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ESR spectroscopy of spin probes: an introduction

The Electron Spin Resonance (ESR) is a spectroscopy observing a para-
magnetic system situated in a static magnetic field B0 and forced by an
oscillating magnetic field B1(t) ⊥ B0. Our system of interest is a single
unpaired electron located in a free radical (spin probe) being dissolved as
a guest molecule in a diamagnetic liquid. The mutual interactions between
the spin probes are negligible owing to their low concentration and one has
to consider the intramolecular interactions only. The ESR spectroscopy pro-
vides information on both the statics and the dynamics of the orientational

degrees of freedom of the spin probe. To get to that information the quan-
titative description of the coupling between the magnetic properties and
the orientation of the spin probe must be carried out in terms of quantum
mechanics.

1 Spin hamiltonian

The electron has a magnetic dipole moment m which stems from its intrin-
sic angular moment (spin) ℏS with ℏ = h/2π, h being the Planck constant.
For a free electron m = −geβeS where ge = 2.0023 and βe are the electron
Lande’ g-factor and the Bohr magneton, respectively. The coupling of the
magnetic moment m with B0 (Zeeman coupling) is expressed by the hamil-
tonian Hz = −m ·B0 = geβeS ·B0. In the nitroxide spin probes there is
also a magnetic coupling (hyperfine coupling) between the unpaired electron
and the close nitrogen nucleus with magnetic dipole moment mn = +gnβnI,
where gn βn and I are the nuclear g-factor, magneton and spin (I = 1), re-
spectively (fig.S1 a).

In addition to the spin, the magnetic properties of the unpaired electron
are also set by the orbital angular momentum L. Even if L does not affect
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the electron dipole moment at first order, second-order effects are possible
via the spin-orbit interaction (due to the magnetic field in the rest frame of
the electron originated by its motion through the molecular electric field).
Usually, one does not consider the complete hamiltonian including both the
orbital and the spin degrees of freedom but, rather, an effective hamiltonian
derived by averaging over all the spatial variables [1]. The resulting quantity,
consisting of parameters and spin operators, is called a spin hamiltonian. In
nitroxide free-radicals the orbital part of the unpaired electron wave function
exhibits the local symmetry of the highly-directional NO bond where it is
localized (fig.S1a). As a consequence, the orbital average leads to express
the Zeeman and the hyperfine interactions in terms of the tensors g and A,
respectively and the spin hamiltonian takes the form:

H = βeB0 · g · S + S · A · I (1)

g and A have coinciding principal axis (fig.S1a). We define g = Tr[g]/3 and
A = Tr[A]/3, where Tr denotes the trace operation. It is also convenient
to consider the largest differences between the principal values of the g and
A tensors, ∆A and ∆g respectively.

2 Lineshape analysis

2.1 No tumbling: powder lineshape

We first consider the spin probes as immobile in a frozen host with isotropic
distribution of their orientations. In that case the energy levels of the spin
hamiltonian, Eq.1, are (fig.S1 b,c) [2]:
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with ms = ±1/2,M = ±1, 0 and B0 = nB0, where n ≡ (nx, ny, nz) denotes
the direction cosines of B0 with respect to the principal axis of the magnetic
tensors g and A. Eq.2 assumes that the g tensor is almost spherical, i.e.
∆g ≪ g.

Let us consider the simple case of no hyperfine interaction , A = 0
(fig.S1b). A transition is induced by the microwave field when its angular
frequency ω equals the Larmor frequency ω0(n) = (E1/2 − E

−1/2)/ℏ:
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Owing to the orientation distribution of the spin probes, and then of n,
ω0(n) exhibits a distribution resulting in a broad absorption line when ω is
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swept (fig.S2 top left). In the actual ESR experiment one sweeps B0 while
keeping constant the ω frequency and the absorption is observed in derivative
mode, due to the phase-sensitive signal detection. The field-swept derivative
pattern of the ESR lineshape in the absence of spin-probe motion (powder
lineshape) shows sharp details which allow one to measure the principal
values of the Zeeman g tensor (fig.S2 top right).

If the hyperfine tensor is present as in the nitroxides spin probes, three
transitions are seen when the angular frequency of the microwave field ω
equals the transition frequencies ωM(n) = (E1/2,M −E

−1/2,M )/ℏ, M = ±1, 0
(see fig.S1c):

ωM(n) =

[ ∑

i=x,y,z

g2
i n

2
i

]1/2 βeB0

ℏ
+

1

ℏ

[ ∑

i=x,y,z

A2
i n

2
i

]1/2

M, M = ±1, 0 (4)

The powder lineshape is given by the sum of three components, correspond-
ing to the three possible transitions (see fig.S 1 bottom) and each labeled
by one value of the nuclear quantum number M (fig.S3 top). Also in the
presence of the hyperfine interaction the principal values of both the g and
A tensors may be measured by the powder lineshape [3].

2.2 Tumbling: Motional narrowing of the ESR lineshape

To deal with the reorientation of the spin probes, it is convenient to consider
the spin hamiltonian H, Eq.1, as a sum of two contributions: an isotropic
orientationally invariant part H0 and an orientation-dependent part H1.
The explicit form of H0 is:

H0 = gβeB0 · S + AS · I (5)

≃ gβeB0SZ + ASZIZ (6)

Eq.6 well approximates Eq.5 since B0, which defines the laboratory Z axis,
is strong, namely gβeB0 ≫ A. The energy levels of H0, as given by Eq.6,
are:

E
(0)
ms,M = gβeB0ms + AmsM, ms = ±1/2,M = ±1, 0 (7)

They are still represented by the pattern in Fig.S1c. The explicit form of
the orientation-dependent part H1 is:

H1 = βeB0 · g
′ · S + S · A′ · I (8)

where g′ and A′ are traceless tensors. When the spin probe reorients, H1 is
a random function of time. This is made explicit by considering the time-
dependent rotation matrix R

R(t) = {nX(t),nY (t),nZ(t)} (9)
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transforming the electron and nuclear spins from the fixed laboratory frame
{X,Y,Z}, where they are quantized, to the rotating principal axis of the
magnetic tensors {x, y, z} (Fig.S1a). The unit vector ni, with nZ ≡ n,
encloses the direction cosines of the i-th laboratory axes with respect to
the magnetic principal axis. Then, Eq.8 is rewritten in the explicit time-
dependent form

H1(t) = βeB0 ·
TR(t) g̃ R(t) · S + S · TR(t) ÃR(t) · I (10)

where TR is the transpose of R and

g̃ =



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0 0 gz − g


 Ã =



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0 Ay − A 0
0 0 Az − A




(11)

2.2.1 Fast tumbling: Redfield limit

If the rotation is very fast, i.e. the rotational correlation time τ fullfills
the inequalities ∆A,∆gβeB0 ≪ τ−1 (in practice τ . 1ns) , H1 is almost
averaged out and the ESR lineshape, which is quite broad if no motion is
present (see Figs.S2, S3 top), experiences a strong ”motional narrowing”
[1]. The lineshape reduces to one peak if the hyperfine tensor A = 0 (fig.S2
bottom), or, if A 6= 0 as in nitroxides, to three peaks (fig.S3 bottom),
corresponding to the possible transitions induced by the microwave field
(fig.S1). The peak positions are set by Eq.7 and the resonance conditions

ω = ℏ−1(E
(0)
1/2,M − E

(0)
−1/2,M ), M = ±1, 0 which read:

ω = ℏ
−1(gβeB0 + AM) M = ±1, 0 (12)

If A = 0 the position of the single peak is set by the condition ω = ℏ−1gβeB0.
In the limit of fast tumbling the lineshape was expressed analytically without
relying on any specific rotational model (Redfield theory) [5]. It is found
that each peak is lorentzian in shape with width given by [4]:

T−1
2 (M) = α + β M + γ M2, M = ±1, 0 (13)

The analytic expressions of the coefficients α, β, γ for A 6= 0 were derived
elsewhere (if A = 0, β = γ = 0 ) [4]. They are given in terms of the principal
values of both the g and A tensors and the rotational correlation time which
for a spherical molecule like TEMPOL is defined as:

τ =

∫
∞

0

3 cos2 ζ(t) − 1

2
dt (14)

where ζ(t) is the angle spanned by one molecular axis in a time t.
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2.2.2 Slow tumbling

If τ exceeds a few nanoseconds, the widths of the narrow lines increase and in
the limit τ → ∞ the lineshape recovers the powder lineshape. In the ”slow
tumbling” regime of long, but finite, τ values the analytic lineshape theory
presented in Sec.2.2.1 fails and one must resort to sophisticated approaches.
In the present work the lineshape L(B0) recorded by sweeping the static
magnetic field B0 is evaluated by a stochastic memory-function approach [6]
which is briefly outlined. The starting point is writing L(B0) as the Laplace
transform of the correlation function of the perpendicular component of the
magnetic dipole moment of the spin probe m = −geβeS perpendicular to
B0 [1, 7] :

L(B0) = C
∂
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∞
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ℏ
tdt (15)
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∂
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geβeB0

ℏ
tdt (16)

The brackets indicate a proper thermal average, C is a constant, ℜz is the
real part of z, and i2 = −1. The derivative takes into account that the
lineshape is usually displayed in derivative mode. The correlation function
< SxSx(t) > is evaluated by the quantum time evolution of the electron spin
under the influence of the reorientation of the spin probe according to the
equation of motion [1, 7]:

∂

∂t
Sx =

1

ℏ
[H, Sx] + ΓSx (17)

where [A,B] = AB − BA and the spin hamiltonian H = H0 + H1, with
H0 and H1 given by Eq.6 and 10, respectively. The Γ operator describes
the rotational motion of the spin probe by considering its orientation as a
classical, stochastic variable. For a nearly spherical molecule rotating by
instantaneous random jumps of fixed size θ after a mean residence time τ0,
according to the irreducible representation of the rotation group of rank ℓ,
Γ is a multiple of the identity operator Iℓ, Γℓ, which is given by [7]:

Γℓ =
1

τ0
(γℓIℓ − 1) γℓ =

1

2 ℓ + 1

sin[(ℓ + 1/2)θ]

sin(θ/2)
(18)

and the related correlation time τ (Eq.14) takes the form:

τ = τ0/[1 − sin(5θ/2)/(5 sin(θ/2))] (19)

By using a suitable memory-function approach, it is possible to derive an ex-

act expression of the Laplace transform ̂< SxSx(z) > as a continued-fraction
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expansion [6]:

̂< SxSx(z) > =
< S2

x >

z − λ0 +
∆2

1

z − λ1 +
∆2

2

z − λ2 + ·

(20)

where λi and ∆2
i are (complex) constants depending on the principal values

of the g̃ and Ã tensors (Eq.11) and the parameters θ and τ0.
The middle panels of Fig.S2 and Fig.S3 show typical patterns in the slow-

tumbling regime if A = 0 and A 6= 0 as in nitroxides, respectively. Note
that in the latter case the resulting three lines, corresponding to the three
possible transitions induced by the microwave field (see fig.S 1 bottom),
overlap resulting in a complex pattern.
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Fig. S 1: a) The structure of the spin probe free-radical TEMPOL. The unpaired

electron is located in the NO bond. The magnetic principal axis are drawn. The

principal values of the Zeeman g and the hyperfine A tensors of TEMPOL in

water are: gxx = 2.0093, gyy = 2.0064, gzz = 2.00215; Axx = 18.76 MHz, Ayy =

19.88 MHz, Azz = 104.4 MHz, respectively. b) The energy levels of an electron

with spin S = 1/2 in the static magnetic field B0 (g 6= 0, A = 0). c) Same as in b)

including the hyperfine interaction with a nucleus with spin I = 1 (g 6= 0, A 6= 0).

ms and M are the projections of the electron and the nuclear spin along the direction

of the static magnetic field, respectively. The dashed arrows denote the transitions

induced by the oscillating microwave field applied by the ESR spectroscopy.
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Fig. S 2: Theoretical ESR lineshapes of a spin probe (gx = 2.0093, gy =

2.0064, gz = 2.00215, A = 0) undergoing reorientation with jump angle θ = 80◦

and rotational correlation times τ = 900 (top), 45 (middle), 9ns (bottom). The

lineshapes are convoluted by a lorentzian with width 1/T ⋆
2

= 5.26 MHz to account

for the changes of the Larmor frequency, occurring each T ⋆
2

on average, due to the

magnetic field produced by the rotating methyl groups close to the unpaired elec-

tron. left: Absorption vs. frequency of the microwave field for constant magnetic

field B⋆
0

= 3300 Gauss. Right: Absorption in derivative mode vs static magnetic

field for constant microwave frequency ω⋆ = 58.05 rad · GHz. The lineshapes with

τ = 900 ns are virtually coincident with the powder lineshapes corresponding to

immobile spin probes in a frozen host. Dots locate the frequencies ωi = giβeB
⋆
0
/ℏ

(left) and magnetic fields Bi = ℏω⋆/giβe (right) values with i = x, y, z. Note that

the ESR lineshapes in Fig.1d correspond to gx = gy = 2.0064, gz = 2.00215, A = 0.
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Fig. S 3: Theoretical ESR lineshapes of a nitroxide spin probe (g tensor as in

Fig.S2 , Ax = 18.76 MHz, Ay = 19.88 MHz, Az = 104.4 MHz, T ⋆
2

= 56 ns) un-

dergoing reorientation with jump angle θ = 80◦ and rotational correlation times

τ = 860 (top), 9.04 (middle), 1.81 ns (bottom). left: Absorption vs. frequency of

the microwave field for constant magnetic field B⋆
0

= 3300 Gauss. Right: Absorp-

tion in derivative mode vs static magnetic field for constant microwave frequency

ω⋆ = 58.05 rad · GHz. The lineshapes with τ = 860 ns (top panel) are virtually

coincident with the powder lineshapes corresponding to immobile spin probes in a

frozen host. In that case the three hyperfine components with M = ±1, 0, corre-

sponding to the three possible transitions (see fig.S 1 bottom), are explicitly shown.

The motional narrowing reduces the three components to three distinct lines when

the spin probe rotates fast (bottom panel).
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