Biophysical Journal, Volume 96

Supporting Material

Absolute quantitation of bacterial biofilm adhesion and viscoelasticity by microbead force spectroscopy

Peter C. Y. Lau, John R. Dutcher, Terry J. Beveridge and Joseph S. Lam

SUPPLEMENTARY MATERIAL

TABLES

TABLE S1Examples of quantitative bacterial adhesion studies by AFM in
the literature

Subjects of Study	Probing Method	Adhesive Forces measured	Authors (Year)
Sulfate-reducing bacteria	Native tip on	3.9-4.3 nN (cell surface)	Fang et al.
silicon nitride	cells	5.1-5.9 nN (cell-substratum boundary)	(2000)
		6.5-6.8 nN (cell-cell boundary)	
Bacillus mycoides spores	Cell probe on surfaces	7.4 ± 3.7 nN (hydrophilic glass)	Bowen et al.
glass		49.4 ± 14.4 nN (hydrophobic-coated glass)	(2002)
Pseudomonas aeruginosa	Cell probe on surfaces	2. 0 ± 0.4 nN (bacterium-yeast interaction)	Emerson <i>et al.</i> (2004)
Candida parapsilosis			
Escherichia coli	Cell probe on	7.35 ± 2.31 nN (silicone)	Cao <i>et al</i> .
silicones	surfaces	22.75 ± 3.19 nN (fluoroalkylsilane coated silicone)	(2006)
Pseudomonas aeruginosa	Cell probe on surfaces	95 nN (pilus-mica rupture force)	Touhami <i>et al</i> .
mica	50110005		(2006)
Pseudomonas sp.	Cell probe on surfaces	5.6 ± 0.8 nN (aluminum)	Sheng et al.
metals		2.2 ± 0.5 nN (stainless steel)	(2007)
		0.5 ± 0.2 nN (copper)	
Mycobacterium bovis	Modified tip on cells	$3.032 \pm 0.102 \ nN \ (CH_3)$	Alsteens et al.
CH ₃ surfaces			(2007)
Streptococcus mutans	Modified tip on cells	5.0 nN (parent strain, pH 5.8)	Busscher et al.
laminin films		4.9 nN (parent strain, pH 6.8)	(2007)
		1.5 nN (mutant strain, pH 5.8)	
		2.1 nN (mutant strain, pH 6.8)	
Pseudomonas	Colloid probe on cells	1.4 nN (wild-type to glass)	Abu-Lail et al.
aeruginosa		3.9 nN (B-band LPS mutant to glass)	(2007)
glass and organics		1.7-3.5 nN (wild-type to organics)	
		1-2.5 nN (B-band LPS mutant to organics)	

Subjects of Study	Stressing Method	Viscoelastic Properties measured	Authors (Year)
Mixed culture and	Flow cell and light microscopy (shear)	Shear modulus = 27 Pa	Stoodley et al.
Pseudomonas aeruginosa		Apparent elastic modulus = 17-40 Pa	(1999)
		Yield strength = 5.09-10.11 Pa	
		$Viscosity = 7.9 \times 10^4 - 1.9 \times 10^5 Pa \cdot s$	
Pseudomonas aeruginosa	Film rheometry (compression)	Apparent elastic modulus = 6500 ± 500 Pa	Korstgens <i>et al.</i> (2001)
		Yield strength = 990 ± 90 Pa	()
Pseudomonas aeruginosa	Flow cell and light microscopy (shear)	Shear modulus = 64.67 ± 21.03 Pa	Klapper <i>et al</i> .
		$Viscosity = 8.0 \times 10^{3} Pa \cdot s$	(2002)
Pseudomonas aeruginosa	Flow cell and light microscopy (shear)	Shear modulus = 1-280 Pa	Stoodley et al.
		$Viscosity = 3.6 \times 10^5 \pm 2.6 \times 10^5 Pa \cdot s$	(2002)
Desulfovibrio sp.	Flow cell and light microscopy (shear)	Elastic modulus = 2.5-5 Pa	Dunsmore et al.
		Yield point ~ 0.27 m/s	(2002)
Mixed culture	Rotating disk rheometry (shear)	Shear modulus = $0.2-24$ Pa	Towler et al.
		Viscous coefficient = 10-3000 Pa	(2003)
Streptococcus mutans	Parallel plate rheometry (shear)	Effective shear modulus = $1.9 \pm 3.8 \times 10^2$ Pa	Vinogradov <i>et</i> <i>al</i> .
		Effective viscosity = $2.8 \pm 6.4 \times 10^{5}$ Pa·s	(2004)
Streptococcus mutans	Parallel plate rheometry (shear)	Effective shear modulus = 10^{-2} - 10^{6} Pa	Shaw et al.
Pseudomonas aeruginosa		Effective viscosity = $10-10^8$ Pa·s	(2004)
Mixed species			
photosynthetic mats			
Staphylococcus aureus	Flow cell and light microscopy (shear)	Shear modulus = 4.9 ± 3.7 Pa	Rupp et al.
		Viscosity = $3500 \pm 2900 \text{ Pa} \cdot \text{s}$	(2005)
Streptococcus mutans	Microindentation	Storage modulus = 0.73-8.56 kPa	Cense et al.
	Confocal microscopy (compression)	Loss modulus = 5.03-10.4 kPa	(2006)
		Viscosity = 256-2140 Pa·s	
Proteus mirabilis	Viscometry	Storage modulus = 900-1000 Pa	Lahaye et al.
	Rotational and oscillatory rheometry (shear)	Loss modulus = 125-130 Pa	(2007b)
		Viscosity = 50000 Pa·s	
Nano-filtration membrane biofilm	Rotational and oscillatory rheometry (shear)	Elasticity: 3000-3500 Pa	Houari et al.
		Viscosity: 800-1200 Pa	(2008)

FIGURES

FIGURE S1 Combined histogram showing frequency distribution of *Pseudomonas aeruginosa* adhesive forces to glass under standard conditions. Frequency distribution of adhesive forces is shown from six independent experiments per early biofilm sample and four independent experiments per mature biofilm sample. Each experiment consists of 10 replicate force plots at standard loading force, contact time and ramp velocity (SFTV).

FIGURE S2 Loading force and contact time dependence of *Pseudomonas aeruginosa* adhesive force to glass. (A) PAO1 early biofilm. (B) wapR early biofilm. (C) PAO1 mature biofilm. (D) wapR mature biofilm. Means and standard errors of data are shown from three independent experiments per early biofilm sample and two independent experiments per mature biofilm sample. Each experiment consists of 10 replicate force plots for each combination of loading force and contact time.

A

В

FIGURE S3 Loading force and contact time dependence of *Pseudomonas aeruginosa* adhesive pressure to glass. (A) PAO1 early biofilm. (B) wapR early biofilm. (C) PAO1 mature biofilm. (D) wapR mature biofilm. Means and standard errors of data are shown from three independent experiments per early biofilm sample and two independent experiments per mature biofilm sample. Each experiment consists of 10 replicate force plots for each combination of loading force and contact time.

A

С

FIGURE S4 Retraction velocity and contact time dependence of *Pseudomonas aeruginosa* adhesive force to glass. (A) PAO1 early biofilm. (B) wapR early biofilm. (C) PAO1 mature biofilm. (D) wapR mature biofilm. Means and standard errors of data are shown from three independent experiments per early biofilm sample and two independent experiments per mature biofilm sample. Each experiment consists of 10 replicate force plots for each combination of retraction velocity and contact time.

A

В

С

FIGURE S5 Retraction velocity and contact time dependence of Pseudomonas aeruginosa adhesive pressure to glass. (A) PAO1 early biofilm. (B) wapR early biofilm. (C) PAO1 mature biofilm. (D) wapR mature biofilm. Means and standard errors of data are shown from three independent experiments per early biofilm sample and two independent experiments per mature biofilm sample. Each experiment consists of 10 replicate force plots for each combination of retraction velocity and contact time.

A

В

D

Retraction velocity (µm/s)

FIGURE S6 Loading force and contact time dependence of *Pseudomonas aeruginosa* adhesive efficiency to glass. (A) PAO1 early biofilm. (B) wapR early biofilm. (C) PAO1 mature biofilm. (D) wapR mature biofilm. Means of data are shown from three independent experiments per early biofilm sample and two independent experiments per mature biofilm sample. Each experiment consists of 10 replicate force plots for each combination of loading force and contact time.

A

В

50%

0%

0

2

8

10

12

6

Contact Time (s)

4

D

Loading force (nN)

FIGURE S7 Comparison of instantaneous indentations of *Pseudomonas aeruginosa* biofilms at SFTV. Means and standard errors of data are shown from two independent experiments per sample. Each experiment consists of ten replicate force plots under standard load force (10 nN), contact time (1 s) and ramp velocity (2 μ m/s). Indentation data were extracted from the resulting creep curves. PAO1-ebf: PAO1 early biofilm; wapR-ebf: wapR early biofilm; PAO1-mbf: PAO1 mature biofilm; wapR-mbf:wapR mature biofilm.

FIGURE S8 Comparison of creep indentations of *Pseudomonas aeruginosa* biofilms at SFTV. Means and standard errors of data are shown from two independent experiments per sample. Each experiment consists of ten replicate force plots under standard load force (10 nN), contact time (1 s) and ramp velocity (2 μ m/s). Indentation data were extracted from the resulting creep curves. PAO1-ebf: PAO1 early biofilm; wapR-ebf: wapR early biofilm; PAO1-mbf: PAO1 mature biofilm; wapR-mbf: wapR mature biofilm.

