Biophysical Journal, Volume 96

Supporting Material

Primary reactions of the LOV2 domain of phototropin studied with ultrafast midinfrared spectroscopy and quantum chemistry

Maxime T.A Alexandre, Tatiana Domratcheva, Cosimo Bonetti, Luuk J.G.W. van Wilderen, Rienk van Grondelle, Marie-Louise Groot, Klaas J. Hellingwerf and John T. M. Kennis

Fig. S1. Optimized structure, atomic charges, and dipole moment of lumiflavin in the ground state computed by HF/6-31G(d) and excited S_1 and T_1 states computed by CIS/6-31G(d). In the excited state structures only distances that are different from those in the ground state are indicated.

Fig. S2. Correspondence between observed and computed vibrational frequencies: A. ground state, HF/6-31(d)G method, Table S1; B. S₁ state, CIS/6-31(d)G method, Table S2;

C. T₁ state, CIS/6-31G(d) method, Table S3.

Fig. S3. Optimized structure of the N(5)-H protonated lumiflavin cation in the T_1 state computed by CIS/6-31G(d).

Comput. freq.	Normal mode major components, $v -$ stretch, $\delta -$ bend	Exptl. freq.
(IR intensity)		
2022 (8.5)	v C(4)=O, C(2)=O	1714, 1694
2005 (25.9)	v C(2)=O, C(4)=O	1678
1854 (14.4)	v C6C7, C9C9a, C9aN10, N5C4a, C10aN1	1637
1820 (7.5)	v C6C7, C6C5a, C8C9, C9aN10, N5C4a	1582
1758 (30.0)	v C10aN1, N5C4a, C6C7	1550
1757 (4.9)	v C7C8, C5aC9a, N10C10a, C10aN1, C5aN5, N5C4a	1550
1677 (0.1)	δ CH ₃ (N10,C ¹ ,C ¹¹); v C7C8, C9C9a, C9aN10, C5aN5,	
	N10C10a	
1660 (0.3)	δ CH ₃ (N10)	
1653 (1.9)	δ CH ₃ (N10,C ¹); v C9aN10, C5aC9a, N5C4a, C4aC4	(1450)
1642 (0.8)	δ CH ₃ (C ^{II}); v C9C9a, C9aN10, C6C5a, C6C7	
1639 (0.4)	$\delta CH_3(C^{I},C^{II})$	
1637 (0.1)	δ CH ₃ (C ¹); v C6C5a, C9C9a, C7C8, C8C9, C5aN5	
1624 (0.0)	$\delta CH_3(C^I,C^{II})$	
1606 (1.0)	δ CH ₃ (N10); v C8C9, C9aN10, N10C10a	1395
1591 (0.2)	δ CH ₃ (N10,C ¹ ,C ¹¹); v C6C7, C6C5a, C8C9, C9C9a, C9aN10,	
	N10C10a, C5aN5, N5C4a	
1576 (0.1)	$\delta CH_3(C^1,C^{11})$	
1572 (0.3)	δ CN3H; v C4aC10a; C10aN1, C4aC4	
1563 (0.3)	δ CH ₃ (C ¹ ,C ¹¹); v C4aC4, C5aN5, N10C10a, N1C2, C2N3,	
	N3C4	
1552 (5.2)	δ CH ₃ (N10), CN3H; v C4aC10a, N10C(CH ₃), C4aC4, C4N3,	1348
	N3C2, C2N1	
1504 (2.8)	v C8C9, C9C9a, N10C(CH ₃), N10C10a, C4N3, N3C2, C2N1	1320

Table S1. Assignment of the experimental electronic ground state frequencies to the HF/6-31G(d) harmonic normal modes.

Comput. frq.	Normal mode major components, $v -$ stretch, $\delta -$ bend	Exptl. frq.
cm ⁻¹ ,		cm ⁻¹
(IR intensity)		
1988 (23.1)	v C(2)=O	1657
1966 (14.9)	v C(4)=O	1657
1772 (9.1)	v C8C9, C7C6, C6C5a, C9aN10, C10aN1	1570
1736 (3.5)	v C8C9, C7C6, C10aN1	1520
1695 (2.8)	v C6C7, C5aC9a, C9aN10, C4aC10a	1495
1670 (4.0)	v N5C5a, N5C4a, C9aN10	1475
1654 (3.4)	v C7C8, C6C5a, C9C9a, C9aN10, N5C5a	1475
1653 (0.3)	δ CH ₃ (N10)	
1652 (0.7)	δ CH ₃ (N10); v N5C5a, N5C4a, N10C10a	
1634 (0.4)	$\delta CH_3(C^{I},C^{II})$	
1622 (0.6)	δ CH ₃ (C ^I ,C ^{II}); v N5C4a, C10aN1	
1620 (1.4)	δ CH ₃ (C ^{II}); v C7C8, C9C9a, C6C5a, N5C4a	1415
1618 (0.0)	$\delta CH_3(C^I, C^{II})$	
1606 (0.6)	δ CH ₃ (N10); v C9aN10, N5C4a, C10aN1, C2N3	
1582 (1.3)	δ CH ₃ (N10);	1375
	v C9aN10, C10aN1, N1C2, C2N3, N3C4, C4C4a, N5C4a	
1572 (0.7)	v C8C9, C7C6, C10aN1, C9aN10	
1567 (0.7)	δ CN3H; v C4aN5, C10aN1, C2N3	
1559 (0.1)	$\delta CH_3(C^I,C^{II})$	
1529 (5.4)	v C4aC10a, N10C(CH ₃), C7C6, C6C5a, C2N1, N3C4	
1519 (3.6)	v C9aN10, C5aN5, C10aN1, C4aC4, N3C4, N3C2	

Table S2. Assignment of the S_1 experimental frequencies to the CIS/6-31G(d) harmonic normal modes.

Comput. frq.	Normal mode major components, v – stretch, δ – bend	Exptl. frq.
cm ⁻¹ ,		cm ⁻¹
(IR intensity)		
2012 (16.2)	v C(2)=O	1660, 1645
1984 (12.5)	v C(4)=O	1660, 1645
1860 (1.3)	v C10aN1, C5aN5, N5C4a	1620
1763 (11.0)	v C7C6, C8C9, C9aN10, C10aN10, N5C4a, C10aN1	1530
1723 (29.0)	v C7C6, C8C9, C9aN10, C5aN5, C10aN1	1491
1665 (1.7)	δ CH ₃ (N10); v C8C9, N10C10a, C10aN1	1475
1660 (2.6)	v C7C8, C9C9a, C9aN10, C6C5a, C5aN5	1475
1656 (0.2)	δ CH ₃ (N10)	
1642 (1.7)	v C7C6, C5aC9a, C9aN10, C4aC10a, C10aN1	1438
1637 (0.4)	$\delta CH_3(C^I,C^{II})$	
1628 (0.1)	δ CH ₃ (C ¹ ,C ¹¹); v C7C6, C8C7, C8C9, C9aN10, N5C4a,	
	N10C10a	
1622 (0.0)	$\delta CH_3(C^1, C^{II});$	
1619 (1.8)	δ CH ₃ (N10,C ^I ,C ^{II}); v C7C8, C5aC9a, C9C9a, ,C6C5a,	
	N10C10a	
1599 (1.6)	v C8C9, C9C9a, C7C6, C6C5a, C9aN10, N10C10a, N5C4a	1390
1580 (1.0)	v C8C9, C9C9a, C7C6, C6C5a, C9aN10, N10C10a, C5aN5,	(1375)
	N5C4a, C2N3, N3C4	
1573 (0.2)	δ CH ₃ (C ¹ ,C ^{II}); v C6C5a, C9aN10, C5aN5, C2N3, C2N1	
1570 (0.2)	δ CN3H; vC6C5a, C9aN10, C2N3, C5aN5	
1562 (0.0)	δ CH ₃ (C ¹ ,C ¹¹); v N10C10a. C4C4a, C2N1, C4N3	
1509 (10.6)	v C4C4a, C4N3, N3C2, C2N1, C4aC10a, C9aN10, C6C5a	
1470 (3.8)	v C9aN10, N10C(CH ₃), C4aC10a, C5aN5, C4aC4	

Table S3. Assignment of the T_1 experimental frequencies to the CIS/6-31G(d) harmonic normal modes.

Comput. frq.	Normal mode major components, v – stretch, δ – bend
cm ⁻¹ ,	
(IR intensity)	
2130 (80.3)	v C5aN5, N5C4a, C4aC10a, C10aN1, C9aN10, C4aC4
2035 (42.8)	v C(2)=O, C5aN5, N5C4a
1977 (19.0)	v C(4)=O, N5C4a, C10aN1
1781 (5.4)	v C6C7, C8C9, C9C9a, C9aN10, C10aN1, C5aN5, N5C4a, C4aC4
1747 (11.4)	δ CN5H; v C6C7, C7C8, C9aC5a, N10C10a, N5C4a, C10aN1
1722 (4.5)	v C8C9, C9C9a, C10aN1, C5aN5, C4aC4, C4N3
1660 (2.5)	δ CN5H, CH ₃ (N10,C ¹ ,C ^{II}); v C7C8, C9aN10, C5aN5, C4aC10a
1654 (0.4)	δ CH ₃ (N10)
1648 (0.6)	δ CH ₃ (N10,C ^I ,C ^{II}); v C7C8, C10aN10
1635 (0.3)	δ CN5H, CH ₃ (N10,C ^I ,C ^{II}); v C6C5a, C5aN5, C4aC10a, C9aN10
1628 (0.7)	$\delta CH_3(C^I,C^{II})$
1616 (1.8)	δ CH ₃ (C ^I ,C ^{II}); v C9C9a, C9aN10, C6C5a, C5aN5, N5C4a, N10C10a, C10aN1
1612 (1.2)	δ CN5H, CH ₃ (N10,C ^I); v C9aN10, N10C10a, C10aC4a, C5aN5
1612 (0.0)	$\delta CH_3(C^I,C^{II})$
1602 (3.1)	δ CH ₃ (C ¹ ,C ¹¹), HCC; v C7C8, C9C9a, C6C5a
1573 (1.5)	δ CN3H; v C9aN10, N10C10a, C5aN5, N5C4a, C4aC4, C2N3
1570 (0.0)	δ CN3H, CH ₃ (C ¹ ,C ¹¹)
1563 (2.1)	δ CN3H, CH ₃ (N10,C ^{II}); v C9aN10, N10C(CH ₃), C10aN1, C4aC4, C4N3
1560 (1.8)	δ CH ₃ (N10,C ¹ ,C ^{II}); v C9aN10, N10C(CH ₃), C6C5a, C4aC4, C4N3
1544 (0.0)	δ CN5H; v C8C9, C7C6, C9aN10, C5aN5, C10aN1, C4aC4, C4C3

Table S4. Computed CIS/6-31G(d) harmonic normal modes and frequencies of the N(5)-protonated lumiflavin cation in the first triplet state