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1 Cluster analysis of folding trajectories

Cluster analysis of the folding trajectories was performed using the g cluster
module of GROMACS 3.3 [1] with the gromos clustering method [2]. For general
analysis of the folding trajectories, RMSDs were calculated using all heavy atoms
except those which are chemically equivalent to another atom in the same residue
(as in [3]), with a cutoff chosen based on the distribution of pairwise frame-frame
RMSDs for each selection. Frames for clustering were taken once every 300 ps for
each folding trajectory. The selected cutoffs were 3.5 Å, 3.5 Å, 2.8 Å, and 3.5 Å
for SimFold1, SimFold2, SimFold3, and SimFold4, respectively (n.b. the cutoffs
described here are not the same as the cutoffs used to define the DM ensembles,
which are described separately in Section 3). Distributions of the sizes of the
first several clusters are shown in Fig. 1, and the cluster present over time in each
trajectory is shown in Fig. 2; the first 20 clusters represent 36.8%, 27.4%, 39.7%,
and 65.4% of the total set of clusters for the three folding simulations. In all four
cases new clusters do appear throughout the entire duration of the simulation
(data not shown). Representative conformations (those with the lowest average
pairwise RMSD to other members of the same cluster) for each cluster are shown
in Figs. 3 and 4. While the use of a less strict RMSD cutoff for identification
of clusters might lead to a smaller number of clusters and reduced appearance
of further conformations throughout the simulations, the qualitative conclusion
that the WW domain explores a variety of distinct misfolded conformations
throughout the length of each folding trajectory is unaffected by the exact cutoff
used. For example, over the last two microseconds of SimFold1 the protein
fluctuates between clusters 2, 5, and 7, which are representative of the helixU,
helixV, and helixL states, respectively.

During identification of representative conformations for use in deactivated
morphing, all-protein-atom RMSDs were used in place of the heavy atom metric
described above, and a uniform cutoff of 4.0 Å was applied. As described in
Section 3, DM ensembles were considered using 2.0 Å, 3.0 Å, and 4.0 Å cutoffs
around the selected reference states.
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Figure 1: Number of conformations contained in the top 20 clusters of each folding simula-
tion.
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Figure 2: Cluster occupied as a function of time through each folding trajectory. Only the
20 most highly occupied clusters are shown. Clockwise from top left: SimFold1, SimFold2,
SimFold4, SimFold3.



Figure 3: Cartoon representations of the 10 most highly occupied clusters from folding
simulations. Coloring runs blue to red from N-terminus to C-terminus. The percentage of
timesteps from a given trajectory falling in each cluster is also shown.



Figure 4: Licorice representations of the 10 most highly occupied clusters from folding simu-
lations. Residues are colored by type: white for hydrophobic, green for polar, red for negatively
charged, and blue for positively charged. Coloring of the cartoon backbone runs blue to red
from N-terminus to C-terminus. The percentage of timesteps from a given trajectory falling
in each cluster is also shown.



2 Hydrogen bonding analysis

To analyze the distribution of hydrogen bonding conformations for compari-
son with data from structural databases [4] and QM calculations [5], the dis-
tribution of the hydrogen-acceptor distance δHA, donor-hydrogen-acceptor an-
gle Θ, hydrogen-acceptor-acceptor antecedent angle Ψ, and dihedral about the
acceptor-acceptor antecedent bond X were calculated; the notation and defi-
nitions used here are those of Kortemme and coworkers [4]. For each of the
four reference conformations, 2000 evenly spaced frames were taken from the
20 ns trajectory for the intermediate restraint state κ70 (k=0.001 kcal/(mol
Å2)) and hydrogen bonds identified based on a donor-acceptor distance cut-
off of 3.5 Å and Θ angle cutoff of no more than 80 degrees from collinearity.
Backbone-backbone, backbone-sidechain, and sidechain-sidechain interactions
were binned separately; the resulting distributions, after a correction for bin
volumes, are shown in Figs. 5, 6, 7, and 8. When compared to the results from
a survey of crystallographic structures presented in Fig. 2 of Kortemme et al. [4],
the distributions observed in our simulations show an overpopulation of values
of δHA greater than 2.2 Å, values of Ψ below 110◦ and above 160◦, and values
of Θ less than 120◦.

Because we noted that the inclusion of hydrogen bonds with Θ values devi-
ating more than 40◦ from 180◦ introduced a significant population of hydrogen
bonds with large (>2.2 Å) values of δHA and values of Ψ < 100◦, data are plotted
separately for a reduced set of hydrogen bonds with Θ no more than 35 degrees
from linearity in Figs. 9, 10, 11, and 12. In this reduced set the distributions
of δHA and Θ are much closer to those extracted from crystal structures, but
the backbone Ψ angle distribution is still shifted closer to linearity for all cases,
particularly sheet, and an overpopulation of Ψ values greater than 140◦ is ob-
served for sidechain-sidechain interactions. Examining the subset of sidechain-
sidechain hydrogen bonds with δHA < 2.1 Å, unlike the results of Kortemme
and coworkers, does not significantly alter the Ψ angle distribution (data not
shown). The overpopulation of Ψ angles closer to 180◦, rather than the ideal
geometry of 110◦ expected from ab initio calculations on formamide dimer [5],
would be expected for a pure dipole treatment of hydrogen bonding [4].
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Figure 5: Distribution of hydrogen bond parameters observed during simulation of sheet.
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Figure 6: Distribution of hydrogen bond parameters observed during simulation of helixL.
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Figure 7: Distribution of hydrogen bond parameters observed during simulation of helixU.
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Figure 8: Distribution of hydrogen bond parameters observed during simulation of helixV.
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Figure 9: Distribution of hydrogen bond parameters observed during simulation of sheet,
taking only hydrogen bonds with Θ > 145.0◦.
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Figure 10: Distribution of hydrogen bond parameters observed during simulation of helixL,
taking only hydrogen bonds with Θ > 145.0◦.
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Figure 11: Distribution of hydrogen bond parameters observed during simulation of helixU,
taking only hydrogen bonds with Θ > 145.0◦.
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Figure 12: Distribution of hydrogen bond parameters observed during simulation of helixV,
taking only hydrogen bonds with Θ > 145.0◦.



3 The deactivated morphing procedure

The deactivated morphing procedure used here was identical to that presented
by Park et al. in [6] except as noted below. This procedure circumvents the usual
difficulty in calculation of free energy differences for nontrivial conformational
changes of a protein by utilizing a series of unphysical intermediate states in
which the protein is restrained to a reference conformation representative of the
conformational ensemble of interest, all internal interactions removed, and the
protein is then “morphed” to a set of coordinates corresponding to a different
reference conformation of interest, and the first two steps then reversed. The
stages involved in the DM calculations performed in this study are illustrated
in Fig. 14; relevant details of each stage of the calculation are given below. As
noted in the main text, for a given reference conformation A the intermediates
represent the ensemble of structures within a specified protein RMSD cutoff of
the reference (E(A)), the state with harmonic restraints applied to all protein
atoms restraining it to conformation A with κ=1000 kcal/mol Å2 (K1(A)), the
“deactivated” state with all protein atoms restrained to their coordinates in
reference state A (Q(A)), and a “dummy” state with a uniform set of van der
Waals parameters and charges applied (D(A)).

Candidate reference structures were initially identified by clustering analysis
as described in the main text, and then subjected to 50 ns of unrestrained MD.
The single conformation from simulation of each candidate reference state with
the lowest RMSD to all other frames was then minimized for 6000 steps, and
the resulting structure used as a DM reference conformation.

All free energy calculations were performed using the Bennett Acceptance
Ratio (BAR) [7], in which the free energy difference between two related systems
with slightly different potential energy functions U1 and U2 is calculated by
sampling L1 and L2 conformations using U1 and U2, respectively, and then
self-consistently solving

eβ∆G =
L1+L2∑
l=1

[
L1e

−β∆G + L2e
−β∆U(Rl)

]−1

(1)

for ∆G, with ∆U ≡ U2(R)−U1(R) and β ≡ 1
kBT . Here R includes all protein,

water, and ion coordinates. Equation 1 is used for all steps of deactivated
morphing and analysis of the effects of different potentials on the relative free
energies on conformations, except for calculation of the E(A) → K1(A) free
energy difference, which was estimated as in [6]:

e−β(FE−FKS ) =
L1+...+LS∑

l=1

Θ(Xl)

[
S∑
i=1

Li
e−β

κi
2 (Xl−X̂)2

e−β(Fκi−FκS )

]−1

(2)

with Li the lengths of the intermediate restraint simulations with spring con-
stants κi, [X1, ...,XL1 ] the set of conformations from state K1, and Θ(X) ≡ 1 if
the RMSD between X and the reference conformation X̂ is less than a specified
RMSD cutoff, and 0 otherwise. For the DM calculations all of the restraining



states Ki were used in calculation of GE −GKS , with RMSD cutoffs of 2.0, 3.0,
and 4.0 Å.

The effects of modifying nonbonded interactions and the force field’s CMAP
terms were also calculated. In the case of nonbonded interactions, 20 ns simula-
tions were performed with cutoffs of 8.0, 9.0, 10.0, 12.0 Å. Likewise, to assess the
effects of CMAP on different conformations, 20 ns simulations were performed
with the CMAP grid contribution scaled by 1.0, 0.8, 0.5, 0.3, 0.2, 0.1 and 0.0.
The full set of states used for these calculations is shown in Fig. 13. For all
of these calculations a spring constant of 0.001 kcal / (mol Å2) was applied to
restrain the simulation to the reference conformation; in these cases only one
state was used to calculate the transition to the unrestrained ensemble, and
thus Eq. 2 simplifies to

e−β(FE−FK) =
L∑
l=1

Θ(Xl)L−1eβ
κ
2 (Xl−X̂)2 (3)

Only a 4.0 Å cutoff for the unrestrained ensemble was used for the modified
potential cases; in all cases the RMSD distribution for the the restrained en-
semble significantly populated the region around 4.0 Å. Simulation parameters
were the same as those for the DM calculations unless otherwise noted.

Figure 13: Steps in free energy calculations using alternate potentials. Boxes with solid
lines represent intermediate states that were simulated; those with dashed lines represent
unrestrained ensembles with free energies calculated based on the neighboring simulated state
(see Methods). “CMAP scaling” refers to the scaling of the gridded CMAP correction to the
backbone potential.

Poisson-Boltzmann electrostatics calculations were carried out on the refer-
ence states using APBS 1.0.0 [8] including apolar contributions [9]. CHARMM22
atomic charges and vdW parameters were used except for the polar contribution
to the solvation free energies, where optimized atomic Born radii [10] were used
instead. Calculations were carried out on a cubic lattice with an edge length of
60 Å using 129 points along each dimension, with a dielectric constant of 78.54



in solvent and 1.0 in the protein interior and in vacuum, and monovalent mobile
ions present at 30 mM. As with the MD simulations a temperature of 337 K
was used. For the apolar portion of the calculation, a solvent radius of 1.4 Å,
solvent pressure P of 36.0 cal / (mol Å3), and solvent surface tension γ of 3.0
cal / (mol Å2) [9] were used.

Figure 14: Schematic of the intermediate states involved in a deactivated morphing cal-
culation. The transition between each of these states involves calculation of the free energy
changes along a path of one or more intermediates. In this case states A and B correspond to
sheet and helixU, respectively, from the main text.

Restraining states The transition between E(A) and K1(A) was for all cases
calculated through a series of 70 intermediate states ranging from κ1 = 1000.0
kcal/(mol Å2) to κ70 = 0.001 kcal/(mol Å2). The full set of restraining states
for each simulation, along with the durations of the calculations, are shown in
Table 1. The timestep used for different spring constants was varied to ensure
stability of the simulation; sheet, helixU, and helixV used identical timesteps
in all cases, but slightly shorter timesteps were needed in some cases for he-
lixL. Plots of the RMSD distributions for different spring constants showing
the degree of overlap of adjacent ensembles are shown in Fig. 15. In all cases
data for free energy calculations were taken once per 100 fs. An additional
1.0 ns equilibration was performed for the κ1 state in each case to allow proper
equilibration of the heavily restrained system with the thermal bath.

State κ (kcal / mol Å) Duration (ns) Timestep (fs)
1 1000.00000 2.0 0.5 (0.4)
2 975.00000 2.0 0.5 (0.4)
3 950.00000 2.0 0.5 (0.4)
4 900.00000 2.0 0.5 (0.4)



5 850.00000 2.0 0.5 (0.4)
6 800.00000 2.0 0.5 (0.4)
7 760.00000 2.0 0.5 (0.4)
8 720.00000 2.0 0.5
9 640.00000 2.0 0.5
10 608.00000 2.0 0.5
11 576.00000 2.0 0.5
12 544.00000 2.0 0.5
13 512.00000 2.0 0.5
14 460.80000 2.0 0.5
15 409.60000 2.0 0.5
16 368.64000 2.0 0.5
17 327.68000 2.0 0.5
18 294.91200 2.0 0.5
19 262.14400 2.0 0.5
20 235.92960 2.0 1.0 (0.5)
21 209.71520 2.0 1.0 (0.5)
22 188.74368 2.0 1.0 (0.5)
23 167.77216 2.0 1.0
24 134.21773 2.0 1.0
25 107.37418 2.0 1.0
26 85.89935 2.0 1.0
27 68.71948 2.0 1.0
28 54.97558 2.0 1.0
29 43.98047 2.0 1.0
30 35.18437 2.0 1.0
31 28.14750 2.0 1.0
32 22.51800 2.0 1.0
33 18.01440 2.0 1.0
34 14.41152 2.0 1.0
35 11.52922 2.0 1.0
36 9.22337 2.0 1.0
37 7.37870 2.0 1.0
38 5.90296 2.0 1.0
39 4.72237 2.0 1.0
40 3.77789 2.0 1.0
41 3.02231 2.0 1.0
42 2.41785 2.0 1.0
43 1.93428 2.0 1.0
44 1.54743 2.0 1.0
45 1.23794 2.0 1.0
46 0.99035 2.0 1.0
47 0.79228 2.0 1.0
48 0.63383 2.0 1.0
49 0.50706 2.0 1.0
50 0.40565 2.0 1.0



51 0.32452 2.0 1.0
52 0.25961 2.0 1.0
53 0.20769 2.0 1.0
54 0.16615 2.0 1.0
55 0.13292 2.0 1.0
56 0.10634 2.0 1.0
57 0.08507 2.0 1.0
58 0.06806 2.0 1.0
59 0.05445 2.0 1.0
60 0.04356 2.0 1.0
61 0.03484 4.0 1.0
62 0.02788 5.0 1.0
63 0.01742 5.0 1.0
64 0.01394 5.0 1.0
65 0.01000 20.0 2.0 (1.0)
66 0.00500 20.0 2.0 (1.0)
67 0.00375 20.0 2.0
68 0.00250 20.0 2.0
69 0.00175 20.0 2.0
70 0.00100 20.0 2.0

Table 1: List of restraint states used in deactivated morphing calculations.
Timesteps shown in parenthesis are for helixL, if different from the other
states.

Deactivating states The deactivation step of the DM procedure involved
simulation of 35 intermediate states, each with one additional residue of the
protein fixed, starting from the N-terminus. When a residue is “fixed”, the
coordinates of all of its atoms are constrained to those in the reference state; in
addition, no bonded or short-range interactions are calculated between pairs of
fixed atoms. For all deactivating calculations a harmonic potential with a spring
constant of κ1 = 1000.0 kcal/(mol Å2) was applied to restrain all unconstrained
atoms to their reference coordinates. A timestep of 0.5 fs was used for all
cases except helixL, which required a 0.4 fs timestep. Data were taken once
per 100 fs, with a total of 1 ns of simulation in each deactivation intermediate
state. Each intermediate was equilibrated for 1 ns prior to data collection due
to the strong restraints used; in the future this additional equilibration could be
avoided by beginning each deactivation run from the coordinates and velocities
of the previous state, as was done for the restraining states.

Dummying The most significant difference between the DM procedure used
here and that originally used in [6] is that instead of performing a morphing step
in which each atom in the initial state A was translated to its position in state
B, an additional intermediate referred to as the “dummy” state was introduced.
In this state all protein heavy atoms have identical van der Waals parameters
(those of a TIP3P oxygen) and all protein hydrogens have a separate set of



vdW parameters (those of a TIP3P hydrogen in the CHARMM22 forcefield).
Similarly, the dummies were given uniform charges by evenly spreading the total
charge of the protein over the dummies. Note that because the dummies were
only used in states with all protein atoms fixed, no bonded interactions were
needed.

The free energy change for the transition from a fully deactivated to dum-
mied state was calculated using the FEP module of NAMD [11]; simulations
were performed at λ = 0.0, 0.001, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4,
0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.08, 0.85, 0.9, 0.95, 0.99, 0.999, and 1.0.
For each λ value the system was equilibrated for 100 ps, and then simulated
with data gathered for 1 ns. A timestep of 1.0 fs was used for all dummying
calculations.

Morphing As noted above, the use of dummied protein atoms makes the
morphing process significantly more efficient; instead of forcing all protein atoms
to travel the complete distance between their conformations in the initial and
final states, a distance-minimizing mapping [12] was instead calculated for all
heavy atom and hydrogen positions in state A moving to positions in state B.
Prior to calculation of the distance-minimizing map the principal axes of the
final state were aligned to the initial state. The average distance moved by
atoms during the morphing step was 3.4 Å, compared with 11.3 Å if a distance-
minimizing mapping was not used. Fifty intermediate states were used for each
morphing calculation, with 1 ns of data collected in each state using a timestep
of 1.0 fs. Diagrams of the free energy profile over the course of each morph are
shown in Fig. 16. Separate morphs were carried out for all pairwise combinations
of conformations, although only morphs involving sheet are shown in Fig. 3 of
the main text.

Site-bound waters In two cases, helixU and helixV, we noted that a sin-
gle water molecule appeared to be in an inaccessible binding site inside of the
protein, such that it did not exchange with bulk solvent after the constraint
step. The free energy differences calculated from any other state to helixU
or helixV using the procedure outlined above would thus not be correct, be-
cause the morphing endpoint does not contain the corresponding site-bound
water. Beginning the morphs from structures with the bound water can lead
to convergence difficulties due to the trapped water being very close to mov-
ing dummies (and cannot solve the problem of morphing from a structure with
one bound water to another structure with a bound water at a different loca-
tion, without adding further constraints to the water and including it in the
morph). Instead, for morphs involving helixU and/or helixV a small addi-
tional step was added where the free energy change for transferring a water
from bulk solution to the binding site in the fixed, dummied reference struc-
ture D(X) was calculated. Thus, for morphs involving helixU or helixV, we
considered an additional intermediate state in which the dummied protein was
in the helixU/helixVconformation but the site bound water was absent; the



morphing method described above was used to calculate the free energy differ-
ence between this intermediate and the other dummied reference state, and the
method of Roux and coworkers [13] (described below) was used to calculate the
difference between that intermediate and the true helixU/helixV dummied
state.

In the scheme used to calculate the free energy of water binding to an in-
ternal site, the site-bound water is harmonically restrained, decoupled from the
environment, the effects of the restraints removed analytically, and the cycle
completed using the free energy of coupling the water to a bulk water box [13],
allowing calculation of the ratio of protein with and without water bound at the
identified site, R1 (Eq. 14 of [13]):

R1 = ρbulk

(
2πkBT
kharm

)
e−[∆G0→1

cavity−∆G0→1
bulk ]/kBT (4)

ρbulk represents the bulk density of water (in waters / Å3), ∆G0→1
cavity the free

energy change between a state with an unrestrained water in the cavity of
the dummied protein and with the same water restrained to a position in the
cavity but decoupled from the rest of the system, and ∆G0→1

bulk the free energy
of decoupling a single TIP3P water molecule from a box of water. The overall
free energy change for water binding to the internal site was then taken to be
∆Gsite = −kBT log(R1).

The optimal spring constants kharm for restraining the water were calculated
using Eq. 24 of [13] to be 15.0 kcal/(mol Å2) for helixU and 4.0 kcal/(mol Å2)
for helixV. Restraints were applied to the bound water in 5 steps (for helixU)
or 3 steps (for helixV), with 0.5 ns of simulation in each state for helixU
and 1.0 ns for helixV. Decoupling was performed using a single-topology FEP
approach on the restrained water using 31 intermediate values of λ with 50 ps
of equilibration and 500 ps of production data at each state. Decoupling of
a single water from a water box was performed using a box of 10,917 TIP3P
water molecules under conditions identical to the DM calculations using 14
intermediate values of λ (0.0, 0.01, 0.05, 0.15, 0.25,. . . , 0.95, 0.99, 1.0), using
the softcore potential of Zacharias and coworkers [14] to improve convergence.
At each value of λ, 25 ps of equilibration and 250 ps of sampling were used.
The calculation yielded a free energy for decoupling a single TIP3P water from
bulk solvent (∆G0→1

bulk) of 5.84 ± 0.13 kcal/mol under the conditions used (n.b.
at a temperature of 337 K). The overall free energies for water binding to the
buried sites in helixU and helixV, ∆Gsite, were calculated to be 2.050 ±
0.098 kcal/mol and 2.200 ± 0.191 kcal/mol, respectively. In the main text
and all other discussion, the additional contribution of the site bound water
calculations described here are in all cases included as part of the morphing
step; for reference, the free energy changes for morphing between sheet and
the water-free structures of helixU and helixV were calculated to be -2.601
± 0.490 kcal/mol and -4.862 ± 0.595 kcal/mol, respectively.



Approximations to deactivated morphing While deactivated morphing
provides a computationally tractable pathway for calculating free energy dif-
ferences between radically different conformations of biomolecules, the required
sampling to obtain precise results is still expensive, and it is thus attractive to
consider potential shortcuts for the steps involved in DM. For the case of the
deactivation step the correlation with internal interactions of the protein pro-
vides a simple solution; in development of the deactivated morphing method [6]
it was observed that the deactivation free energy (GQ - GK1) could be approx-
imated by -UP , the internal interaction energy of the protein in the associated
reference state. In the case of the WW domain, because PME was used for
long range electrostatics GQ corresponds to a state with all short-range protein-
protein interactions removed, but with long range electrostatics still present;
however, the effective change in free energy due to internal interactions between
two conformations, ∆Gint,A→B = (GK1,B - GQ,B) - (GQ,A - GK1,A), would still
be expected to be approximately equal to the difference in short-range potential
energies for the two reference states, ∆UP,short. This relationship also appears
to hold for the WW domain conformations studied here; the values of ∆UP,short

relative to sheet are -31.60, -8.10, and -49.45 kcal/mol for helixL, helixU,
and helixV, respectively. These values are in good agreement with the dif-
ferences in deactivation energy from DM of -31.44, -7.16, and -48.57 kcal/mol.
We define UP,short as the internal van der Waals and real space electrostatic
energy of the protein using the same nonbonded switching and cutoffs used in
the simulations.

Park et al. also noted that calculation of solvation free energies using
Poisson-Boltzmann methods might be usable as an approximation for the mor-
phing free energies, since the morphing step is expected to primarily reflect
the effects of interaction with solute. From the complete deactivated morph-
ing calculations, the morphing step (defined as the Q(A) → Q(B) transition)
favors sheet by 15.32, 9.01, and 49.44 kcal/mol relative to helixL, helixU,
and helixV, respectively. Poisson-Boltzmann solvation free energies for all four
conformations are shown in Table 3 of the main text; while these calculations
are qualitatively correct in their ranking of helixU and helixV as having less
favorable solvation energies than sheet, helixL is incorrectly stabilized relative
to sheet; in addition, the magnitude of the differences from PB calculations is
significantly larger than that calculated from DM. Thus, unlike the approxima-
tion to the deactivation step discussed above, PB calculations do not appear to
provide an effective approximation to the morphing step of DM.
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Figure 15: Overlap of adjacent ensembles used in restraining the reference conformations.
From top, sheet, helixL, helixU, and helixV are shown. Spring constants decrease going
from left to right.
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Figure 16: Free energy profiles associated with morphing. Profiles are shown for morphing
sheet (λ=0) to one of the helical states (λ=1); from top, helixL, helixU, or helixV.



4 Corrective perturbations to the force field

Given the clear structural differences observed between sheet and the helical
DM reference states (most notably, their significantly different secondary struc-
ture), it should be possible to identify simple perturbations to the force field
that would cause sheet to be lower in free energy than the other states. If
we assume that some small perturbation δ is applied to the potential energy
function to yield a new potential

Unew(X) = U(X) + δ(X), (5)

and that the effective change in the free energy of a given reference state is
well-approximated by the first-order perturbative formula

∆Gδ(state) ' 〈δ(X)〉state , (6)

then we must simply identify a sufficient perturbation δ such that the inequality

∆Gδ(helix)−∆Gδ(sheet) > ∆GDM(helix→ sheet) (7)

is satisfied for all helical DM reference states; that is, the net change in free
energy difference between sheet and each helical state is greater than the free
energy difference from deactivated morphing between sheet and the helical
conformation being considered.

Identification of a sufficient δ is particularly simple if one considers pertur-
bations to the CMAP correction. As in the parameterization of CMAP [15], we
define a given (φ, ψ) angle combination as being in the α region for (−150.0 ≤
φ ≤ −30.0, −90.0 ≤ ψ ≤ 30.0), and in the β region for (−180.0 ≤ φ ≤ −30.,
60.0 ≤ ψ ≤ 180.0); using these definitions, the average occupancies of α and β
regions of the Ramachandran plot are shown in Table 2.

We can then seek some quantity k such that, if δ were given by altering the
CMAP corrections by +k for all α conformations and by −k for all β conforma-
tions, the inequality in Eq. 7 is satisfied for all three helical reference states. We
thus seek k such that k ((Nα −Nβ)helix − (Nα −Nβ)sheet) > ∆GDM(helix →
sheet) for each helical state, with Nα and Nβ the average number of residues in
the α and β portions of the Ramachandran map, respectively, in a given state.
Using the data in Table 2 it is straightforward to find that for k ≥ 0.23 kcal/mol,
sheet will be more stable than any of the three helical reference states; this
stability should, furthermore, increase for larger values of k. Thus, altering the
CMAP correction to stabilize all β conformations by 0.23 kcal/mol and desta-
bilize all α conformations by 0.23 kcal/mol would be expected to make sheet
lower in free energy than the helical DM reference states.

As an alternative to changing the CMAP correction, given that all three heli-
cal reference states have more interactions with water than sheet (see Table 2),
it should also be possible to stabilize sheet relative to the helical states by mak-
ing the Lennard-Jones interactions between water and protein less attractive.
Using the average numbers of contacts from Table 2, reduction of the strength



State Nα Nβ Water Contacts ∆GDM

sheet 6.10 ± 0.09 21.75 ± 0.04 1230.87 ± 25.42 –
helixL 24.34 ± 0.20 4.88 ± 0.06 1291.95 ± 57.55 8.07 kcal/mol
helixU 23.72 ± 0.33 5.98 ± 0.27 1288.78 ± 34.07 4.59 kcal/mol
helixV 21.92 ± 0.07 6.94 ± 0.01 1243.36 ± 19.16 4.37 kcal/mol

Table 2: Statistics from the κ70 simulations from the deactivated morphing restraint step.
Nα and Nβ refer to the average numbers of residues in the α and β region of (φ,ψ) space,
respectively. “Water contacts” refers to the average number of pairwise contacts (using a
4.0 Å cutoff) between protein atoms and water oxygens. Error bars are calculated using block
averaging as described in the Methods section of the main text. ∆GDM refers to the free
energy difference between a given state and sheet from deactivated morphing calculations.

of all Lennard-Jones interactions between water oxygens and protein atoms by
0.35 kcal/mol would be sufficient to make sheet more stable than any of the
helical conformations. We note, however, that application of this perturbation
would amount to average changes in hydration free energy of ∼13 kcal/mol for
each residue, significantly larger that the accepted margin of error in hydra-
tion free energies for the CHARMM force field [16, 17]. In addition, given the
large uncertainties in the numbers of water contacts, this method would be less
certain to correct the helix/sheet balance in the WW domain than the CMAP
alterations described above, but does illustrate an alternative (and unrelated)
path toward possible corrections.

The analysis presented above, while providing several perturbations to the
potential that should make sheet lower in free energy than the helical decoys
used in deactivated morphing, primarily illustrates the danger in attempting to
“fix” a force field based only on simulations of one protein. Given the variety of
data used in the parameterization of CHARMM Lennard-Jones parameters [18]
and the CMAP correction [15], it is extremely unlikely that the “corrections”
proposed here would in fact improve the performance of the CHARMM force-
field in any test except that of stabilizing the sheet conformation of the WW
domain. Indeed, even in the realm of changes to the CMAP correction the
perturbation proposed above is not unique; either raising the energy of all α
conformations by 0.45 kcal/mol or lowering the energy of all β conformations
by 0.45 kcal/mol would also be sufficient to satisfy Eq. 7. The correction of
force field inaccuracies such as those observed in the present study must instead
be solved by a combination of basic physical principles and testing on a wide
variety of proteins; ad hoc corrections based on a single protein are likely to be
non-unique and unphysical, and not to generalize well to other systems.



References

[1] van der Spoel, D., E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and
H. J. C. Berendsen. 2005. Gromacs: Fast, flexible, and free. J. Comp.
Chem. 26:1701–1718.

[2] Daura, X., K. Gademann, B. Jaun, D. Seebach, W. F. van Gunsteren, and
A. E. Mark. 1999. Peptide folding: When simulation meets experiment.
Angewandte Chemie International Edition. 38:236–240.

[3] Chodera, J. D., N. Singhal, V. S. Pande, K. A. Dill, and W. C. Swope.
2007. Automatic discovery of metastable states for the construction of
Markov models of macromolecular conformational dynamics. J Chem Phys.
126:155101.

[4] Kortemme, T., A. V. Morozov, and D. Baker. 2003. An orientation-
dependent hydrogen bonding potential improves prediction of specificity
and structure for proteins and protein-protein complexes. J Mol Biol.
326:1239–1259.

[5] Morozov, A. V., T. Kortemme, K. Tsemekhman, and D. Baker. 2004. Close
agreement between the orientation dependence of hydrogen bonds observed
in protein structures and quantum mechanical calculations. Proc Natl Acad
Sci U S A. 101:6946–6951.

[6] Park, S., A. Y. Lau, and B. Roux. 2008. Computing conformational free
energy by deactivated morphing. J Chem Phys. 129:134102.

[7] Bennett, C. H. 1976. Efficient estimation of free energy differences from
Monte Carlo data. Journal of Computational Physics. 22:245–268.

[8] Baker, N. A., D. Sept, S. Joseph, M. J. Holst, and J. A. McCammon.
2001. Electrostatics of nanosystems: Application to microtubules and the
ribosome. Proc. Natl. Acad. Sci. USA. 98:10037–10041.

[9] Wagoner, J. A. and N. A. Baker. 2006. Assessing implicit models for nonpo-
lar mean solvation forces: the importance of dispersion and volume terms.
Proc Natl Acad Sci U S A. 103:8331–8336.

[10] Nina, M., D. Beglov, and B. Roux. 1997. Atomc radii for continuum electro-
statics calculations based on molecular dynamics free energy simulations.
J. Phys. Chem. B. 101:5239–5248.

[11] Phillips, J. C., R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa,
C. Chipot, R. D. Skeel, L. Kale, and K. Schulten. 2005. Scalable molecular
dynamics with NAMD. J. Comp. Chem. 26:1781–1802.

[12] Anitescu, M. and S. Park. 2009. A linear programming approach for the
least-squares protein morphing problem. Mathematical Programming. In
press.



[13] Roux, B., M. Nina, R. Poms, and J. C. Smith. 1996. Thermodynamic
stability of water molecules in the bacteriorhodopsin proton channel: a
molecular dynamics free energy perturbation study. Biophys J. 71:670–
681.

[14] Zacharias, M., T. P. Straatsma, and J. A. McCammon. 1994. Separation-
shifted scaling, a new scaling method for Lennard-Jones interactions in
thermodynamic integration. J. Chem. Phys. 100:9025–9031.

[15] MacKerell, A. D., Jr., M. Feig, and C. L. Brooks III. 2004. Extending
the treatment of backbone energetics in protein force fields: Limitations
of gas-phase quantum mechanics in reproducing protein conformational
distributions in molecular dynamics simulations. J. Comp. Chem. 25:1400–
1415.

[16] Shirts, M. R. and V. S. Pande. 2005. Solvation free energies of amino acid
side chain analogs for common molecular mechanics water models. J Chem
Phys. 122:134508.

[17] Deng, Y. and B. Roux. 2009. Computations of Standard Binding Free
Energies with Molecular Dynamics Simulations. J Phys Chem B :in press.

[18] MacKerell, A., Jr., D. Bashford, M. Bellott, R. L. Dunbrack, Jr.,
J. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph,
L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo,
D. T. Nguyen, B. Prodhom, I. W. E. Reiher, B. Roux, M. Schlenkrich,
J. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera,
D. Yin, and M. Karplus. 1998. All-atom empirical potential for molecular
modeling and dynamics studies of proteins. J. Phys. Chem. B. 102:3586–
3616.


