Biophysical Journal, Volume 96

Supporting Material

Calmodulin mediates the Ca²⁺-dependent regulation of Cx44 gap junctions

Yubin Zhou, Wei Yang, Monica M. Lurtz, Yanyi Chen, Jie Jiang, Yun Huang, Charles F. Louis, and Jenny J. Yang

Supplementary data

Calmodulin mediates the Ca²⁺-dependent regulation of Cx44 gap junctions

Running Title: Connexin44 interacting with Ca²⁺-calmodulin

Yubin Zhou,* Wei Yang, * Monica M. Lurtz,† Yanyi Chen, *Jie Jiang, * Yun Huang, * Charles F. Louis,† and Jenny J. Yang*

*Department of Chemistry, Georgia State University, Atlanta, GA 30303 USA; and the †Department of Cell Biology and Neuroscience, University of California, 900 University Avenue, Riverside, CA 92521, USA

Address corresponding to: Jenny J. Yang, Department of Chemistry Georgia State University University Plaza, Atlanta, Georgia 30302 USA

Tel: 404-413-5520 Fax: 404-413-5551

Email: chejjy@langate.gsu.edu

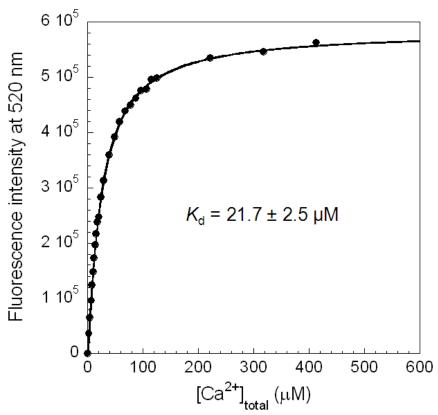


FIGURE S1 Ca^{2+} titration of the Ca^{2+} -indicator Oregon Green 488 BAPTA-5N. Fluorescence intensity at 520 nm was plotted as a function of total Ca^{2+} concentration. A dissociation constant of 21.7 ± 2.5 μ M was obtained by fitting the curve with a 1:1 binding process in 50 mM HEPES, 100 mM KCl, at pH 7.5. Ca^{2+} concentration at each point during titration of CaM or CaM-peptide complexes was determined with the Ca^{2+} dye Oregon Green 488 BAPTA-5N (0.2 μ M; λ_{ex} = 495 nm and λ_{em} = 520 nm) using the equation:

$$\left[Ca^{2+}\right]_{free} = K_d \times \frac{F - F_{\min}}{F_{\max} - F}$$