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1. Data visualization 

 

In a spectrally resolved image, each pixel corresponds to a vector y describing the 

measurements in the different spectral channels. These vectors are a sum of 

contributions of the m labels in the sample, each of which has a distinct emission 

spectrum. Since the variation of label concentrations are the main source of signal 

variation, the vectors y lie to a good approximation in a m-dimensional plane. This 

plane is spanned by m linearly independent spectra of the dyes and, as it contains the 

origin, is a subspace of the n-dimensional space of possible emission vectors. 

Variation perpendicular to the m-dimensional signal subspace is mainly due to photon 

shot noise. Since each vector y is a combination of nonnegative contributions of the m 

labels, the data points fill only the cone spanned by the spectral vectors of the pure 

labels.  

1.1 Data projection into the plane 

While the projection described can be formulated for any number of dyes, we 

consider the case of m=3 dyes in the following. A three-dimensional space cannot be 

visualized in the plane. However, the absolute signal strength is not relevant for the 

following consideration. Hence we can normalize all vectors y such that 



yi
i

 1 

and thereby reduce the relevant subspace to an affine two-dimensional space. To 

visualize the data in two dimensions, we have to project the data onto the affine 2-d 

subspace and map the latter into the plane.  

Assume we are given three spectra s1, s2 and s3 with unit 1-norm that span the signal 

subspace. For each n-dimensional vector y with unit 1-norm, we have to determine an 

orthogonal projection onto the affine 2-d space. The projected vector can be written as 

 1 2   z    
3 1 2

s t t , S1 
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where 
1 1 3  –  t s s  and 

2 2 3  –  t s s  are vectors within the affine space. From the 

condition that y-z is orthogonal to t1 and t2, we can calculate the coordinates within 

the affine subspace 
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where 



a,b  is the scalar product between two vectors a and b. The visualization of 

the data in the plane should preserve the angles and the relative length of points in the 

affine 2-d subspace. Both of these requirements are met, if the coordinates v1 and v2 in 

the plane are calculated from 1 and 2 as follows: 
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. (S3) 

Note that only relative locations and angles have a meaning, the absolute orientation 

and position of the representation of the data points in the plane are arbitrary; here for 

simplicity we mapped one edge onto the first unit vector. 

The analogous projection for two-dimensional data maps the data onto a line segment. 

The end-points of the line segment correspond to pure dyes while the points in the 

interior correspond to mixtures of dyes. For more than three dyes, the data is mapped 

onto a (m-1)-simplex (e.g. a tetrahedron for m=4). 

 

1.2 The positive domain 

In addition to visualizing the data, we are interested in the range of eligible 

nonnegative spectra. All eligible spectra have to lie in the same two-dimensional 

affine subspace and have nonnegative entries in each of their n components vector. 

Hence, we are looking for the subset of the 2-d subspace that lies in the nonnegative 

sector of the n-dimensional signal space. The boundary of this subset can be projected 
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into the plane just as the data points. To this end, one has to calculate the intersections 

of the coordinate hyperplanes with the affine 2D subspace. These intersections are 

lines, from which we have to extract the line segment that is nonnegative. Its image in 

the plane can be calculated as above using Eqs. A15 and A16. For each coordinate 

hyperplane, we get one such line segment, and their union is the boundary of the 

domain of nonnegative spectra.  
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2. NMF in Practice 

 

2.1 Pre-processing 

Background: Before an image can be successfully analyzed with NMF, any constant 

background should be removed. Preferably, the constant background should be 

determined by measuring the signal from a region in the field of view, which does not 

contain cells. Alternatively, one can also estimate the dark signal by taking the 

minimal pixel value of the intensity in each spectral channel. This dark signal has to 

be subtracted from the data. 

 

Autofluorescence: In principle, autofluorescence could be included as an additional 

dye into the algorithm. Estimation of autofluorescence by NMF, however, is 

particularly difficult as its spectrum is typically broad, its signal is weak, and it is 

ubiquitously present. In many cases, autofluorescence is weak enough to be neglected 

entirely. If not, it is advisable to measure the spectrum of autofluoresence in an 

unlabeled sample and to include such a component during the NMF optimization as a 

fixed spectrum. Autofluoresence spectra may differ between different excitation 

wavelengths. 

 

Signal-to-noise ratio: The quality of the decomposition increases with the signal-to-

noise ratio of the data. Noisy pixels are detrimental, since the signal in these pixels 

may be dominated by contributions not captured by the model (e.g. autofluoresence). 

It is therefore advisable to restrict the analysis to pixels above a threshold. Similarly, 

saturated pixels have to be removed as their spectral signature is distorted.  

 

Large Data sets: For single images a typical NMF run takes about a minute on a 
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personal computer. However, if large data sets such as z-stacks or time series are to be 

analyzed, it is advisable to perform NMF on a representative subset of the data. The 

obtained estimates for the spectra can either be used to calculate concentrations of the 

entire set by linear unmixing or as starting conditions for subsequent runs on a larger 

data set. This accelerates convergence, since existing estimates are refined much more 

quickly than the initial estimation from scratch. Another possibility is coarse-graining 

the images. Coarse-graining has the advantage of increasing the signal-to-noise. On 

the other hand, it averages over spatial structures and thereby decreases signal 

modulation. Nevertheless, moderate coarse-graining is often advisable. Results from 

such runs can be used as starting conditions for higher resolution images. 

 

2.2 Initial conditions 

The non-negativity constraints often do not suffice to determine the decomposition 

uniquely, in which case the outcome of an NMF run can depend on the initial 

conditions. For three dyes, this ambiguity can be illustrated by projecting the density 

of data points and the domain of positive spectra into a plane, as described above and 

in the main text. Every set of nonnegative spectra, the convex hull of which encloses 

the cloud of data points is an eligible solution and might be the outcome of an NMF. 

To impose initial conditions, we specify a set of spectra and solve for the 

corresponding concentrations, either by unmixing or by leaving spectra fixed during 

the initial 10 iterations. Concentrations are initialized with random numbers. 

To demonstrate the worst-case scenario, we ran NMF on the sample shown in Figure 

1 of the main text with extremely narrow initial spectra. The results are shown in 

Figure S1 (see legend for a discussion of this run). 

 

According to our experience best results are achieved when starting with spectra that 
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are broad and slightly red-shifted relative to the peak of the dye. In this case, the 

algorithm narrows the spectra in such a way that all data points can be described by 

nonnegative concentrations and avoids the at times substantial ambiguity of too 

narrow spectra. The red-shift is indicated because most spectra are very asymmetric 

with long tails at long wavelengths.  

A segregation bias as described in the main text forces spectra towards maximal 

overlap and thereby removes the ambiguity of NMF. A moderate segregation bias 

applied to the sample of Figure 1 of the main text significantly improves the 

decomposition. However, since the data points leave some part of the triangle empty, 

a strong segregation bias result in too broad spectra and too small triangles. Both of 

these cases are shown in Figure S2. 

The two alternative biases discussed in the appendix of the main paper (Eqs. A7 and 

A9) have qualitatively similar effects, although they differ in their implementation. 

The segregation bias (A7) operates on the concentrations. This has the advantage that 

the weight of the bias is easy to tune, since the bias itself scales with the amount of 

data. A disadvantage is the high degree of non-linearity, which sometimes results in 

local minima in which the algorithm gets trapped. The bias (A9) targets the overlap of 

each pair of spectra directly, but is somewhat harder to tune.  
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Figure S1: The results of an NMF run with Gaussian initial spectra with a FWHM of 20 nm. 

The NMF-spectra of A532 F-actin and EtBr DNA are reasonably close to the true spectra, 

while the spectrum of A488 tubulin is far too narrow. This is a consequence of the vast space 

between the reference triangle (blue in simplex projection) and the boundary of positive 

spectra (broken red line). Indeed, the NMF triangle of this run is as large as possible and 

touches the boundary at each vertex. 
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Figure S2: Segregation bias applied to the sample of Figure 1 in the main text. A moderate 

segregation bias significantly improves the decomposition and causes the NMF 

triangle to enclose the data more tightly (top row). A strong segregation bias, however, 

results a secondary peak in the EtBr spectrum, which now contains admixtures of A488. This 

is possible, since EtBr - DNA is always colocalized with A488 - tubulin, as apparent in the 

absence of data points in the lower left of the reference triangle (blue) (bottom row). The 

segregation bias reduces the triangle to its smallest possible size, which corresponds to 

mixing A488 into the EtBr spectrum. The resulting secondary peak in the EtBr spectrum is 

readily removed by the post-processing tool (see below). Initial conditions for these runs are 

the same as in Figure 1 of the main text, i.e. Gaussian spectra with a FWHM of 75 nm. 
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2.3 Post-processing of NMF results 

Typically, NMF in combination with a segregation bias provides a good initial 

decomposition. However, secondary peaks as apparent in the EtBr spectrum in Figure 

S2 can occur when dyes are strongly colocalized. These errors are often obvious and 

can be straightforwardly corrected using a software tool, which we developed. The 

use of the tool is illustrated in Figure S3.  

 

Figure S3: The software tool uses the set of spectra returned by NMF and displays the 

concentration maps (upper, left), the 2D representation of the spectra and the data 

(upper right), the intensity distributions in the user interface (lower left) and the 

spectra simultaneously (lower right). When the mouse cursor is moved within the 

domain of nonnegative spectra of the 2D simplex projection, the corresponding 

spectrum is displayed in real time in the spectra plot (dotted black line in spectra plot). 

When a better spectrum is found, the corresponding vertex of the NMF triangle (solid 
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red triangle in simplex projection) can be dragged to that new location. The software 

then recalculates the concentration maps.  

 


