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SUPPLEMENTARY MATERIAL 

 

Figure S1: Representative structures from the PDBSelect database showing the correlation 

between f  values and fractional DSSP-E scores. For each structure, the label denotes the PDB 

code with chain ID, fractional DSSP-E score, and f  value, respectively. The correlation becomes 
weak when characteristic hydrogen-bonded patterns are absent within a structure as shown for 
2BI6H.  
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Figure S2: Coil-to-globule transition for monomeric polyglutamine. These data show the 
ensemble averaged mean square radius of gyration as a function of simulation temperature. 
Values on the ordinate are normalized by chain length because Rg

2  N at the theta temperature, 

T . Therefore, the plots for different chain lengths should coincide at T=T  for different chain 
lengths because polyglutamine molecules are homopolymers. This requirement is satisfied for 
T=T 390K. The plots were made by analyzing data extracted from torsional space Metropolis 
Monte Carlo (MC) simulations using the forcefield and ABSINTH implicit solvation model 
described in the Materials and Methods section of the text. Details of the move sets used are 
provided in Table S1. Independent simulations were carried out for each temperature. For each 
temperature, the simulations involved 106 equilibration steps of MC followed by 4 107 steps of 
production. A complete analysis of the coil-to-globule transition for monomeric polyglutamine 
and an explanation for the shapes of these curves has been provided in previous work (1). 
T=TC 355K is the temperature below which collapsed states are favored for polyglutamine. 
Hence, for the forcefield used in this work, T  TC corresponds to poor solvent conditions, 
whereas the regime TC < T  T  corresponds to the transition region. 
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Table S1: Overview of the frequency of the different Monte Carlo moves sets used in 

simulations of monomeric and pairs of polyglutamine molecules. To be able to probe 
multiple length scales simultaneously, Monte Carlo moves in ABSINTH either fully randomize a 
given degree of freedom, or perform a stepwise perturbation that has a maximum size. This is 
explained in detail in the footnotes. The frequencies for different moves are chosen to reflect the 
relevance of the various degrees of freedom to both the conformational equilibria and the 
association of these peptides. Additionally, these choices reflect the associated computational 
cost. As an example, -angles are sampled relatively infrequently, as their values are expected to 
remain close to the perfect trans-conformation. Note that a small number of moves for each 
simulation were swap attempts for replica exchange.   

Move 

Type 

Frequency of move sets for 

simulations of monomeric 

polyglutamine  

Frequency of move sets for simulations 

with pairs of polyglutamine molecules  

Rigid-
body1 

- 30% (50%, 10Å, 20°) 

Omega2 7% (90%, 5°) 4.9% (90%, 5°) 

Sidechain3 30% (4x, 60%, 30°)  21% (4x, 40%, 30°) 

Pivot4 63% (70%, 10°) 44.1% (70%, 10°) 

1.
 Rigid-body moves simultaneously change rotational and translational degrees of freedom 

of the whole molecule. The first value listed in parentheses is the fraction of moves 
assigned to finite perturbations, whereas the remaining attempts fully randomize the 
respective degrees of freedom. The second and third values are the maximum 
translational and rotational step-sizes associated with the finite perturbations. 

2.
 Moves that perturb the -angles of peptide units. Due to the acetyl and methylamide 

capping groups there are N+1 -angles for a chain length of N. The two sets of values in 

parentheses are the fraction of -moves, which attempt a stepwise perturbation along 
with the maximum step-size. 

3.
 Sidechain moves perturb the -angles of a given sidechain in the peptide. In each attempt 

to alter sidechain degrees of the freedom, two of the three -angles are randomly altered. 
Sidechain moves are inexpensive and therefore several sidechains are sampled during 
each “move” (first value in parentheses). The remaining two values in parentheses again 
give the fraction of -moves with a finite perturbation and the maximum value of that 
perturbation. 
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Figure S3: Distributions of f  values obtained from the umbrella sampling simulations. The 
legend on the right identifies the target f

0 value for each simulation. Each histogram is the 
average from three independent simulations. The histograms indicate that the overlap between 
adjacent windows is finite and significant, thereby validating the f  schedule and choice of 
restraints used in the umbrella sampling protocol. To further demonstrate the validity of our 
protocol, Figure S4 shows a summary of the overlap statistics extracted from the plots shown in 
this figure. As a reminder, we present data from umbrella sampling simulations that were 
performed using the following schedule of seventeen values for f 0: [0.0, 0.1, 0.2, 0.25, 0.3, 0.35, 
0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 0.75, 0.8, 0.9, 0.95 1.0].  
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Figure S4: Quantification of overlap between adjacent f  histograms shown in Figure S3. 
Sixteen bars are shown for overlap statistics computed between seventeen sets of adjacent 
windows. The f  schedule is as shown in the legend to Figure S3. For a pair of windows X and 

X+1, 
  
Overlap Fraction =

2 P
X

f( ) P
X +1 f( ) df

f =0

f =1

2
. We computed each integral 

numerically. In this formula, PX and PX+1 are the average f  histograms for windows X and X+1, 
respectively and these histograms are shown in Figure S3. If adjacent histograms PX and PX+1 
overlap perfectly, then the value of the overlap fraction is unity. Conversely, if the histograms do 
not overlap at all, then the overlap fraction is zero. The smallest overlap fraction values are seen 
for two pairs of neighbors in the simulations for Q30 and Q45. However, the reconstructed PMFs 
obtained using either WHAM or TI-WHAM are smooth even in regions where the overlap is the 
smallest, although the error bars (standard errors and bootstrap errors) are large in these high free 
energy regions. Overall, the quality of data obtained using the umbrella sampling protocol 
adopted in this work appears to be satisfactory and yields reliable PMFs thereby allowing us to 
draw the conclusions summarized in the main text. 
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Figure S5: Plot of acceptance ratios for replica exchange swaps between nearest-neighbor 

windows in the umbrella sampling simulations that were carried out for monomeric 

polyglutamine. As noted in the text, we carried out three independent replica exchange 
simulations, which were combined with the umbrella sampling protocol. The f  schedule used in 
these simulations is identical to that shown in the legend to Figure S3. The acceptance ratios are 
shown here for each of the three replica exchange (REX) runs and the data are shown for Q5 and 
Q15. For Q30 and Q45, the replica exchange simulations were initially carried out using a coarse, 
11-window f  schedule. However, the final PMFs were computed using the full 17-window f  
schedule shown in the legend for Figure S3. This was accomplished by collecting data from 
independent umbrella sampling runs (three per additional window) for windows that were not 
present in the coarse schedule. The decision to use the two-tier approach for the longer chains 
was based on the availability of CPU resources. The coarse f  schedule used for replica exchange 
plus umbrella sampling simulations for Q30 and Q45 is as follows: [0.0, 0.1, 0.25, 0.3, 0.4, 0.5, 
0.6, 0.75, 0.8, 0.9, 1.0]. 
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Calculation of PMFs for monomeric polyglutamine using WHAM with standard errors: As 
noted in the materials and methods section, we collected data from umbrella sampling 
simulations for each target f 0 value. For Q5 and Q15, we used umbrella sampling combined with 

replica exchange based on the 17-window f  schedule shown in the main text. Data were 
collected from three independent replica exchange plus umbrella sampling simulations. For Q30 
and Q45, we combined umbrella sampling with replica exchange using a coarser 11-window f  
schedule and we carried out three independent simulations as well. The target f 0 values for each 
window in the coarse schedule were set to be: [0.0, 0.1, 0.25, 0.3, 0.4, 0.5, 0.6, 0.75, 0.8, 0.9, 
1.0]. We subsequently added data from three independent simulations for each of the windows 
that were missing in the coarse schedule and were present in the finer schedule. In this way, we 
ended up with three independent f  histograms (one from each run) for each of the seventeen 
windows shown in the Materials and Methods section. Each of three sets of 17 independent 
histograms were used in the WHAM analysis to construct three independent, unbiased PMFs. 
Panel A in Figure 3 shows the average PMF constructed from the three independent estimates. 
The error bars in this figure are standard errors across the three independent estimates. The naïve 
standard errors represent the upper limit on the errors in our WHAM estimates of the PMFs.    

Calculation of PMFs for monomeric polyglutamine using WHAM with bootstrap errors: 
For each window (with 17 windows in total), we have three independent simulations and for 
each of these simulations we recorded the f  value every 5,000 MC steps. There were 4 107 

production steps for Q5,Q15, and Q30; therefore, we collected 8,000 f  values for each window 
and for each independent simulation.  For Q45 each run consisted of 6 107production steps, and 

we collected 12,000 f  values for this chain. The f  values samples were pooled across all 

independent simulations for each window.  Thus, for each window characterized by a target f 0 
value, the dataset contained 24,000 f  samples for Q5, Q15, and Q30 and 36,000 f  samples for Q45. 

From this pooled dataset, we selected 800 f  samples at random with replacement. This 
procedure was carried out for each window.  These f  values were binned to create an f  

histogram for each of the 17 windows with target f 0 values. Each histogram was created using 

100 bins with bin widths of 0.1. This yielded a histogram for each of the 17 f  windows.  The 
standard WHAM analysis was applied to these constructed histograms to generate a PMF.  This 
protocol of generating 17 sets of histograms using random sampling with replacement combined 
with WHAM analysis was repeated 200 times to generate 200 independent PMFs. Panel B in 
Figure 3 shows the average PMF (averaged over 200 trials) and bootstrap error, which is simply 
the standard error computed over the 200 unbiased PMFs. 

Calculation of PMFs for monomeric polyglutamine using TI-WHAM with standard errors: 
For each independent replica exchange plus umbrella sampling simulation, we calculated 
Ei/ f

0
i. This is the partial derivative of the system energy (including the restraint potential) for 

window i with respect to f 0.  These statistics were gathered every thousand steps during the 

production run (4 107 for Q5,Q15,Q30 and 6 107 for Q45). Values for Ei/ f i  are numerically 
integrated using a cumulative trapezoidal integrator. This yields estimates for the free energy 
differences between all pairs of adjacent windows.  These relative free energies were then fed 
into the WHAM analysis to combine f  histograms for each window into a single unbiased 
probability distribution. The use of the TI step circumvents the iterative step in WHAM and 
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allows us to analyze the PMF that results from an independent method for assessing relative free 
energies between windows.  For the TI-WHAM procedure, we used data based on the coarse (as 
opposed to fine) f  schedule. This allowed us to query the dependence of the reconstructed PMFs 

on the coarseness of the f  schedule (in addition to the circumvention of the first, iterative step in 
WHAM). For each chain length, the TI-WHAM procedure was applied to each of the three 
independent datasets. The PMF shown in Panel C of Figure 3 is an average over the three runs 
and the error bars are standard errors.  

Analysis of thermal replica exchange data for dimers of polyglutamine: Energy values are 
collected every 5,000 steps.  From the production runs we obtained 7,900 energy values for Q5, 
Q15, and Q30 12,000 samples for Q45. We constructed histograms of energy values using placed 
200 bins (with bin widths that vary with chain length). All error bars were standard errors 
computed across three independent runs. 
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Figure S6: Temperature-dependent energy histograms for dimers of polyglutamine 

molecules where both chains are restrained to a target value of f
0
=1. The histograms 

demonstrate the overlap between adjacent replicates and justify the temperature schedule used in 
all replica exchange simulations of homodimerization. The overlap between distal replicas 
decreases with increasing chain length and this is consistent with the differences in thermal 
stabilities for associated versus dissociated dimers for different chain lengths (longer chains form 
associated dimers over a wider temperature range). As noted in the text, we carried out three 
independent thermal replica exchange runs for each chain length and target f  value. The figure 
shows average histograms for each temperature.  Figure S7 summarizes the overlap statistics that 
were calculated using the histograms shown in this Figure. 
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Figure S7: Quantification of the overlap between adjacent thermal replicas shown in 

Figure S6. Ten bars are shown for overlap statistics computed between eleven sets of adjacent 
windows. The temperature schedule is presented in the methods section.  Computation of the 
overlap statistics is analogous to the method described in the caption for Figure S4. The overlap 
statistics appear to justify the adequacy of the temperature schedule used in the replica exchange 
runs. 
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Figure S8: Plot of acceptance ratios for swaps between nearest-neighbor thermal replicas 

in simulations of homodimerization. Data are shown for the case where both chains are 
restrained to a target value of f 0=1. The acceptance ratios are shown here for each of the three 
replica exchange (REX) runs that were carried out for each peptide. Even for the longer chains, 
the smallest acceptance ratios are greater than 0.2 (on average) indicating that the sampling 
quality is not compromised.  
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Figure S9: Quantitative analysis of the effects of conformational restraints on coil-to-

globule transitions for monomeric polyglutamine of different lengths. Two trends are 
apparent in the data: First, the coil-to-globule transitions becomes sharper vis-à-vis the 
unrestrained case for target values of f  greater than 0.5, whereas the opposite is true for f   
0.25. Second, the normalized value of Rg

2  remains in the vicinity of the value for the 
unrestrained chain for temperatures that are in the globule regime; conversely, for temperatures 
in the coil regime the normalized Rg

2  values are significantly larger than unrestrained values if 

f   0.75, whereas the opposite is true for f   0.25.  
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Figure S10: Scatter plot of all recorded snapshots in all dimer simulations for Q15, Q30, and 

Q45 correlating the fractional -content according to DSSP with the values for f  at 298 K. 
This plot is analogous to the one shown in Figure 4 in the main text. 
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