j, k, l,Wbpi2};

Algorithm 21: Stochastic Backtrack Algorithm for Wmhi2(i, j, k, l)

• {i, j, k, l, ψ} = {i, j, k, l, Vmhe}

s = RandChoose(Vmhe1(i, j, k, l),Vmhe2(i, j, k, l)) ;
switch s do

case 1
PUSH {i, j, k, l,Vmhe1};

case 2
PUSH {i, j, k, l,Vmhe2};

Algorithm 22: Stochastic Backtrack Algorithm for Vmhe(i, j, k, l)

• {i, j, k, l, ψ} = {i, j, k, l, Vmhe1}

s = RandChoose(Vbau1(i, j, k, l),Vbpi1(i, j, k, l)) ;
switch s do

case 1
PUSH {i, j, k, l,Vbau1};

case 2
PUSH {i, j, k, l,Vbpi1};

Algorithm 23: Stochastic Backtrack Algorithm for Vmhe1(i, j, k, l)

• {i, j, k, l, ψ} = {i, j, k, l, Vmhe2}

s = RandChoose(Vbau2(i, j, k, l),Vbpi2(i, j, k, l)) ;
switch s do

case 1
PUSH {i, j, k, l,Vbau2};

case 2
PUSH {i, j, k, l,Vbpi2};

Algorithm 24: Stochastic Backtrack Algorithm for Vmhe2(i, j, k, l)
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Computation of Calinski-Harabasz (CH) Index and Cluster Centroid Struc-
ture and Alignment

The stochastic sampling of the structural alignments yields a set of n representative structural alignments S1,S2, . . . ,Sn,
which in turn provide a corresponding set of structures S1,1,S1,2, . . . ,S1,n for x1 and S2,1,S2,2, . . . ,S2,n for x2 and a set
of alignments A1,A2, . . . ,An. Each sample of secondary structures or sequence alignments is hierarchically clustered
using the diana algorithm [3]. This clustering process arranges the n sample elements (structures or alignments) in a
hierarchical tree or dendrogram. For a hierarchical clustering tree of a sample of size n, the tree is cut at an appropriate
height hk to generate a set of k clusters denoted by Ck. The mth cluster in Ck is denoted by Ckm for 1 ≤ m ≤ k. Ckm

is the set of the sample indices of structures in mth cluster such that Ckm(i) is used to denote the sample index of ith

element in mth cluster in Ck. The number of elements in mth cluster in Ck is denoted by nm. The optimal cutting
height hkopt

and a corresponding cluster count kopt are determined to maximize the Calinski-Harabasz (CH) Index [4]
defined as:

CH(k) =

(

BGSS(Ck)
k−1

)

(

WGSS(Ck)
n−1

) (2)

where BGSS stands for “between-groups sum of squares distance” and WGSS stands for “within-group sum of square
distance.” BGSS and WGSS are computed as:

WGSS(Ck) =

k
∑

m=1

(nm − 1)d2
m (3)

and

BGSS(Ck) = (k − 1)d2 +

k
∑

m=1

(nm − 1)(d2 − d2
m) (4)

where d2 denotes the average of squared distances between all n(n−1)/2 pairs of elements and d2
m denotes the average

of squared distances between all nm(nm − 1)/2 pairs of elements in mth cluster in Ck. d2 and d2
m are computed as:

d2 =
2

n(n− 1)

∑

1≤a≤n
a<b

tr((Ma − Mb)(Ma − Mb)
T) (5)

and

d2
m =

2

nm(nm − 1)

∑

1≤a≤nm

a<b

tr((MCkm(a) − MCkm(b))(MCkm(a) − MCkm(b))
T) (6)

where Mi represents the matrix representation of element at sample index i, tr(. . .) denotes the trace of the matrix
in the argument, and (. . .)T represents the transpose of the matrix in the argument. For the clustering of secondary
structures of an RNA sequence of length N , Mi is an upper triangular matrix of size N ×N defined as:

Mi(r, s) =

{

1 if r < s and nucleotides at indices r and s are paired in ith structure
0 otherwise

(7)

For the clustering of sequence alignments of two RNA sequences of lengths N1 and N2, Mi is a matrix of size
N1 ×N2 defined as:

Mi(r, s) =

{

1 if nucleotides at indices r and s are aligned in ith alignment
0 otherwise

(8)

The term tr((MCkm(a)−MCkm(b))(MCkm(a)−MCkm(b))
T) in Equations (5) and (6) formulates the squared distance

between elements a and b in sample. The squared distances is squared base pair distance and squared aligned position
distance for structures and for alignments, respectively.
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For the optimal number of clusters that maximize CH(k), the centroid structure of cluster Ckm in Ck is the structure
that has the smallest average base pair distance to all the structures in Ckm:

Scent = argmin
S∈Sall

1

nm

nm
∑

a=1

tr((MS − MCkm(a))(MS − MCkm(a))
T) (9)

where Sall represents the set of all possible secondary structures of the sequence, Scent denotes the centroid structure,
and MS is the upper triangular matrix representing the structure S as defined above by matrix representation of
secondary structures. Two nucleotides at indices r, s are paired in the centroid structure of mth cluster if more than
bnm

2 c of structures in the cluster have nucleotides at indices r, s paired. Because if more than bnm

2 c of structures in the
cluster have nucleotides at indices r, s paired, a structure with nucleotides at r, s paired has lower average distance to
structures in the cluster than a structure that has nucleotides at r, s unpaired. Thus, the set of base pairs (r, s) in the
centroid structure can be defined as:

Scent =

{

(r, s) |

nm
∑

a=1

MCkm(a)(r, s) > b
nm

2
c

}

(10)

These computations are similar to the computation of centroid structures described by Ding et al. [5]. Computation
of cluster centroid for sequence alignments can be similarly formulated.
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