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Supplementary Material: Eigenvalue derivation

Periodicity criteria:

tseim] = trs[m] ; (1)

P ¢ [m] = Ps {1 - g [m] + 15 (P [M])} (1a)

trea[m+1] = tssy[m+1] ; (2)

Pr{1 - @ [m] + 1 (Ge[m])} = Ps {ds1 [m+1] + fas (dsw [M]} (2a)

trea[m+1] = tsgy[m+1]; (3)

PeAN -1 + for ($elm])} = Ps {on [m+1] - §s; [m+1] + N_Z_llfls(% [m+1])} (3a)
=

Note that 1, 2 and 3 state the periodicity criteria in terms of the intervals in Fig. 2A whereas 1a, 2a, and
3a rewrite them in terms of the dependence on phase under the pulsatile coupling assumption.

Solve for the phases in terms of sy using (1a) and (2a ):
gelm] = (Ps/Pe) {1 - gonlm]+ fas (gsnlm])} (4)
gsalm+1] = (Pe/ Ps) {1 - gem] + 1 (¢em] )} - s (gsnlm] ) (5)
Write the perturbations in terms of the perturbation in gy
o + Ade[m]= (Ps/Pe) {1 - don’ - A [m]+ s (don’) + Fus (dsn’) Adhoy[m] } (6)
canceling, we have
Age[m]=(Ps/Pe) { f'15 (dn)-1}A s [m] (7)
b1’ + Adsi[m+1]= (Pe/ PS) {1 - ¢ — Ad[m] + fic ()

+ 16 () Agelml}-fas (dsn) - F'as (don VA g [m] (8)
canceling, we have
Adsi [m+1] = (Pe/ Ps)if'1e (g) - 1}A ge[m]- F'as (g ) Adhsn [m] (9)
substituting for A ¢ [m] in the above, we have
Adss [m+1] = { {1 (¢") - 1H{ F1s (don -1} a5 (don A don [m] (10)

With the expressions for Ags; [m+1] and Age[m] in hand, we move on to the A¢s;[m+1]



Ps2[m+1] = g1 [m+1] = F1s(Fsa[m+1]) + Pe/Ps{1 + foe( [m])} (11)
Pslm+1] = gsa)[m+1] —f1s(Pss[m+1]) + Pe/Ps (12)
The linearized expressions are:

Ps2*+ Agsa[m+1] = g1 *+ Adsa[m+1] = fis(fs: *) = Fas(ds1 ) Adsa[m+1] +

Pe/Ps{1 + for(de *)+'2e(e *)A@e[m+1]} (13)

cancelling we get
Agoo[m+1] ={1- fs(ds1 *)IAdsa[m+1] + (Pe/Ps)f'2( B *)Ade[m] (14)

The recursive dependence of the Ags;on Agsi[m+1] and Age[m] gives rise to the two summation terms
containing I1 in the expression for the eigenvalue.

@silm+1] = @sj1[m+1] — fis(Psji[m+1]) + Pe/Ps (15)

The linearized version is:

G +AGsIm+1] = oy * +Adsam1] — (s ) — Fisl g *)Ads 2lm+1] + Po/Ps (16)
canceling, we get

Ads[m+1] ={1— fus(ds ;1A ds o[m+1] (17)
Since Agsalm+1] = {1~ Fis{gss “NAdsilm+1] + (Po/Po)f (g *)Aglm] from (14)

then for j>2

Agsfm+1] = [~ Fis (B3 )} Adsalm+1] + T [ AL~ 15 (85 JHPe/Po)f el de “IAGelm] (18)
Substituting for Ads:[m+1] from (10) and Aglm] from (7) we obtain

A¢5j[m+1] =
(- {4 (6) - 1 {Fas (dn -1 Fas (g N [ AL~ Fis (503 +
Pl %) {Fss (gon 11 | [ AL Fs (500} YAdin [m] (19)

We now solve forgsy [m+1] in (3)

N-1
don [m+1] =gs; [m+1] - Fis (gsam+1])- Y_Fis (B [M+1]) + {Pe/PSHN -1 + ¢ (gm])}
j=2

(20)



and linearize

Gsn*+ Adsy [M+1] = 1™ + Adsy [M+1] - F15(Ps1*) - Frs(Ps1*)Ads; [M+1]

N-1

S {fis(fg) + Fis (65 )AGG [M+ 1D} + {Pe/PSHN -1 + Far (%)+F 2 (d*) A [m]) }

i=2

Cancelling we get

N-1
Ay [m+1] = {1 - fis(fss*)Adss [m+1] - D T (B ) AP [M+1] + {Pe/P)'ss (4*)Adim])

j=2
Substituting for Ags; [m+1] from (10), Ags[m+1] from (19)and for Ag:[m]from (7) into (22)

Agon [m+1] = {1 - Fas(sr*)H {F'1e () - 1H{ F'is (dsn )-1}- F'as (don )} -

N-1 .
Fis (85) {13 (d) - 11 (s (don )1 Fis (din N [0~ Fis (5 )} +
2

j=
e ' * * j-1 . *

D s (B) Farlde %) {15 (-1 ] |1 Fis (B5 )}
j=2

+ For (06%) {15 (don)-1} } Adhsw[m]
we obtain

Simpliflying

Adoy [m+1] = MAgsy [m]

where
2= Fap (B s (900) =B Xt (05) B (90K (05) - B T L0~ (s 13 +
{4 ()~ THEs (950 - B~ s (G50HL i (85) - 2 Fis ) T~ s (0208

for N=3, the term H:;lz{l— f(4e )} drops out.

(21)

(22)

(23)

(24)

(25)



Supplementary Material XPP Notes

In order to compute the coupling functions for the coupled oscillators using XPPAUT (15), we follow the
following procedure:

1. First, we compute the voltage and synaptic activation traces for the uncoupled Wang and
Buzsdki neurons using a code written for a single neuron. The equations are integrated for a
certain time for both slow and fast neurons. By identifying the peak of a spike in the slow
neuron, we integrate for its period. The fast neuron is also integrated for the period of the slow
neuron. Once we have a full period of the values of voltage and synaptic activation variables, we
can compute the adjoint (iPRC). XPPAUT has a built-in code that takes care of the calculation
with a few key strokes (starting with the traces for the slow neuron’s period, hit Numerics, then
Averaging and New Adjoint, after a few seconds, the adjoint can be plotted in the active view
window.) Before exiting, we need to save all the traces in a tabular format for use in the next
step. This can be done by going to Data Viewer and saving V, s and adjoint traces for a
normalized period of length 1.

2. We use another XPPAUT code to compute the coupling functions. This code basically takes all
the information from the last step and computes the convolution of the synaptic current
perturbation with the iPRC. The perturbation needs to be applied at uniform phase values
ranging between 0 and 1. We have used 200 points in our calculations. The coupling functions
can be seen in the Data Viewer for each individual neuron and depending on the system and the
coupling strength the effective coupling function can be calculated and plotted against the
relative phase.

3. The last step is the prediction step where we adjust the applied current to one of the neurons
(in our case the fast neuron) and see if the effective coupling function has zero crossings or not.
The predictions about stability of the modes are made accordingly by using the slope at the zero
crossings.

The codes used in this calculation can be requested from the authors.



