Biophysical Journal, Volume 96

Supporting Material

Regulation of glycolytic oscillations by mitochondrial and plasma membrane $\mathbf{H}^{\!+\!}\mathbf{ATP}ases$

Lars Folke Olsen, Ann Zahle Andersen, Anita Lunding, Jens Christian Brasen and Allan K. Poulsen

Supplementary material to the paper

Regulation of glycolytic oscillations by mitochondrial and plasma membrane H⁺-ATPases

Lars Folke Olsen^{1*}, Ann Zahle Andersen², Anita Lunding¹, Jens Christian Brasen¹

and Allan K. Poulsen^{1,3}

¹ CelCom and ²Microbiology Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark, ³Danish Technological Institute, Teknologiparken, Kongsvang Alle 29, DK-8000 Århus C, Denmark ^{*}correspondence: lfo@bmb.sdu.dk

Inhibitor	Effect	Concentration added	Effect on NADH oscillations	Effect on $\Delta \psi$ oscillations
2-deoxyglucose	Inhibits hexokinase	5 mM	-	—
Iodoacetate	Inhibits glyceraldehyde-3- phosphate dehydrogenase	20 mM	_	_
Antimycin A	Inhibits complex III	2 µM	0	0
Azide	Inhibits complex IV Inhibits alternative respiration in S.1 Cerevisiae Inhibits F ₀ F ₁ -ATPase	50 μM - 5 mM	_	_
SHAM	Inhibits alternative oxidases	4 mM	0	0
FCCP	Dissipates H ⁺ electrochemical gradients	50 nM-5 μM	0	—
Amphotericin B	Induces leakage of K ⁺ from cells	10-20 μM	_	_
Omeprazole	Inhibits plasma membrane H ⁺ -ATPase	50-250 μM	0/?	+/

Table S1 Effect of various inhibitors of glycolysis, respiration and H⁺-ATPases on oscillations of NADH and mitochondrial membrane potential. (–) indicates inhibition; (+) indicates stimulation; (0) indicates no effect.

Figure S1. Calibration curve of fluorescence excitation ratio (490 nm/435 nm) vs. pH of permeabilized cells of *Saccharomyces cerevisiae* in citrate/phosphate buffer at different pH values. Permeabilization was done by suspending the cells in 70% (v/v) ethanol/phosphate buffer at 30 °C for 30 minutes. Then the cells were centrifuged at 7,000×g for 3 minutes and the pellet was resuspended in phosphate/citrate buffer at the desired pH. The permeabilized cells were stained with 5- (and 6-)- carboxyfluorescein diacetate succinimidyl ester at 40 °C for 20 min, centrifuged again, resuspended in the same phosphate/citrate buffer, and the excitation ratio (490 nm/435 nm, emission 520 nm) was recorded. Temperature 25 °C

Figure S2

Figure S2 Time series of NADH fluorescence and intracellular pH in yeast cells stained with 5- (and 6-)- carboxyfluorescein diacetate succinimidyl ester and suspended to a cell density of 10% wet weight in 100 mM phosphate buffer at pH 5.5. At time t=180 s 30 mM glucose was added to the suspension followed by 5 mM KCN at 240 s; pH_i was determined as explained in the "Materials and Methods" section. The final external pH was 5.15 at 2000 s. Temperature 25 °C

Figure S3. Effect of the addition of FCCP or amphotericin B on pH_i. Yeast cells stained with 5- (and 6-)- carboxyfluorescein diacetate succinimidyl ester were suspended to a cell density of 10% wet weight in 100 mM phosphate buffer, pH 6.8. At time t=180 s 30 mM glucose was added to the suspension followed by 5 mM KCN at 240 s. At time approximately 1000 s 20 μ M FCCP or 20 μ M amphotericin B were added to the suspension; pH_i was determined as explained in the "Materials and Methods" section. Temperature 25 °C

Figure S4

Figure S4. Effect of the addition of iodoacetate on pH_i . Yeast cells stained with 5- (and 6-)- carboxyfluorescein diacetate succinimidyl ester were suspended to a cell density of 10% wet weight in 100 mM phosphate buffer, pH 6.8. At time t=180 s 30 mM glucose was added to the suspension followed by 5 mM KCN at 240 s. At time approximately 1000 s 20 mM iodoacetate was added to the suspension; pH_i was determined as explained in the "Materials and Methods" section. Temperature 25 °C

Figure S5

Figure S5. The effect of omeprazole on pH_i . Yeast cells (10% wet weight) suspended in 250 mM sorbitol were treated for 10 min with omeprazole as described in the "Materials and Methods" section. After centrifugation the cells were stained with 5- (and 6-)-carboxyfluorescein diacetate succinimidyl ester and suspended (10% wet weight) in 100 mM phosphate buffer, pH 6.8. The graphs show plots of the intracellular pH against time in the untreated (control) cells and cells treated with 250 μ M omeprazole following addition of first 30 mM glucose and then 5 mM KCN as indicated. Temperature 25 °C