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Appendix A: Data Generating Model

The data generating model is described below in terms of equations involving the intervention

components (A1−A5), the measures of adherence (Ad1−Ad5), an unknown confounder Type (T ),

and the outcome (Y ). In this model, A2−A5 can take two values: 0 or 1 (absent or present); while

A1 can be 0, 1, or 2 (low, medium, or high). Note that subjects may receive a different dose of

a component than that assigned. Measures of adherence (Ad’s) simply represent these doses. A

multiplicative model is used below to describe the relation between A’s and Ad’s. The confounder

Type follows a Bernoulli (1/2) distribution.

A→ Ad:

Ad1 = (η10 + η11 T + e1) ·A1

Ad2 = A2

Ad3 = (η30 + η31 T + e3) ·A3

Ad4 = (η40 + η41 T + η42A5 + e4) ·A4

Ad5 = (η50 + η51 T + e5) ·A5

where each of e1, e3, e4, and e5 follows a normal distribution N(0, σ2
e), σe = 0.1. Note that

there is no non-adherence to component A2. The right hand side of the equations in the above

display are truncated such that Adj ∈ [0, Aj ],∀j. The subsequent equations are only approximate

due to this truncation.

Ad→ Y :

Y = β1 T + β2 Ad1 + β3 Ad
2
1 + β4 Ad2 + β5 Ad4 + εY ; εY ∼ N(0, 3).
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Marginal Form of Y , averaged over Ad’s:

Y = β1 T + β2 (η10 + η11 T ) A1 + β3

(
(η10 + η11 T )2 + e21

)
A2

1 + β4 A2

+ β5 (η40 + η41 T ) A4 + β5 η42 A4 A5

+
(
εY + e1 β2 A1 + 2e1 β3 (η10 + η11 T ) A2

1 + e4 β5 A4

)
(1)

Let eT denote the sum of the 4 terms in the last row of the above display. Note that the term eT

has zero mean but heteroscedastic variance because some of the ej ’s occur in products with the

components. Because of zero mean, eT functions like an error term. The generated Y will have a

mean of the form

E[Y |A1, . . . , A5] =
1
2
β1 + β2 (η10 +

1
2
η11) A1 + β3 (η2

10 +
1
2
η2
11 + η10 η11 + σ2

e)A2
1

+ β4 A2 + β5 (η40 +
1
2
η41) A4 + β5 η42 A4 A5

= c0 + c1 A1 + c11 A
2
1 + c2 A2 + c4 A4 + c45 A4 A5 (2)

where each cj is a function of (η, β, σe). In the simulations, we set these parameter values to ensure

certain effect sizes as defined in the following section. Equation (2) above corresponds to equation

(1) appearing in the article.

Standardized Effect Size

In our simulations, we set the parameter values so that the standardized effect size (Cohen’s d) for

the two-group comparison of the best treatment combination (A1 = A2 = A4 = 1, A3 = A5 = 0)

vs. the control where A1 is set to its low level and all other components are absent (i.e., Ai = 0,∀i)
enjoys Cohen’s benchmark values (small=0.2, medium=0.5, large=0.8). Cohen’s d in this case is

explicitly defined as:

d =
E
(
Y |A1 = A2 = A4 = 1;A3 = A5 = 0

)
− E

(
Y |Ai = 0,∀i

)
√

1
2

[
Var
(
Y |A1 = A2 = A4 = 1;A3 = A5 = 0

)
+ Var

(
Y |Ai = 0, ∀i

)]
=

c1 + c11 + c2 + c4
f(η, β, σe)

, (3)

where f is some function of η, β, σe as can be seen from (1). The numerator follows from (2).

Parameter Values for Specific Standardized Effect Sizes

From now on we denote the parameter values used in a given simulation with a superscript 0. The

true parameter values η0 and β0 are chosen so that the following conditions are satisfied:
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1. The standardized effect size d as defined above attains Cohen’s benchmark values (small=0.2,

medium=0.5, large=0.8).

2. The active main effects (considered in the screening phase) are roughly equal in magnitude,

while the active interaction is half the size of active main effects:

2c1 + 4c11 = c2 = c4 = c, say (4)

c45 = − c
2

3. The middle level of A1 (i.e., A1 = 1) is best, and the main effect of A1 between levels 1 and

2 (as considered in refining phase) is also equal to the main effects considered in screening

phase, i.e.,

(c1 + c11)− (2c1 + 4c11) = −c1 − 3c11 = c (5)

4. The level of confounding, as quantified by β1η11 (= β1η31 = β1η41 = β1η51), is made equal to

c corresponding to the large effect size (d = 0.8).

The values of the η0 stay the same across different effect sizes and are set to:

η0
10 = η0

30 = η0
40 = η0

50 = 0.50;

η0
11 = η0

31 = η0
41 = η0

51 = 0.25; η0
42 = −0.3125.

If we keep the η’s and σe fixed, then f(η, β, σe) appearing in the denominator of (3) can be written

as g(c), a function of just c. Also, each β can be expressed as a function of c. From (3), (4), and

(5), we get

d =
4c
g(c)

(6)

For all three values of d (=0.2, 0.5, 0.8), we solve (6) for c by recursive method (calculating g(c) by

Monte Carlo integration). We get c = 0.165, 0.415, 0.667 for small, medium, and large effect size

respectively. From the values of c, we can easily obtain the β values.

The β values corresponding to small standardized effect sizes are:

β0
1 = 2.6680; β0

2 = 0.9240; β0
3 = −0.5945; β0

4 = 0.1650; β0
5 = 0.2640.

The β values corresponding to medium standardized effect sizes are:

β0
1 = 2.6680; β0

2 = 2.3240; β0
3 = −1.4953; β0

4 = 0.4150; β0
5 = 0.6640.

The β values corresponding to large standardized effect sizes are:

β0
1 = 2.6680; β0

2 = 3.7352; β0
3 = −2.4033; β0

4 = 0.6670; β0
5 = 1.0672.
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Appendix B: Operationalization of the Phased Experimental Ap-

proach

As in the classical approach, each scientist following the phased experimental approach studies

all the five components. In the screening phase only the two extreme levels (out of three) of A1

are considered. We restrict the number of cells to 16 in our simulations, so a 16-cell resolution

V balanced fractional factorial design with defining word I = A1A2A3A4A5 is used (see Wu and

Hamada, 2000, Ch. 4, for a technical discussion on defining word and resolution). The defining

word completely specifies the aliasing pattern in the design. The above choice of design was used in

a behavioral study on breast cancer prevention (see Nair et al., 2008). Since this is a resolution V

design, the 2-way interactions are not aliased with each other (aliased with three-way interactions,

as can be seen from the defining word). In general, the investigators choose the defining word

based on prior substantive knowledge concerning the potential strength of higher order interactions

relative to the likely noise in the data (e.g. if the size of any three way interaction is likely small

compared to the noise level of the data, one can be more confident that the detected two-interaction

effect is due to the two-way interaction and not to a three-way interaction). This is in accordance

with the hierarchical ordering principle (see Wu and Hamada, 2000, p. 112) which states that,

absent strong prior knowledge, higher order interactions can be expected to be of smaller size than

lower order interactions. Note that in the setting described in the paper (N = 1200 subjects), only

800 subjects are used by each scientist in the screening phase of the study.

Screening Phase Analysis

The experiment is simulated using the 16-cell balanced fractional factorial design. A standard

analysis of variance (ANOVA) is performed on the outcome Y and the five components. In the

screening phase, the following steps are followed:

1. A 10% level of significance is used for testing the main effects and two-way interactions (to

have greater power).

2. If the no. of significant effects is less than 3, rank-order the absolute values of the t-statistics

corresponding to the main effects only (assuming that main effects are more likely to be

significant than two-way interactions) and identify the largest 3. Move to the refining phase

with the corresponding effects (treating them as significant).

In step 2 above, we chose the number of components to retain (say, k) to be equal to 3 to ensure that

at least 50% of the components always pass the screening phase (3 is the smallest integer greater
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than or equal to 5/2, 5 is the total no. of components). Since in general we expect that only a few

components are likely to be active, the choice to carry forward the top 3 components to the refining

phase is a reasonable one. By doing so, we are being conservative about the hypothesized effect of

the components. This is a tuning parameter of the procedure and can vary from one investigator

to another. We have conducted simulations for two other choices of this number (e.g., k = 2 and

4). A summary of simulation results across all three choices of k (e.g., 2, 3, and 4) can be found in

Appendix C.

Moving Towards Refining Phase

As mentioned in the article, a part of the original sample in each simulated data set is reserved

for the refining phase. The refining phase may or may not be conducted depending on the results

obtained in the screening phase. In general the refining phase is employed in the simulation if (1) the

three-level component A1 is significant in the screening phase, or (2) there is at least one significant

interaction involving A1 (see Algorithm 1 below). The phased experimental approach, just like the

classical approach, assumes the prior knowledge that A1 is a special component having more than

two levels. The refining phase uses multi-group experiments; standard analysis of variance, with

5% level of significance is used. In the setting described in the paper (N = 1200 subjects), the

remaining 400 subjects are used by each scientist in the refining phase of the study.

Algorithm 1

This algorithm is used in the simulation to determine which components should be retained and

which should be rejected, based on the results of the screening phase.

Input: set of components, significant effects (both main and interaction effects), estimated effect

sizes, and signs of effects.

Output: best (treatment) combination.

Initialize: best combination = [0, 0, 0, 0, 0], a 5-component vector. In the following, we will use the

notation best combination(i) to denote the i-th element of the vector best combination.

1. Go through the set of components (i = 1 : 5): If main effect and all interactions of component

i are insignificant, set best combination(i) = 0. If main effect of component i is significant,

but none of its interactions are, look at the sign. If sign(i) = +1, set best combination(i) = 1.

Else, best combination(i) = 0.

2. Now for any significant interaction, find [P1, P2] = parent components of that interaction.
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(a) If the main effect of the component P1 (P2) is insignificant, initialize sign(P1) = 0

(sign(P2) = 0). If P1 (P2) is significant, initialize sign(P1) (sign(P2)) to the sign of its

main effect (either +1 or −1), respectively.

(b) Define sign vector as the vector consisting of sign(P1), sign(P2), and sign(interaction).

(c) If sign(P1) = 0 but sign(P2) 6= 0, set sign(P1) = sign(P2) × sign (interaction). Do a

similar operation for P2.

(d) If both parents are insignificant, i.e., sign(P1) = sign(P2) = 0, go to step 4.

3. If sign(P1) × sign(P2) = sign(interaction), set best combination(P1) = (sign(P1) + 1)/2, and

best combination(P2) = (sign(P2) + 1)/2.

4. For a significant interaction:

– if sign vector= [0, 0, 1], compare the cell means where both P1 and P2 are set to +1 (so

the interaction P1P2 is also set to +1) vs. where both P1 and P2 are set to −1 (so P1P2

is set to +1).

– if sign vector= [0, 0,−1], compare the cell means where P1 = +1, P2 = −1 (so P1P2 =

−1) vs. where P1 = −1, P2 = +1 (so P1P2 = −1).

– otherwise, do cell-mean comparison of the following four cells: P1 = +1, P2 = +1 (so

P1P2 = +1), P1 = −1, P2 = −1 (so P1P2 = +1), P1 = −1, P2 = +1 (so P1P2 = −1),

P1 = +1, P2 = −1 (so P1P2 = −1).

The combination of (P1, P2) that gives the highest cell mean is used to determine the best

combination. This step implicitly assumes that the four cells do not differ with respect to

other active components.

Note that the order in which step 2 considers interactions impacts the results. For example if

sign(P1) = 0, sign(P2) = −1, sign(P1P2) = −1, sign(P3) = +1, sign(P1P3) = −1, then the best

combination setting for P1 will depend on the order in which the interactions are considered. The

simulations used the natural ordering, e.g., significant interactions from the ordered list 12, ..., 15,

23, ..., 25, 34, 35, 45 (using the notation ij to denote the interaction AiAj).

Refining Phase

1. When A1 and all its interactions are insignificant, there is no refining phase. The best

treatment combination is found by Algorithm 1.

6



2. When A1 is significant, but none of its interactions are so, the refining phase uses a two-group

follow-up experiment, in which A1 is varied across the two groups, setting other components

at their optimum level (obtained by applying Algorithm 1 on the screening phase results).

One group receives the intermediate level of A1 (not studied in screening phase), the other

receives one extreme level depending on the sign of the screening phase estimate of the effect

of A1 (the level is the higher extreme if the sign is a +, lower extreme otherwise). Thus, the

best treatment combination is found.

3. If only one interaction involving A1 is significant, a 6-group follow-up experiment (3 levels of

A1 × 2 levels of the other component forming the interaction), setting all other components

at their optimum levels as found by Algorithm 1, is used.

4. If two interactions involving A1 are significant, then a 12-group (3 × 22 = 12) follow-up

experiment is used in the refining phase.

5. For three or more significant interactions involving A1, conducting follow-up experiment be-

comes increasingly problematic (constructing many treatment groups), and also results be-

come less reliable (low power for comparing many groups). In our simulations, no refining

experiment is conducted in such cases – the best combination is determined by applying Al-

gorithm 1 to the results of screening phase. As mentioned in the previous page, the order

in which step 2 of Algorithm 1 considers interactions impacts the results. The simulations

used the natural ordering, e.g., significant interactions from the ordered list 12, ..., 15, 23, ...,

25, 34, 35, 45 (using the notation ij to denote the interaction AiAj). However, these cases

occurred very rarely in our simulation, and hence this step was rarely employed. In real life,

investigators can come up with rules to proceed based on additional analysis (see Strecher et

al., 2008, for an example).

The abstract discussion of Algorithm 1 and refining phase possibilities are made more concrete

below with the help of three simulated examples:

Example 1

Suppose at the screening phase, the significant effects along with their signs are:

A1(+), A2(+), A3(−)

Before running any follow-up experiment, Algorithm 1 will operate on this as follows:

• Best combination is initialized as [0, 0, 0, 0, 0].
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• By Step 1, A1, A2, A3, A4 and A5 are set to 1, 1, 0, 0, and 0 respectively. So Best combination

becomes [1, 1, 0, 0, 0].

Since only the main effect of A1 (but none of its interactions) is significant at the screening phase,

a 2-group follow-up experiment is conducted at the refining phase, where the 2 groups correspond

to the levels 1 and 2 of A1. In both groups, A2, A3, A4, and A5 are fixed at levels 1, 0, 0, and 0

respectively – as determined by Algorithm 1 above.

Example 2

Suppose at the screening phase, the significant effects along with their signs are:

A1(+), A2(+), A4(+), A1A2(+), A4A5(−)

Before running any follow-up experiment, Algorithm 1 will operate on this as follows:

• Best combination is initialized as [0, 0, 0, 0, 0].

• By Step 1, A3 is set to 0. Best combination remains same as before.

• By Step 2 (a – c), sign vector for the interaction A1A2 is (1, 1, 1), and the sign vector for the

interaction A4A5 is (1,−1,−1).

• By Step 3, best combination becomes [1, 1, 0, 1, 0].

Since one interaction involving A1 is significant at the screening phase, a 6-group follow-up exper-

iment is conducted at the refining phase, where the 6 groups correspond to the combinations (0,

0), (0, 1), (1, 0), (1, 1), (2, 0), and (2, 1) of the components A1 and A2. In all 6 groups, A3, A4,

and A5 are fixed at levels 0, 1, and 0 respectively – as determined by Algorithm 1 above.

Example 3

Suppose at the screening phase, the significant effects along with their signs are:

A1(+), A2(+), A5(+), A2A3(−), A3A5(+)

Before running any follow-up experiment, Algorithm 1 will operate on this as follows:

• Best combination is initialized as [0, 0, 0, 0, 0].

• By Step 1, A1 is set at 1 and A4 is set at 0. Best combination becomes [1, 0, 0, 0, 0].

• By Step 2 (a – c), sign vector for the interaction A2A3 is (1,−1,−1), and the sign vector for

the interaction A3A5 is (1, 1, 1).
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• Step 3 applied to the interaction A2A3 sets A2 at 1 and A3 at 0. Best combination becomes

[1, 1, 0, 0, 0].

• Step 3 applied to the interaction A3A5 sets A3 at 1 and A5 at 1. Thus the best combination

becomes [1, 1, 1, 0, 1].

This is an example where the order in which interactions are considered in Algorithm 1 affects

the results. Since in our simulations, we considered natural ordering as described in Algorithm 1,

A3A5 is considered after A2A3. We could have ended up with a different best combination (e.g.,

[1, 1, 0, 0, 1]) had we considered A3A5 before A2A3.

Since only the main effect of A1 (but none of its interactions) is significant at the screening phase,

a 2-group follow-up experiment is conducted at the refining phase, where the 2 groups correspond

to the levels 1 and 2 of A1. In both groups, A2, A3, A4, and A5 are fixed at levels 1, 1, 0, and 1

respectively – as determined by Algorithm 1 above.

The matlab code for the entire simulation can be found at

http://www.stat.lsa.umich.edu/~bibhas/MOSTcode.html

Appendix C: Summary Results across Different Simulation Condi-

tions

We conducted a series of simulations in order to investigate whether the results reported in the paper

held across variation along two dimensions: (1) sample size (N), and (2) number of largest main

effects retained in the screening phase as a decision rule (k). We investigated three different sample

sizes: N = 600 (400+200), 1200 (800+400), and 2500 (1600+900); crossed with three different

decision rules: k = 2, 3, and 4 (i.e., nine simulation settings in total). The following three tables

correspond to the three tables in the paper, summarizing across all the nine settings. In general

the classical approach tended to produce a larger E(Y ) than the phased experimental approach

in small effect size, small sample size conditions; and the phased experimental approach tended to

produce a larger E(Y ) than the classical approach in medium or better effect size conditions, even

with small sample sizes (N = 600). The phased experimental approach tended to produce larger

E(Y ) than the classical approach for larger k. In the conditions in which the four largest main

effects were retained, the phased experimental approach consistently produced the larger E(Y ),

even in the small effect size, small sample size (N = 600) condition. Details can be seen in the

following tables.
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Table 1: Whether the Classical (C) or the Phased Experimental (E) approach produced the largest

value of E(Y ) under a variety of simulation conditions (This is a summary across 9 simulation

settings of the entries that correspond to the Table 1 in the paper).

k

Sample Size Effect Size k = 2 k = 3 k = 4

600 Small C C E

Medium C E E

Large E E E

1200 Small C C E

Medium E E E

Large E E E

2500 Small C E E

Medium E E E

Large E E E

Table 2: Whether the Classical (C) or the Phased Experimental (E) approach produced a higher

E(Y ) value in more data sets than its counterpart under a variety of simulation conditions (This is

a summary across 9 simulation settings of the entries that correspond to the Table 2 in the paper).

k

Sample Size Effect Size k = 2 k = 3 k = 4

600 Small C C E

Medium C E E

Large E E E

1200 Small C C E

Medium E E E

Large E E E

2500 Small C E E

Medium E E E

Large E E E
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Table 3: Whether the Classical (C) or the Phased Experimental (E) approach showed more accu-

racy in component selection under a variety of simulation conditions (This is a summary across 9

simulation settings of the entries that correspond to the Table 3 in the paper).

k

Dimension Sample Size Effect Size k = 2 k = 3 k = 4

Identifying the correct 600 Small C E E

combination of components Medium E E E

and levels more frequently Large E E E

1200 Small E E E

Medium E E E

Large E E E

2500 Small E E E

Medium E E E

Large E E E

Identifying all the 600 Small C C C

active components Medium C C E

more frequently Large C E E

1200 Small C C C

Medium C C E

Large E E E

2500 Small C C C

Medium E E E

Large E E E

Identifying all the 600 Small E E E

inactive components Medium E E E

more frequently Large E E E

1200 Small E E E

Medium E E E

Large E E E

2500 Small E E E

Medium E E E

Large E E E
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