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A. Effective Ising Hamiltonian

Starting from the Hamiltonian H [σi, ti], an effective Ising Hamiltonian, a function of the σi only, is obtained by
integrating out the rotational degrees of freedom ti in the partition function, leading to a renormalized Hamiltonian,

H0[σi] = −
N−1
∑

i=1

[

J0σi+1σi +
K0

2
(σi+1 + σi)

]

− µ

N
∑

i=1

σi, (1)

with renormalized parameters: J0 = J − kBT [G0(βκU ) + G0(βκB) − 2G0(βκUB)]/4 and K0 = −kBT [G0(βκU ) −
G0(βκB)]/2 where β = (kBT )−1 and G0(x) = x− ln(sinhx/x) is related to the bending free energy of a single joint;
µ is not renormalized (see Ref. [1] for further details).

B. Calculations of the probability distribution p(cos θ) in 3D

In Eq. (3) of the body of the text, we define the partial partition function where all degrees of freedom are
integrated out, except the projections on the z axis of ti and ti+r, set respectively to zi and zi+r. Imposing the value
of ti · ti+r ≡ s ∈ [−1, 1] amounts to fixing zi = 1 (i.e. ti = z), and zi+r = s (see Fig.SI. 1) and to multiplying by the
solid angle 4π to restore the rotational invariance of the whole problem with respect to ti, which can actually take
any orientation. Thus we have p(ti · ti+r = s) = 4πZ(1, s)/Z where

Z = 〈V |P̂N−1|V 〉 (2)

is the total partition function (see Methods and Ref. [1]).

z θ
tN

Fig.SI. 1: Examples of chain configurations counted by the same partial partition function Z(1, s) (Eq. (3) of the body of the
text), in the case where the singled-out tangent vectors lie on the polymer ends, ti = t1 = z, ti+r = tN and s = z · tN = cos θ.

We denote by Π̂z the projector on the z axis defined by Π̂z|σΩ〉 = δ(cos θ − z)|σΩ〉. It follows from Eq. (3) of the
body of the text that

Z(zi, zi+r) = 〈V |P̂ i−1Π̂zi
P̂ rΠ̂zi+r

P̂N−r−i|V 〉. (3)
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In order to compute this quantity, we need to express Π̂z in the basis where P̂ is diagonal, namely the |Ψ̂l,m;τ 〉. We
use

〈σΩ|Ψ̂l,m;τ 〉 = ψl,m(Ω)〈σ|l, τ 〉, (4)

where the spherical harmonics ψl,m are defined by the Associated Legendre polynomials Pl,m [2] as follows:

ψl,m(Ω) ≡ ψl,m(θ, ϕ) = kl,mPl,|m|(cos θ)eimϕ, (5)

kl,m =

√

(2l + 1)
(l − |m|)!
(l + |m|)! . (6)

Below, we shall only need the Legendre polynomials Pl(x) ≡ Pl,m=0(x) [2]. Now we can compute

〈Ψ̂l′,m′;τ ′|Π̂z |Ψ̂l,m;τ 〉 =
∑

σ=±

∫

dΩ

4π
〈Ψ̂l′,m′;τ ′ |Π̂z |σΩ〉〈σΩ|Ψ̂l,m;τ 〉 (7)

=
∑

σ=±

∫

dΩ

4π
〈Ψ̂l′,m′;τ ′ |σΩ〉δ(cos θ − z)〈σΩ|Ψ̂l,m;τ 〉 (8)

=
1

4π
kl,mkl′,m′

∑

σ=±

∫ 2π

0

dϕPl,|m|(z)Pl′,|m′|(z)e
i(m−m′)ϕ〈l′, τ ′|σ〉〈σ|l, τ 〉 (9)

=
1

2
kl,mkl′,mPl,|m|(z)Pl′,|m|(z)〈l′, τ ′|l, τ〉δm,m′ . (10)

When m = m′ = 0, the previous equality specializes to

〈Ψ̂l′,0;τ ′ |Π̂z |Ψ̂l,0;τ 〉 =
1

2

√
2l + 1

√
2l′ + 1Pl(z)Pl′(z)〈l′, τ ′|l, τ〉. (11)

If the boundary vector |V 〉 has rotational symmetry (l = 0), then 〈Ψ̂l,m;τ |V 〉 = δl0δm0〈0, τ |V 〉. It follows that

4πZ(zi, zi+r) =
∑

{τ,τ ′,τ ′′}

∞
∑

l=0

2l + 1

2
〈V |0, τ〉λi−1

0,τ P0(zi)〈0, τ |l, τ ′〉Pl(zi)λ
r
l,τ ′Pl(zi+r)〈l, τ ′|0, τ ′′〉P0(zi+r)λ

N−r−i
0,τ ′′ 〈0, τ ′′|V 〉.

(12)
This partial partition function must be compared to the complete one

Z = 〈V | P̂N−1 |V 〉 =
∑

τ

|〈V |0, τ〉|2λN−1
0,τ (13)

in order to get

p(ti · ti+r = s) =

∑

{τ,τ ′,τ ′′}

∑∞
l=0(2l + 1)〈V |0, τ〉λi−1

0,τ 〈0, τ |l, τ ′〉λr
l,τ ′Pl(s)〈l, τ ′|0, τ ′′〉λN−r−i

0,τ ′′ 〈0, τ ′′|V 〉
2

∑

τ |〈V |0, τ〉|2λN−1
0,τ

(14)

because P0(1) = P0(z) = Pl(1) = 1. One can check that the distribution is correctly normalized,
∫ 1

−1
p(s) ds = 1,

because
∫ 1

−1 Pl(s) ds = 2δl,0.

In the limit of a long DNA where the internal segment [i, i+ r] is far from both chain ends, in other words when
N → ∞ and then i→ ∞, the previous relation becomes

p(ti · ti+r = s) =

∞
∑

l=0

2l+ 1

2
Pl(s)

∑

τ ′=±

|〈0,+|l, τ ′〉|2
(

λl,τ ′

λ0,+

)r

(15)

=
1

2
+

∞
∑

l=1

2l+ 1

2
Pl(s)

∑

τ ′=±

|〈0,+|l, τ ′〉|2e−r/ξp

l,τ . (16)

This expression reveals the role of infinitely many correlation lengths, the ξp
l,τ = 1/ ln(λ0,+/λl,τ ). At TR, the persis-

tence length ξp ≃ 150 bp coincides with ξp
1,+ [1, 3]. We have checked that boundary effects are indeed negligible at
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room temperature (TR = 298.15 K) as soon as i is larger than a few unities. Thus Eq. (16) is a sufficient approxi-
mation of Eq. (14) for fitting purposes and is used in the body of the text. Once this distribution p(cos θ) is known,
the probability distribution of θ, denoted by p̃(θ), is simply given by p̃(θ) = p(cos θ) sin θdθ, because s = cos θ and
|ds| = sin θ |dθ|.

As a corollary, the mean value of the correlator 〈ti · ti+r〉 can be computed in this limit:

〈ti · ti+r〉 =

∫ 1

−1

s p(s) ds (17)

=

∞
∑

l=0

2l + 1

2

(
∫ 1

−1

s Pl(s) ds

)

∑

τ ′=±

|〈0,+|l, τ ′〉|2
(

λl,τ ′

λ0,+

)r

(18)

=
∑

τ ′=±

|〈0,+|1, τ ′〉|2
(

λ1,τ ′

λ0,+

)r

, (19)

because

∫ 1

−1

s Pl(s) ds =
2

3
δl,1. We therefore recover the result of Ref. [1], Eq. (100), where it is pointed out that only

two correlation lengths remain in this correlator.

C. Calculations of p(θ) in 2D

Using the 2D algebraic background presented in the Methods and the fact that 〈σθ|Ψ̂n;τ 〉 = einθ〈σ|n, τ 〉, the matrix

elements of the projectors Π̂z in the eigenbasis become

〈Ψ̂n′;τ ′ |Π̂z|Ψ̂n;τ 〉 =
∑

σ=±

∫ π

−π

dθ

2π
〈Ψ̂n′;τ ′ |σθ〉δ(θ − θ0)〈σθ|Ψ̂n;τ 〉 (20)

=
1

2π

∑

σ=±

ei(n−n′)θ0〈n′, τ ′|σ〉〈σ|n, τ 〉 (21)

=
1

2π
ei(n−n′)θ0〈n′, τ ′|n, τ 〉. (22)

In addition, 〈Ψ̂n;τ |V 〉 = δn0〈0, τ |V 〉 by the rotational symmetry of the boundary conditions, and comparing the partial
partition function, now denoted by Z(θ), with the full one, Z, leads to the 2D counterpart of Eq. (16):

p(θr = θ) =
Z(θ)

Z
(23)

=
1

2π

∞
∑

n=−∞

cos(nθ)
∑

τ ′=±

|〈0,+|n, τ ′〉|2
(

λn,τ ′

λ0,+

)r

(24)

=
1

2π
+

1

π

∞
∑

n=1

cos(nθ)
∑

τ=±

〈0,+|n, τ〉2 e−r/ξp
n,τ , (25)

valid in the limit of long DNA strands, with θr ∈ (−π, π] defined by cos θr ≡ ti · ti+r and ξp
n,τ ≡ 1/ ln(λ0,+/λn,τ ).

D. Fitting p(θ) in 2D

Our first approach to fitting the 2D experimental data of Fig. 2B of the body of the text, coming from Ref. [4],
consisted in directly using the 3D parameter values, in particular those of J and µ, in the 2D Hamiltonian. The
so-obtained angle probabilities are very far from the experimental ones, which led us to fit the model to experiment.

We display in Fig. 2B of the body of the text our best model fits, using Eq. (25) with κUB , J and µ, as fitting
parameters. These least-square fits are good over the whole θ range. The bp length is assumed to remain a = 0.34 nm.
Thus the curvilinear distances between monomers in [4], namely 5, 10 and 30 nm, correspond respectively to r = 15,
29 and 88 bp. The value (in units of kBTR) of κB = 5.54 comes from Ref. [3] and κU = 160.82 comes from fitting
the r = 88 bp set of data by a pure WLC model, as in [4] (assuming that for such a large r, the Gaussian character
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is restored thanks to the central-limit theorem; we have checked that it is indeed the case for the parameters that
we discuss now). The three remaining parameters (κUB , J, µ) are fitted by a simulated annealing algorithm of our
own. The best fit values appear to be highly degenerate, in the sense that a whole subset of parameters in the
three-dimensional (κUB , J, µ) space yields essentially the same mean-square deviation.

This degeneracy can be related to its 3D equivalent. In Ref. [1], we have simplified the discussion by setting
κUB = κU , the value for dsDNA, because varying κUB amounts simply to changing the bare value of J in order to
keep the melting temperature, Tm, and the transition width unchanged: Jmod = J + kBT

2 [G0(βκU ) −G0(βκUB)] [1].
However, when it comes to the angle distribution p, the value of κUB might play a more fundamental role because the
different persistence lengths depend on it via the eigenvalues λ in Eq. (25). In 3D, we have checked that changing the
value of κUB, while suitably modifying J , has, in practice, little influence on p, Nr, and ∆MB (see definitions below),
even at very short scales (r = 5 bp). In 2D, suitable values of κUB range between 10 and 50 kBTR. Even if κUB = κU

or κUB = κB is held fixed, the minimization with respect to J and µ alone does not give a significantly poorer fit.
Examples of parameter sets provided by simulated annealing are, in units of kBTR, (κUB , J, µ) =(20.97,1.3173,1.6685)
or (45.10,0.8637,1.7885). Increasing the temperature by 20% does not lift the degeneracy. With these values, the
fraction of melted bps for an unconstrained DNA varies between ϕB = 0.1% and 0.4% at TR.

E. Probability distribution p(θ) calculated from diverse Hamiltonians in 2D discussed in the paper

We consider a pure elastic chain without bp melting, described by a 2D single-joint Hamiltonian H(θ). Without
any loss of generality, the probability distribution p(θ) in 2D can be written as

p(θ) =

∏r
i=1

∫ π

−π
dθi exp [−βH(θi)] δ(θ − θi,i+r)

∏r
i=1

∫ π

−π dθi exp [−βH(θi)]
(26)

where θ ≡ θi,i+r =
∑i+r−1

j=1 θj is the bending angle between ti and ti+r. By introducing the Fourier transform of the
δ distribution, we get

p(θ) =
1

2π

∫ ∞

−∞

dω eiωθ

[

z(ω)

z(0)

]r

(27)

where the characteristic function of the single-joint Hamiltonian is defined by

z(ω) =

∫ π

−π

dθ exp [−iωθ− βH(θ)]. (28)

We consider four cases:

1. For a Gaussian Hamiltonian (Gaussian Spin Wave approximation, GSW), H(θ) = κθ2/2 with the approximation
θ ∈ (−∞,∞), we have z(ω)/z(0) = exp[−ω2/(2βκ)] and we easily get the Gaussian probability distribution in
2D

pGSW(θ) =

√

βκ

2πr
exp

(

−βκθ
2

2r

)

. (29)

2. For the discrete wormlike chain where H(θ) = κ(1 − cos θ) is periodic in θ ∈ (−π, π], Eq.(27) reduces to a
decomposition in Fourier series of modes n with z(ω) becoming e−βκIn(βκ) and we find

pDWLC(θ) =
1

2π

∞
∑

n=−∞

cos(nθ)

[

In(βκ)

I0(βκ)

]r

. (30)

This is equivalent to Eq. (25) in the simple case where all the κ are set equal.

3. For the LSEC model [4, 5], where H(θ) = Λ|θ| with the approximation θ ∈ (−∞,∞), we have z(ω)/z(0) =
1/[1 + (ω/βΛ)2] and the probability distribution is

pLSEC(θ) =
2

1
2
−rβΛ√
π

(βΛ|θ|)r− 1
2K 1

2
−r(βΛ|θ|)

Γ(r)
, (31)

where Γ is the Euler function and Kν(x) the modified Hankel function [2]. Equation (31) is plotted for different
temperature values in Fig. 3 of the body of the text. Note that in the case where θ ∈ (−π, π], the above result
has a negligible correction to p on the order of exp(−βΛπ) ≃ 5 × 10−10 rad−1 if βΛ ≃ 6.8 [4].
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4. Both the GSW and LSEC models are special cases of a generalized model where H(θ) = α|θ|η. With the
approximation θ ∈ (−∞,∞), we recover the GSW model when η = 2, α = κ/2 and the LSEC model when
η = 1, α = Λ. Although the general case is harder to handle for arbitrary r, two limits, r = 1 and large r, are
easily studied. When r = 1,

p(θ) =
exp[−βH(θ)]

∫ +∞

−∞ dθ′ exp[−βH(θ′)]
=
η(βα)1/η

2Γ(1/η)
exp[−βα|θ|η], (r = 1). (32)

For large r, [z(ω)/z(0)]
r

becomes a sharply peaked Gaussian function centered at ω = 0: [z(ω)/z(0)]
r ≃

exp[−rω2〈θ2〉/2]. In this limit p(θ) becomes effectively Gaussian,

p(θ) ≃
√

βκeff

2πr
exp

(

−βκeffθ
2

2r

)

, (large r), (33)

where κeff(α, η;β) ≡ 1/(β〈θ2〉) = (βα)2/ηΓ(1/η)/[βΓ(3/η)]. The effective bending rigidity, κeff = (ξ/ℓ)β−1, can
be written in terms of the asymptotic persistence length, ξ, the segment length, ℓ, and the temperature. It is
only for η = 2 that p(θ) is Gaussian at all length scales r. For strongly subharmonic models (η well below 2),
the large angle bending distribution can be much higher than the Gaussian model prediction for r ≪ ξ (see
Fig. 3A of Wiggins et al. [4] for the η = 1 case). For non-Gaussian models, p(θ) interpolates smoothly between
an “anomalous” behavior [Eq. (32)] and an effective Gaussian one [Eq. (33)] as r increases from one past the
persistence length, ξ. For large r, even at large θ, p(θ) is effectively Gaussian because it is determined mainly
by those high entropy configurations for which almost all joint angles, θj , are small (therefore in this case only
the small θ behavior of H(θ) is important).

From fitting the large r data to the Gaussian model, Wiggins et al. found βκeff = ξ/ℓ = 54 nm/2.5 nm ≃ 22,
which implies that βΛ = βαLSEC = (2βκeff)1/2 = 6.6, close to the value of 6.8 found by fitting their LSEC
model to experiment using Monte Carlo simulations.

F. Bending-induced melting in 2D

Following Wiggins et al. [6], we now derive the average bending moment Nr as a function of the deflection angle θ.
In the 2D case,

Nr ≡ ∂

∂θ
lnZ(θ) (34)

(in units of kBT ) measures the torque perpendicular to the substrate that must be applied to two interior monomers
separated by r bp in order to impose a deflection angle θ between them. Examples of Nr vs θ plots for our model are
given in Fig.SI. 2. Four regimes appear in these plots:

(i) a linear one at low deflection angle θ < θc;

(ii) a non-linear one for intermediate angles;

(iii) a saturation plateau for large deflection angles and

(iv) a decreasing one near θ = π.

In regime (i), the DNA response is linear, with a GSW bending moment Nr = β∂F (θ, r)/∂θ = (ξp/r)θ, determined
only by ξp ≃ βκU , since melted bps are essentially inexistent. In the intermediate region (ii), a non-linear behavior
occurs. Indeed, it becomes more favorable for the system to break bps in order to make them more flexible and
thereby relax the high bending constraint. The plateau appearing in region (iii) shows non-zero response due to the
finite value of κB, contrary to the kink model [6]. As already mentioned in this Ref. [6], when θ approaches π [regime
(iv)], Nr vanishes: the symmetry of the system through the axis defined by the vectors ti and ti+r imposes that θ = π
is an (unstable) equilibrium point. Indeed, θ ∈ (−π, π] in our calculations, thus larger angles are brought back in this
interval modulo 2π. For a given θ, the summation in Z is in fact a sum over all the θ + 2kπ, k ∈ Z, as illustrated in
Fig.SI. 1. Since the contributions of θ = π and θ = −π cancel, Nr vanishes at θ = π. More importantly, we cannot
give quantitative answers for cyclization experiments when |θ| ≈ 2π.
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Fig.SI. 2: Torque Nr (top) and excess chain melting ∆MB (bottom) as a function of θ, in 2D. Same parameter values as in
Fig. 2B of the body of the text. From left to right, r = 5, 15, 25 bp. The elasticity is linear until a threshold θc ∝

√
r, where

excessive bending induces bp melting.

To render these physical mechanisms more explicit, we have also displayed in Fig.SI. 2 the excess chain melting
∆MB as a function of θ (Fig. 2D in the body of the text). It measures the average excess of melted bps in the
bended chain as compared to the free, unconstrained one and is given by ∆MB ≡ −kBT

2
∂

∂µ ln p(θ). We thus confirm

that the collapse of Nr corresponds to the proliferation of melted bps. The typical angle θc at which bending-induced
melting occurs is again estimated by equating the energetic cost of bending the polymer in its unmelted state, of order
βκUθ

2
c/2r, with the free-energy cost of nucleating a single denaturation bubble (of one bp), ∆GB = 4J0+2K0+2µ [1].

Again, this argument that leads to θc ∼ √
r gives a good estimate of the observed threshold. It also gives the upper

limit of r for which these non-linearities are apparent, rmax ≈ π2

2 κU/∆GB ≃ 120 bp in 2D.
An interesting feature of these calculations is the saturation of ∆MB at a finite value [regions (iii) and (iv)], even

when r < rmax increases. In Fig.SI. 2, this value is close to 3 and the total excess number of denatured bps does not
exceed 3 on average. This is corroborated by the fact that the large θ torque is independent of r, mainly due to the
few melted bps. In other words, even if r bp, or more, can in principle be melted to relax the bending stress, only a
few of them actually do, since it costs more energy to melt more bases, whereas, owing to the small value of κB, a
small denaturation bubble suffices to give the whole molecule a very small resistance to torque.

Note that Nr is essentially unchanged between the different fitted parameter sets discussed above, and ∆MB varies
by at most 20%, in the melted region only.

G. Bending-induced melting in 3D

The previous calculations can be extended in a straightforward way to the 3D case, with very similar qualitative
conclusions. The physical meaning of the bending moment is less direct because of the axial symmetry (m = 0)
imposed in the calculation of p(cos θ). By contrast, the excess melting, ∆MB, is meaningful for circular DNAs, where
θ is close to 2π, with the reserves given above. The above argument now leads to rmax ≈ 50 bp. In Fig.SI. 3 one
actually sees that for r < 50 bp, ∆MB saturates at 10 bp near θ = π. In the topical case where r is comparable
to the chain persistence length (∼ 150 bp), bending-induced melting of constrained DNA is expected to be virtually
inexistent in 3D. As for large looped complexes, such as in Ref. [8] where r ∼ 1000 bp, melting is not expected to
stabilize or to facilitate looping either.

In contrast, non-linear behavior can play a significant role by making DNA much more flexible when the polymer
is highly bent, such as in short circular DNA (see [7]) or in protein-DNA complexes. Our calculations on bending-
induced melting, ∆MB, give a good indication of the degree of melting following a sharp bending constraint. Note,
however, that a complete treatment of cyclization would require imposing not only the angle θ but also the physical
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Fig.SI. 3: Torque Nr (top) and excess chain melting ∆MB (bottom) as a function of θ, in 3D. Same parameter values as in
Fig. 2A of the body of the text. From left to right, r = 5, 15, 25. The elasticity is linear until a threshold θc ∝

√
r, where

excessive bending induces bp melting.

distance between bps i and i+ r [9]. Although the full calculation is outside the scope of the present work, imposing
θ does already contain some of the important physical features of cyclization. It is reasonable to expect that even for
θ ≃ π, our calculation reproduces the correct order of magnitude for cycled DNA. For instance, our 3D predictions
concerning excess melting, e.g. ∆MB ≈ 10 bp, could be checked by doing UV absorbance measurements on short
circular DNAs.
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