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Derivation of the community average storage effect.  Here we present the theory for the 

storage effect given in the text. We derive formulae for the community average storage effect, 

which indicates how strongly the storage effect promotes coexistence in terms of how much it 

increases long-term low-density growth rates, on average(1). This approach is appropriate for 

quantifying coexistence because coexistence is a community-level property. In the next section 

(Quantification of the magnitude of the storage effect), these results are applied to the data from 

this system. Readers interested primarily in the application can go immediately to that section, 

which is self-contained. 

The model we use is the seed bank model of Chesson et al.(2) applied in a temporal 

context, modified for lottery competition. Key quantities in that model are the fraction of seeds 

of species j germinating in year t, Gj(t), the survival and the growth of the germinating seedlings 

(vigor), Vj(t), the yield of new seeds per unit plant biomass, Yj, the competition, C'(t), 

experienced by the growing plants, and finally, the survival, sj, of seeds that remain dormant in 

the seed bank. The model can now be written 
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Thus, the density of the seeds of species j in the seed bank, Nj(t+1), at the  beginning of year t + 1 

is equal to the sum of the seeds that persist in the seed bank, sj(1 – Gj(t))Nj(t), plus production of 

new seed, which is the second term in equation (1). New seed production requires germination, 

G, survival and growth, V, but is of course limited by competition.   



 Competition, C'(t), needs to be defined to represent how much growth is restricted by the 

demands placed on resources. Under lottery competition, each individual receives resources in 

proportion to its ability to extract them, which is assumed here to be proportional to the vigor of 

its growth. Assuming that the resources are limited, and are all used by these species, each 

individual is limited in its growth by the total ability (per unit area) of all seedlings of all species 

to extract those resources. This means that the resources received by an individual are 

proportional to Vj(t)/C'(t), with C'(t) defined as the sum over species of the total density of 

seedlings weighted by the vigor of their growth: 
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The quantity Vj(t)Gj(t)Nj(t)/C'(t) is assumed to be the biomass of growing plants of species j. 

Multiplying by Yj converts this biomass into the number of new seeds of species j produced per 

unit area.   

Vigor, Vj(t), deserves special mention. It is not the actual average mass of a plant, but the 

final mass of a plant at flowering when C'(t) is fixed at the minimal value of 1. It is intended as a 

measure of how strongly the physical environment in year t promotes survival and growth of the 

plants, and therefore how much demand they place on resources — hence their role in C'(t). 

Vigor is not directly observable in nature. Only the actual average mass, Vj(t)/C'(t), is observable. 

However, in equation (1) only the ratios of vigor for different species are needed, and these are 

observable. The particular observable related to vigor that is measured in this study is per 

germinant fecundity, here equal to YjVj(t)/C'(t). The time by species interaction of ln per 

germinant fecundity, which features in our analysis, is exactly equal to the time by species 

interaction of ln vigor, as discussed below.   



 To analyze the model, we focus on the growth rate, rj(t), which is defined as ln[Nj(t+1)/ 

Nj(t)], i.e. the log of the finite rate of increase. For the model (1), this growth rate is  

 ( ){ }( ) ln 1 ( ) ( ) ( ) '( )j j j j j jr t s G t Y V t G t C t= − + .    (2) 

In other words, it is the natural log of the sum of per capita seed bank persistence, and per 

germinant fecundity. The theory of population dynamics in variable environments emphasizes 

that it is the sum of rj(t) over time that determines population trajectories on the log scale (e.g. 

Chesson (3)), because population growth is multiplicative, and becomes additive on a log scale. 

Note also that key components of the model are multiplicative, under the assumption that nature 

works multiplicatively. In particular, per germinant fecundity equals YjVj(t)Gj(t)/C'(t), a product 

of four quantities. Transforming these quantities to the log scale (natural log, ln) converts this 

product into a sum. This transformation has two effects. First it greatly simplifies the formal 

mathematical analysis of the model following the procedures of Chesson(1, 3), and second it 

separates per germinant fecundity into additive terms amenable to statistical analysis by standard 

techniques.  

 To see how the storage effect coexistence mechanism arises from this model, we now 

formally define the environmental responses of the species. These are population parameters that 

vary with the physical environment in ways that differ between species, and thus separate their 

niches temporally. The correlations between species in their environmental responses thus need 

to be less than 1. There are two environmental responses in our development EGj(t) = ln Gj(t) and 

EVj(t) = ln Vj(t), together with their combination Ej(t) = EGj(t) + EVj(t). There is, however, but a 

single competitive response, C(t), measuring the effect of competition on population growth, 

which is the natural log of competition, C', defined above, i.e.  
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All of these responses use the log scale to facilitate the theoretical calculations and statistical 

analysis, as explained above.  

 The storage effect coexistence mechanism arises from the interactions between 

competitive response and the environmental responses in the way they determine rj(t). 

Fundamentally, persistence of dormant seeds in the seed bank provides a buffer against 

unfavorable conditions for seed production as defined by poor germination, low vigor, or high 

competition. This means that a species does not have to be successful every year to persist in the 

system. Success, however, involves the occurrence of favorable combinations of environmental 

and competitive conditions, which is especially important when a species has become depressed 

to low density and is to increase and recover from that low-density state. In the formal 

mathematical analysis, called invasibility analysis, such a species is called an invader. Other 

species not depressed to low density are called residents.  

 The concept of covariance between environment and competition helps us understand 

how an invader achieves a favorable combination of environmental and competitive conditions. 

Looking at the formula (3) for competition, it is quite clear that if a species does experience 

favorable environmental conditions, viz the combination of germination and vigor are high, then 

it contributes more to C(t), which then places limitations on its own growth. However, because it 

is at low density, this effect is small. Of more concern is competition from other species, but if 

these species have environmental responses not strongly correlated with those of the invader, 

they will not always contribute strongly to C(t) when the invader is favoured by the environment. 

Mathematically, this means that the invader has low covariance between environment and 



competition. In terms of population growth of an invader, it means that the invader will have 

times when it is favored both environmentally and competitively, and so can increase strongly.  

 It is important that these same opportunities are not as frequently available for the 

resident species, because then they would create levels of competition high enough to deprive the 

invader of an average population growth advantage. However, residents, being at higher density, 

do limit their own growth by competition when favored by the physical environment. The higher 

demands they place on resources do add up to important increases in competition. This means 

residents have strong positive covariance between environment and competition, leaving 

invaders at an average advantage. The storage effect thus depends on invader-resident 

differences in covariance between environment and competition (which provide opportunities for 

invader increase) and buffered population growth (which means that times of decrease cannot 

cancel out the long-term effects of strong periods of growth). The mathematical theory of the 

storage effect(1, 3) makes these ideas precise and quantitative. We show now how this theory is 

applied to the model in this paper. 

 Previous theory has considered just a single environmental response, and so needs to be 

extended to consider the interaction between competition and both environmental responses in 

the sense of how they jointly contribute to the growth rate rj. These considerations lead to two 

distinct storage-effect contributions to coexistence. Although it has no effect on the final result, 

we analyze the model using the two environmental responses EGj(t) and Ej(t). Any two of three 

above would give the same outcome. Some developments of the storage effect standardize the 

environmental responses before analysis, as described in Chesson(3). For simplicity, the 

development here is in terms of the original environmental and competitive responses, defined 



above, rather than in terms of the more formal procedure standardizing these responses(3). These 

two approaches are equivalent, given appropriate care(4).  

 The development begins with a quadratic approximation of rj  in Gj, Vj, and C* about 

equilibrial values, *
jG , *

jV  and C*, for which rj = 0. We find below that we need to specify only 

one of these equilibrial values, viz *
jG , which is set at the species and time average germination 

fraction. The others play no role in the final result. We need also the important quantity 

*1 (1 )j j js Gβ = − −  which is the equilibrial probability that a seed leaves the seed bank (“the seed 

loss rate”). Note that βj is equal to /jr C−∂ ∂ evaluated at the equilibrial parameter values. Next 

we need the interaction terms, 

 
2

(1 )j
j j j

j

r
E C

γ β β
∂

= = − −
∂ ∂

,       (4) 

and  

 
2

*j
G j j j j

Gj

r
s G

E C
γ β

∂
= = −
∂ ∂

,       (5) 

both evaluated at the equilibrial values. These quantities define the extent to which population 

growth is buffered against unfavorable environmental conditions. Large negative values mean 

strong buffering.  

 We can now proceed to use these quantities to calculate the community average storage 

effect(1, 5). The community average storage effect indicates how strongly the storage effect 

promotes coexistence in terms of its average effect on increasing long-term low-density growth 

rates, ir (1). These are the average of ri(t) over time for a species i in the invader state, and define 



how strongly species i recovers from low density. A positive value of ir means that the species 

recovers in the long run, and remains in the community.  

 Here the community average storage effect has two components, one for each 

environmental response. We first calculate this component for the response Ej. From Chesson(5), 

the community average storage effect is  
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In this expression χj = cov(Ej,C) (covariance between environment and competition), taken over 

time.  The superscript {–l} indicates that this measurement is taken for species l (either i or j in 

(6)) in the invader state, as discussed in Chesson(1, 5). The bar with {i≠j} indicates the average 

over all i except j.  

 These covariances are now approximated using the techniques in Chesson(3), which 

maintain accuracy so that errors are of a smaller order of magnitude than the storage effect terms 

being approximated, provided the variances of the environmental responses are not too large. See 

Chesson(3) for details. The competitive response is approximated linearly in the form 
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Here ~ indicates that the equilibrial value has been subtracted from the response. The 

quantities { }i
uA − and b are random variables independent of the uE% .  Defining { } { }i i

u ua E A− −⎡ ⎤= ⎣ ⎦ , 

where E[…] means expected value taken according to the probability distribution over time (a 

time average), and χij  = cov(Ei, Ej), we see that  
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Now Chesson(3) appendix VI shows that { }i
ua −  is equal to the expected fraction of the seedling 

biomass attributed to species u when species i is in the invasion state. It follows that { }i
jχ
− is a 

weighted average of the χju and can be approximated by the simple average  

 { } { }i u i
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with error term equal to the covariance over resident species, 
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This error cannot be large except in the unlikely event of strong average dominance correlated 

with the environmental covariances.   

 Based on equation (9), the community average storage effect is approximated by  
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which simplifies to 

  
{ }

1

1
1

i jn
j ji jj

j jn n
γ χ χ
β

≠

=

⎛ ⎞−
⎜ ⎟⎜ ⎟−⎝ ⎠

∑ .       (12) 

This result leads to the approximation 
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with error term again a covariance over species and equal to  
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which is likely to be dominated by expression (13) in most circumstances. Moreover, the data on 

the species studied here do not show statistically differences in γj/βj. Hence, it is expression (13) 

that we use for the community average storage effect.   

 The quantity { }i j
ji jjχ χ≠ −  can be written as  
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where .E  is the average of jE over j, and all expected values are taken over time (each Ej is a 

function of time). Because the sum over j of ( )[ ] . [ .]j jE E E E E E− − +  is zero, the average over j 

of (15) is equal to  
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which is the negative of the theoretical time by species variance, 2
t sσ × , combining germination 

and vigor. Thus, the community average storage effect for germination and vigor combined is 

approximated as  
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  The community average storage effect component for germination separately follows 

identically, but with χij  = cov(EGi, Ej). At the final stage, expression (16) is replaced by 

 ( )( )
1

1 [ ] . [ .] [ ] . [ .]
1

n

Gj Gj G G j j
j

E E E E E E E E E E E E E
n =

⎡ ⎤− − − + − − +⎣ ⎦− ∑  

which is the negative of the time by species covariance between germination and its combination 

with vigor on the log scale, designated , ,G GV t sχ × . Thus, this storage effect component is  
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(Note that the subscripts G, V and GV here are short hand for EG, EV and E = EG  + EV  = ln(GV), 

here and below. This should cause no confusion as the analysis is on the log scale throughout.) 

Partitioning of the storage effect into functional components 

The time by species variance, 2
t sσ × ,  splits into three components.   

2 2 2
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corresponding to the time by species variance in ln germination fraction, twice the time by 

species covariance between ln germination fraction and ln vigor, plus the time by species 

variance in ln vigor. Similarly, the covariance , ,G GV t sχ ×  splits into two components  

 2
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We can use these decompositions to rearrange the storage-effect contributions into  
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due to variance in ln germination fraction alone,  
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due to the covariance between ln germination fraction and ln vigor (equivalently ln per 

germinant fecundity), and  
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due to the variance in ln vigor. 

 As mentioned above, the data analysis uses per germinant fecundity, not vigor. However 

ln (per germinant fecundity) = ln Vj (t) + ln Yj. The fact that Yj does not depend on time means 

that it disappears from the time by species interaction for ln per germinant fecundity, leaving 

only ln vigor. Hence the per germinant fecundity can be substituted for vigor in the above 

expressions without changing the result. 

 Each of the quantities above represents an increase in the average over species (average 

over i) of the long-term low-density growth rate, ir , of the species in the system due to that 

particular variance or covariance component, measured with time unit, 1/β, which is the average 

time for the loss of a seed from the seed bank. This measurement is on the natural timescale(5) 

of seed generations, which is the most appropriate timescale for comparing organisms with 



different life-histories. To convert these to contributions to per year rates, they are each 

multiplied byβ .  

Time by species interactions and correlation coefficients 

From the derivation of the community average storage effect, we know that the time by species 

interaction variance is equal to  
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Now 2
jj jχ σ= , the variance of Ej(t) over time, and ji ji j iχ ρ σ σ= , where ρji is the temporal 

correlation between Ej(t) and Ei(t).  Therefore, equation (24) becomes 
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where 2σ is the species average variance, and ρ  is the weighted average correlation,  
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A little algebra shows that  
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so that the time by species covariance reduces to 
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The key term here is,   

 ( )2 1σ ρ− .         (29) 

Added to this is the average correlation times the variance over species in the temporal standard 

deviation. If these standard deviations are similar, i.e. the species are about equally sensitive to 

environmental variation, on average, then expression (29) defines the time by species interaction. 

Expression (29) provides an intuitive understanding of the time by species interaction. It 

represents the time by species interaction as that part of the average variance that is independent 

between species, partitioning out the common fraction of variance, ρ , leaving the fraction that is 

unique to a species, 1 – ρ . This partitioning is the essence of equation (24), but the precise form 

of the partitioning of variance is slightly different when different species have different 

variances, leading to the correction term that is added in equation (28). As the calculations here 

use the time by species interaction directly, they include this correction term. However, the 

approximation (29) provides the intuition behind this concept in the section on the workup of the 

empirical data. 

 

Quantification of the magnitude of the storage effect. In the first scenario described in the 

main text, species coexistence is promoted if a set of species produce persistent seed banks with 

variable germination fractions that are not completely correlated(6). A second scenario involves 

temporal variation in the vegetative phase (i.e., post-germination growth and reproduction) of the 

life cycle. Here we partition the storage effect into these two mechanisms and their covariance. 

The formulae for magnitude of the storage effect, and its division into these three components, 



are derived above (see Derivation of the community average storage effect) using the technique 

of quadratic approximation of Chesson 1994(3) and the community average approach of Chesson 

2003(1). As mentioned above, the community average approach for quantifying coexistence is 

appropriate because coexistence is a community-level property. The component measures for the 

community average storage effect indicate how much the low density growth rates of the species 

are increased, on average, by the mechanism in question. These results are given on the per 

generation time scale, which is the reciprocal of the rate, β, at which seeds are lost from the seed 

bank. They are thus the amounts by which /r β  is increased on average. To convert these to per 

year rates, i.e. to r , one just multiplies by β, which here has the average value of 0.77.   

 The storage effect component for germination is   
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where GIΔ is the symbol for this component of the community average storage effect, s  is the 

average survival rate of ungerminated seeds in the seed bank, 2
,G t sσ × is the time by species 

interaction variance component for ln germination fraction, and n is the number of species. A 

more intuitive formula is given in terms of the average temporal correlation between species, Gρ , 

and average temporal variance, 2
Gσ  , in ln germination fraction: 
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which is valid whenever the temporal variances do not vary too greatly between species, as 

derived above. The quantity ( )2 1G Gσ ρ−  is an approximation to 2
,G t sσ × , which shows that it and 



the storage effect are driven by low correlations between species on average, and high 

variance over time.  

 The contribution of per germinant fecundity to the storage effect is   
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where 2
,V t sσ ×  is the species by time interaction component of variance for ln per germinant 

fecundity, ln(lb), and 1-β  is the average probability that a seed in the seed bank neither 

germinates nor dies in a given year. Like ln germination fraction, this formula can be 

approximated by the more intuitive formula,  
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A third contribution to the storage effect is due to the species by time interaction for the 

covariance of log germination fraction and log per germinant fecundity: 
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where , ,G V t sχ ×  is the time by species covariance component for ln germination and ln per 

germinant fecundity, and G  is the average germination fraction, taken over all species. A more 

interpretable approximation in terms of average covariances and correlations analogous to (31) 

and (32) above is available here too. 



Sixteen years of long-term data on germination fraction(7) and the corresponding sixteen 

years of demographic data described in the Materials and Methods were used to calculate 

values of these parameters (Table S1). The species x time interaction was highly significant for 

ln-transformed germination, per germinant reproduction and their covariance (P < 2.8 E-21, P < 

5  E-06, P < 2.7  E-10). The low-density population growth advantage due to germination 

variation is calculated to be GIΔ  = 0.067. This means that the storage effect contributed by this 

germination mechanism boosts the /r β value by 6.7% per generation or boosts r  by 5.2%, in 

essence multiplying the finite rate of increase by 1.052. The low-density advantage due to 

reproductive variation is VIΔ  = 0.032 (Table S2). The low-density advantage due to covariation 

of germination and reproduction is an additional ,G VIΔ  = 0.035, making the total direct and 

indirect contribution of species by year interaction for reproduction equal to IΔ = 0.133, which 

means a substantial boost to growth equal to a 10.3% population growth rate advantage for 

species at low density. 
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