Biophysical Journal, Volume 96

Supporting Material

Biophysically-Based Mathematical Modelling of Interstitial Cells of Cajal Slow Wave Activity Generated From a Discrete Unitary Potential Basis

RA Faville, AJ Pullan, KM Sanders, SD Koh, CM Lloyd, and NP Smith

SLOW WAVE MODEL SUPPLEMENTARY MATERIALS

TABLE OF CONTENTS

Model State Variables	2
Model Conductances	3
Pacemaker Unit Model Equations	4
Bulk Cytoplasmic Subspace Model Equations	7
Pacemaker Unit Model Parameters	9
Whole Cell Current Equation Parameters	10
Cell Constants and Global Parameters	11
Subspace 2/Bulk Cytoplasm Ca ²⁺ Diffusion Rates	12
Dose-Response Simulations	13
Pacemaker Unit Firing Distribution	20
References	22

MODEL STATE VARIABLES

Pacemaker Unit State Variables

 C_{S1} – Subspace 1 [Ca²⁺] C_{S2} – Subspace 1 [Ca²⁺] C_{ER} – Endoplasmic Reticulum [Ca²⁺] C_{MT} – Mitochondrial [Ca²⁺] N_{S1} – Subspace 1 [Na⁺] H – IP₃R Control Variable ζ – IP₃R Recovery Variable

Whole Cell Current Gating Variables

 $d_{\rm T} - I_{\rm Ca(T)}$ Activation Rate $f_{\rm T} - I_{\rm Ca(T)}$ Inactivation Rate $O_{\rm T} - I_{\rm Ca(T)}$ Open Probability $d_{\rm v1.1} - I_{\rm K(v1.1)}$ Activation $f_{\rm v1.1} - I_{\rm K(v1.1)}$ Inactivation $d_{\rm ERG} - I_{\rm K(ERG)}$ Activation

Global Variables

 $V_{\rm m}$ – Membrane Potential $C_{\rm Cy}$ – Bulk Cytoplasmic [Ca²⁺]

MODEL CONDUCTANCES

Pacemaker Unit Conductances

Plasma Membrane Conductances

 I_{Ca} – Inward Ca²⁺ Current I_{Na} – Inward Na⁺ Current I_{NSCC} – Non-Selective Cation Conductance I_{PM} – Plasma Membrane Ca²⁺-ATPase I_{NaP} – Outward Na⁺ Pump

Intracellular Ca²⁺ Fluxes

 J_{SERCA} – Sarco-Endoplasmic Reticulum Ca²⁺-ATPase J_{IPR} – IP₃ Receptor Ca²⁺ Flux J_{MCU} – Mitochondrial Ca²⁺ Uniporter J_{NCX} – Mitochondrial Na⁺/Ca²⁺ Exchanger J_{S1S2} – Subspace 1/Subspace 2 Ca²⁺ Diffusion J_{S2Cy} – Subspace 2/Bulk Cytoplasmic Ca²⁺ Diffusion

Bulk Cytoplasmic Subspace Conductances

Plasma Membrane Conductances

 $I_{Ca(T)} - T$ -Type Ca²⁺ Current $I_{Ca(Ext)} - Ca^{2+}$ Extrusion Pump $I_{K(v1.1)} - K(v1.1) K^+$ Current $I_{K(ERG)} - E$ ther-a-go-go K⁺ Current $I_{KB} - B$ ackground K⁺ Current $I_L - N$ on-Selective Inward Current

Intracellular Ca²⁺ Fluxes

 J_{Cy} – Bulk Cytoplasmic Intracellular Ca²⁺ Flux

PACEMAKER UNIT MODEL EQUATIONS

Plasma Membrane Conductances

*Ca*²⁺ *Currents*

$$I_{\rm Ca} = g_{\rm Ca} \left(V_{\rm m} - E_{\rm Ca} \right) \tag{S1}$$

$$g_{\rm Ca} = \hat{g}_{\rm Ca} e^{\kappa_{\rm Ca} v_{\rm m}} \tag{S2}$$

$$I_{\rm PM} = g_{\rm PM} \left(\frac{C_{\rm S1}^2}{K_{\rm PM}^2 + C_{\rm S1}^2} \right)$$
(S3)

Na⁺ Currents

$$I_{\rm Na} = g_{\rm Na} \left(V_{\rm m} - E_{\rm Na} \right) \tag{S4}$$

$$I_{\rm NaP} = g_{\rm NaP} \left(\frac{N_{\rm S1}^{\ h_{\rm NaP}}}{K_{\rm NaP}^{\ h_{\rm NaP}} + N_{\rm S1}^{\ h_{\rm NaP}}} \right) (E_{\rm NaP} - V_{\rm m})$$
(S5)

Non-Selective Cation Current

$$I_{\rm NSCC(Z)} = g_{\rm NSCC(Z)} \left(V_{\rm m} - E_{\rm NSCC} \right)$$
(S6)

$$g_{\rm NSCC(Z)} = \hat{g}_{\rm NSCC(Z)} \left(\frac{K_{\rm NSCC}}{K_{\rm NSCC}} + C_{S1}^{h_{\rm NSCC}}} \right)$$
(S7)
where Z = Ca or Na

Nernst Potentials

$$E_{\rm Ca} = \frac{RT}{Z_{\rm Ca}F} \log_e \left(\frac{C_{\rm O}}{C_{\rm S1}}\right)$$
(S8)

$$E_{\rm Na} = \frac{RT}{Z_{\rm Na}F} \log_e \left(\frac{N_{\rm O}}{N_{\rm S1}}\right) \tag{S9}$$

Conductance Rate Scale Factor

$$V_{\text{Scale}} = \frac{n_{\text{PU}(\text{Base})}}{n_{\text{PU}}} \tag{S10}$$

Aggregate Plasma Membrane Conductances

$$I_{iCa} = V_{Scale} \left(I_{Ca} + I_{PM} + I_{NSCC(Ca)} \right)$$
(S11)

$$I_{iNa} = V_{Scale} \left(I_{Na} + I_{NaP} + I_{NSCC(Na)} \right)$$
(S12)

$$I_{\text{ion}_{\text{PU}}(i)} = I_{\text{iCa}} + I_{\text{iNa}}$$
(S13)

Intracellular Ca²⁺ Fluxes

ER Ca^{2+} *Fluxes*

$$J_{\text{SERCA}} = \frac{V_{\text{SERCA}} \left(C_{\text{S1}} - A_2 C_{\text{ER}} \right)}{1 + A_4 C_{\text{S1}} + A_5 C_{\text{ER}} + A_6 C_{\text{S1}} C_{\text{ER}}}$$
(S14)

$$J_{\rm IPR} = k_{\rm IPR} \left(\frac{P\phi_{\rm I}H}{P\phi_{\rm I} + \phi_{-1}} \right)^4 (C_{\rm ER} - C_{\rm S2})$$
(S15)

Mitochondrial Ca²⁺ *Fluxes*

$$J_{\rm MCU} = V_{\rm MCU} \left(\frac{C_{\rm S2}^{2}}{K_{\rm MCU}^{2} + C_{\rm S2}^{2}} \right) \varepsilon_{\rm INH}$$
(S16)

$$\varepsilon_{\rm INH} = \frac{K_{\rm INH}^{\ h_{\rm INH}}}{K_{\rm INH}^{\ h_{\rm INH}} + C_{\rm MT}^{\ h_{\rm INH}}}$$
(S17)

$$J_{\rm NCX} = V_{\rm NCX} \left(\frac{C_{\rm MT}}{K_{\rm NCX} + C_{\rm MT}} \right)$$
(S18)

Inter-Compartmental Volume Ca²⁺ Diffusion

$$J_{S1S2_{(i)}} = \mu_{S1S2_{(i)}} \left(C_{S2_{(i)}} - C_{S1_{(i)}} \right)$$
(S19)

$$\mu_{\text{S1S2}_{(i)}} = \mu_{\text{A}} + \left(\mu_{\text{B}} - \mu_{\text{A}}\right) \left[\frac{i-1}{n_{\text{PU}} - 1}\right]$$
(S20)

$$J_{S2Cy_{(i)}} = \mu_{S2Cy_{(i)}} \left(C_{Cy} - C_{S2_{(i)}} \right)^{-1}$$
(S21)

$NB - \mu_{S2Cy}$ values (for $n_{PU} = 5-10$, 15, 20 & 25) are given in Table S5

IP₃R Rate Equations

$$\phi_1 = \frac{k_1 R_1 + r_2 C_{S2}}{R_1 + C_{S2}} \tag{S22}$$

$$\phi_{-1} = \frac{(k_{-1} + r_{-2})R_3}{R_2 + C_{C2}}$$
(S23)

$$\phi_2 = \frac{k_2 R_3 + r_4 C_{S2}}{R_3 + C_{S2}} \tag{S24}$$

$$\phi_{3} = \frac{g_{\phi_{3}}\zeta}{\left[1 + \left(\frac{K_{\phi_{3}(\text{act})}}{C_{\text{S2}}}\right)^{h_{\phi_{3}(\text{act})}}\right]\left[1 + \left(\frac{C_{\text{S2}}}{K_{\phi_{3}(\text{inh})}}\right)^{h_{\phi_{3}(\text{inh})}}\right]}$$
(S25)

IP₃R Recovery Variable Equations

$$\frac{d\zeta}{dt} = \alpha_{\zeta} (1 - \zeta) - \beta_{\zeta} \zeta \tag{S26}$$

$$\alpha_{\zeta} = g_{\alpha} \tag{S27}$$

$$\beta_{\zeta} = g_{\beta} \frac{C_{S2}^{\ h_{\beta}}}{C_{S2}^{\ h_{\beta}} + K_{\beta}^{\ h_{\beta}}}$$
(S28)

Mitochondrial Ca²⁺ Buffering Rate

$$f_{\rm m} = \frac{1}{1 + \frac{K_{\rm m}B_{\rm m}}{(K_{\rm m} + C_{\rm MT})^2}}$$
(S29)

Compartmental Volume Ratio

$$\lambda_{X/Y} = \frac{\gamma_X}{\gamma_Y} \tag{S30}$$

where X, $Y = S_1$, S_2 , ER or MT

State Variable Derivatives

$$\frac{dC_{\rm S1}}{dt} = J_{\rm S1S2} + \lambda_{\rm MT/S_1} J_{\rm NCX} - \left(\frac{\delta_{\rm S(PU)}}{V_{\rm Scale} Z_{\rm Ca}}\right) I_{\rm iCa} - \lambda_{\rm ER/S_1} J_{\rm SERCA}$$
(S31)

$$\frac{dC_{S2}}{dt} = J_{S2Cy} + \lambda_{ER/S_2} J_{IPR} - \lambda_{S_1/S_2} J_{S1S2} - \lambda_{MT/S_2} J_{MCU}$$
(S32)

$$\frac{dC_{\rm ER}}{dt} = J_{\rm SERCA} - J_{\rm IPR} \tag{S33}$$

$$\frac{dC_{\rm MT}}{dt} = f_{\rm m} \left(J_{\rm MCU} - J_{\rm NCX} \right) \tag{S34}$$

$$\frac{dN_{\rm S1}}{dt} = -\left(\frac{\delta_{\rm S(PU)}}{V_{\rm Scale}Z_{\rm Na}}\right)I_{\rm iNa}$$
(S35)

$$\frac{dH}{dt} = \phi_3 (1 - H) - \left(\frac{P\phi_1 \phi_2}{P\phi_1 + \phi_{-1}}\right) H$$
(S36)

BULK CYTOPLASMIC SUBSPACE MODEL EQUATIONS

Plasma Membrane Conductances

*Ca*²⁺ *Currents*

$$I_{Ca(T)} = g_{Ca(T)}O_{T} (V_{m} - E_{Ca(T)})$$
(S37)

$$I_{\rm Ca(Ext)} = g_{\rm Ca(Ext)} \left(\frac{C_{\rm Cy}}{K_{\rm Ca(Ext)} + C_{\rm Cy}} \right)$$
(S38)

K^+ Currents

$$I_{K(v1.1)} = g_{K(v1.1)} d_{v1.1} f_{v1.1} \left(V_{m} - E_{K} \right)$$
(S39)

$$I_{\mathrm{K}(\mathrm{ERG})} = g_{\mathrm{K}(\mathrm{ERG})} d_{\mathrm{ERG}} \left(V_{\mathrm{m}} - E_{\mathrm{K}} \right) \tag{S40}$$

$$I_{\rm K(B)} = g_{\rm K(B)} (V_{\rm m} - E_{\rm K(B)})$$
(S41)

Other Currents

 $I_{\rm L} = g_{\rm L} \left(V_{\rm m} - E_{\rm L} \right) \tag{S42}$

Nernst Potentials

$$E_{\rm K} = \frac{RT}{Z_{\rm K}F} \log_e \left(\frac{K_{\rm O}}{K_{\rm i}}\right) \tag{S43}$$

Aggregate Currents

$$I_{ion_{Cy}} = I_{Ca(T)} + I_{Ca(Ext)} + I_{K(v1.1)} + I_{K(ERG)} + I_{K(B)} + I_{L}$$
(S44)

Intracellular Ca²⁺ Fluxes

$$J_{\rm Cy} = \mu_{\rm Cy} \left(C_{\infty} - C_{\rm Cy} \right) \tag{S45}$$

Ionic Current Gating Differential Equations

I_{Ca(T)} Current

$$\frac{dO_{\rm T}}{dt} = \alpha_{\rm OT} d_{\rm T} f_{\rm T} - \beta_{\rm OT} O_{\rm T}$$
(S46)

$$\frac{dX_{\rm T}}{dt} = \frac{X_{\rm T\infty} - X_{\rm T}}{\tau_{\rm XT}}$$
for $X = d$ or f
(S47)

$$X_{\rm T\infty} = \frac{1}{1 + e^{k_{\rm XT}}(V_m - V_{\rm XT})}$$
(S48)

$$\tau_{\rm dT} = A_{\rm dT(1)} \tag{S49}$$

$$\tau_{\rm fT} = A_{\rm fT(1)} + \frac{(A_{\rm fT(2)} - A_{\rm fT(1)})}{1 + e^{A_{\rm fT(3)}(V_{\rm m} - A_{\rm fT(4)})}}$$
(S50)

 K^+ Currents

$$\frac{dX}{dt} = \alpha_X (1 - X) - \beta_X X$$
for $X = d_{v1.1}, f_{v1.1}, d_{ERG}$
(S51)

$$\alpha_{\rm X} = A_{\rm X(1)} \left[\frac{A_{\rm X(2)}}{1 + e^{A_{\rm X(3)}(V_{\rm m} - A_{\rm X(4)})}} + \left(1 - A_{\rm X(2)}\right) \right]$$
(S52)

$$\beta_{\rm X} = A_{\rm X(1)} \left[A_{\rm X(2)} - \frac{A_{\rm X(2)}}{1 + e^{A_{\rm X(3)}(V_{\rm m} - A_{\rm X(4)})}} \right]$$
(S53)

Global State Variable Derivatives

$$\frac{dV_{\rm m}}{dt} = -\frac{1}{C_{\rm m}} \left[I_{\rm ion_{\rm Cy}} + \sum_{i=1}^{n_{\rm PU}} I_{\rm ion_{\rm PU}}(i) \right]$$
(S54)

$$\frac{dC_{\rm Cy}}{dt} = J_{\rm Cy} - \lambda_{\rm S2Cy} \sum_{i=1}^{n_{\rm PU}} J_{\rm S2Cy_{(i)}} - \left(\frac{\delta_{\rm S(Cy)}}{Z_{\rm Ca}}\right) [I_{\rm Ca(T)} + I_{\rm Ca(Ext)}]$$
(S55)

PACEMAKER UNIT MODEL PARAMETERS

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pla	Plasma Membrane Conductances										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ca^{2+} Currents											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\hat{g}_{ ext{Ca}}$	0.074 pS	S2	F_{UP}^{*}	<i>k</i> _{Ca}	0.013 mV^{-1}	S2	F_{UP}^{**}			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$g_{ m PM}$	675 fA	S3	F_{UP}^{*}	$K_{\rm PM}$	1 µM	S3	(1)			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	λ	Na ⁺ Currents										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$g_{ m Na}$	13.5 pS	S4	F_{UP}^{**}	$g_{ m NaP}$	187.5 pS	S5	F_{UP}^{*}			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$E_{\rm NaP}$	10 mV	S5	$(2)^{**}$	K _{NaP}	$1 \ge 10^4 \mu M$	S5	F_{UP}			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		h_{NaP} 4 S5 F_{UP}										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Λ	Ion-Select	ive Cation Cond	uctanc	ce							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$E_{\rm NSCC}$	0 mV	S6	(3)	$\hat{g}_{ m NSCC(Ca)}$	0.1 pS	S7	F _{UP} *			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$\hat{g}_{ ext{NSCC(Na)}}$	160 pS	S7	F_{UP}^{*}	K _{NSCC}	0.12 μM	S7	F_{UP}			
Intracellular Ca ²⁺ Fluxes Endoplasmic Reticulum Ca ²⁺ Conductances k_{IPR} 2000 s ⁻¹ S15 F_{UP} V_{SERCA} $1 \times 10^5 s^{-1}$ S14 F_{UP} A_2 6×10^{-4} S14 F_{UP} A_4 $3.57 \mu M^{-1}$ S14 (4) A_5 $2.7 \times 10^{-5} \mu M^{-1}$ S14 (4) A_6 $2.31 \times 10^{-5} \mu M^{-2}$ S14 (4) <i>Mitochondrial Ca²⁺ Conductances</i> V_{MCU} 800 $\mu M s^{-1}$ S16 F_{UP} k_{MCU} 10 μM S16 (5) K_{INH} 10 μM S17 F_{UP} k_{MCU} 10 μM S16 (5) V_{NCX} $3 \mu M s^{-1}$ S18 F_{UP} K_{NCX} 0.30 μM S18 (6) K_m 0.01 μM S29 F_{UP} B_m 10000 μM S29 F_{UP} <i>Intracellular Ca²⁺ Diffusion Rates</i> μ_A 0.30 s ⁻¹ S20 F_{UP} <i>Instantaneous Rate Equations</i> I_{A_1} $6.4 s^{-1}$		$h_{\rm NSCC}$	4	S7	(3)							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Int	racellula	r Ca ²⁺ Fluxes									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	E	Endoplasm	ic Reticulum Ca	²⁺ Cor	ıductan	ces						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$k_{\rm IPR}$	2000 s^{-1}	S15	F _{UP}	V _{SERCA}	$1 \times 10^5 \text{ s}^{-1}$	S14	FUP			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		A_2	6 x 10 ⁻⁴	S14	F_{UP}	A_4	3.57 μM ⁻¹	S14	(4)			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		A_5	2.7 x 10 ⁻⁵ µM ⁻¹	S14	(4)	A_6	2.31 x 10 ⁻⁵ μM ⁻²	S14	(4)			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Λ	litochondi	rial Ca ²⁺ Conduc	ctance	25							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$V_{\rm MCU}$	800 μM s ⁻¹	S16	F_{UP}	K _{MCU}	10 µM	S16	(5)			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$K_{\rm INH}$	10 µM	S17	F _{UP}	$h_{\rm INH}$	4	S17	F _{UP}			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		V _{NCX}	$3 \ \mu M \ s^{-1}$	S18	F_{UP}^{*}	K _{NCX}	0.30 µM	S18	(6)			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		K _m	0.01 μM	S29	F _{UP}	B _m	1000 µM	S29	F _{UP}			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	I	ntracelluld	ar Ca ²⁺ Diffusion	ı Rate	S				•			
IP ₃ R Rate Parameters Instantaneous Rate Equations k_1 0 s ⁻¹ S22 F_{UP} k_{-1} 6.4 s ⁻¹ S23 F_{UP} k_2 4 s ⁻¹ S24 F_{UP} r_2 250 s ⁻¹ S22 F_{UP} r_{-2} 0 μ M s ⁻¹ S23 F_{UP} r_4 750 s ⁻¹ S24 F_{UP} r_{-2} 0 μ M s ⁻¹ S23 F_{UP} r_4 750 s ⁻¹ S24 F_{UP} R_1 36 μ M S22 (7) R_3 300 μ M S23,S24 (7) ϕ_3 Rate Parameters $g_{\phi3}$ 4.5 s ⁻¹ S25 F_{UP} $k_{\phi3(act)}$ 0.1 μ M S25 F_{UP} $k_{\phi3(inh)}$ 0.5 μ M S25 F_{UP} $h_{\phi3(act)}$ 3 S25 F_{UP} $k_{\phi3(inh)}$ 3 S25 F_{UP} $h_{\phi3(act)}$ 3 S25 F_{UP} ζ Rate Parameters ζ ζ Rate Parameters ζ $S28$ F_{UP} k_{β} 0.35 μ M S28 F_{UP} h_{β} h_{β} $S28$ F_{UP}		$\mu_{\rm A}$	0.30 s^{-1}	S20	F _{UP}	$\mu_{\rm B}$	0.24 s^{-1}	S20	F _{UP}			
Instantaneous Rate Equations k_1 0 s^{-1} S22 F_{UP} k_{-1} 6.4 s^{-1} S23 F_{UP} k_2 4 s^{-1} S24 F_{UP} r_2 250 s^{-1} S22 F_{UP} r_{-2} $0 \ \mu\text{M} \text{ s}^{-1}$ S23 F_{UP} r_4 750 s^{-1} S24 F_{UP} R_1 $36 \ \mu\text{M}$ S22 (7) R_3 $300 \ \mu\text{M}$ S23, S24 (7) ϕ_3 Rate Parameters $g_{\phi 3}$ 4.5 s^{-1} S25 F_{UP} $K_{\phi 3(act)}$ $0.1 \ \mu\text{M}$ S25 F_{UP} $k_{\phi 3(inh)}$ $0.5 \ \mu\text{M}$ S25 F_{UP} $h_{\phi 3(act)}$ $0.1 \ \mu\text{M}$ S25 F_{UP} $k_{\phi 3(inh)}$ $0.5 \ \mu\text{M}$ S25 F_{UP} $h_{\phi 3(act)}$ 3 S25 F_{UP} ζ Rate Parameters ζ ζ Rate Parameters ζ $\delta = 0.85 \text{ s}^{-1}$ $S27$ F_{UP} g_{β} $1.5 \times 10^3 \text{ s}^{-1}$ $S28$ F_{UP} ζ Rate Parameters ζ $\delta = 0.35 \ \mu\text{M}$ $S28$ <td>IP₃</td> <td>R Rate P</td> <td>arameters</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td>	IP ₃	R Rate P	arameters						•			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	I	nstantaneo	ous Rate Equatio	ns								
k_2 $4 {\rm s}^{-1} {\rm S24}$ $F_{\rm UP}$ r_2 $250 {\rm s}^{-1}$ $S22$ $F_{\rm UP}$ r_{-2} $0 \mu {\rm M} {\rm s}^{-1} {\rm S23}$ $F_{\rm UP}$ r_4 $750 {\rm s}^{-1} {\rm S24}$ $F_{\rm UP}$ R_1 $36 \mu {\rm M} {\rm S22}$ (7) R_3 $300 \mu {\rm M} {\rm S23,S24}$ (7) $\phi_3 Rate Parameters$ $= g_{\phi 3}$ $4.5 {\rm s}^{-1} {\rm S25}$ $F_{\rm UP} K_{\phi 3(act)}$ $0.1 \mu {\rm M} {\rm S25}$ $F_{\rm UP}$ $K_{\phi 3(inh)}$ $0.5 \mu {\rm M} {\rm S25}$ $F_{\rm UP} h_{\phi 3(act)}$ $0.1 \mu {\rm M} {\rm S25}$ $F_{\rm UP}$ $k_{\phi 3(inh)}$ $0.5 \mu {\rm M} {\rm S25}$ $F_{\rm UP} h_{\phi 3(act)}$ $0.1 \mu {\rm M} {\rm S25}$ $F_{\rm UP}$ $k_{\phi 3(inh)}$ $0.5 \mu {\rm M} {\rm S25}$ $F_{\rm UP} h_{\phi 3(act)}$ $0.1 \mu {\rm M} {\rm S25}$ $F_{\rm UP}$ $\zeta Rate Parameters$ $= g_{\alpha} 0.85 {\rm s}^{-1} {\rm S27} {\rm F_{\rm UP}} g_{\beta} 1.5 {\rm x} 10^3 {\rm s}^{-1} {\rm S28} {\rm F_{\rm UP}}$ $K_{\beta} 0.35 \mu {\rm M} {\rm S28} {\rm F_{\rm UP}} h_{\beta} {\rm M} {\rm S28} {\rm F_{\rm UP}}$ $K_{\beta} {\rm S28} {\rm F_{\rm UP}} {\rm S28} {\rm F_{\rm UP}}$		k_1	0 s ⁻¹	S22	F _{UP}	<i>k</i> ₋₁	6.4 s^{-1}	S23	F _{UP}			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		k_2	4 s^{-1}	S24	F _{UP}	r_2	250 s ⁻¹	S22	F _{UP}			
R_1 $36 \mu M$ $S22$ (7) R_3 $300 \mu M$ $S23,S24$ (7) ϕ_3 Rate Parameters $g_{\phi 3}$ 4.5 s^{-1} $S25$ F_{UP} $K_{\phi 3(act)}$ $0.1 \mu M$ $S25$ F_{UP} $K_{\phi 3(inh)}$ $0.5 \mu M$ $S25$ F_{UP} $h_{\phi 3(act)}$ $0.1 \mu M$ $S25$ F_{UP} $k_{\phi 3(inh)}$ $0.5 \mu M$ $S25$ F_{UP} $h_{\phi 3(act)}$ 3 $S25$ F_{UP} $k_{\phi 3(inh)}$ $0.5 \mu M$ $S25$ F_{UP} $h_{\phi 3(act)}$ 3 $S25$ F_{UP} $k_{\phi 3(inh)}$ 3 $S25$ F_{UP} $h_{\phi 3(act)}$ 3 $S25$ F_{UP} ζ Rate Parameters ζ ζ Rate Parameters ζ ζ Rate Parameters ζ		<i>r</i> ₋₂	0 μM s ⁻¹	S23	F_{UP}	r_4	750 s ⁻¹	S24	F_{UP}			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		R_1	36 µM	S22	(7)	R_3	300 µM	S23,S24	(7)			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	¢	ϕ_3 Rate Parameters										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$g_{\phi 3}$	4.5 s^{-1}	S25	F _{UP}	$K_{\phi 3(act)}$	0.1 μM	S25	F _{UP}			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$K_{\phi 3(\text{inh})}$	0.5 μM	S25	F _{UP}	$h_{\phi 3(act)}$	3	S25	F _{UP}			
ζ Rate Parameters g_{α} 0.85 s ⁻¹ S27 F_{UP} g_{β} 1.5 x 10 ³ s ⁻¹ S28 F_{UP} K_{β} 0.35 μ M S28 F_{UP} h_{β} 4 S28 F_{UP}		$h_{\phi3(\text{inb})}$ 3 S25 F _{UP}										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ζ	ζ Rate Parameters										
K_{β} 0.35 μ M S28 F _{UP} h_{β} 4 S28 F _{UP}	Π	g_{lpha}	0.85 s^{-1}	S27	FUP	g_{eta}	$1.5 \times 10^3 \text{ s}^{-1}$	S28	F _{UP}			
		K_{β}	0.35 µM	S28	F _{UP}	h_{β}	4	S28	F _{UP}			

Table S1 – Pacemaker Unit Model Equation Parameters

Numbers in parenthesis denotes literary reference. F_{UP} denotes that parameter was fitted to reproduce unitary potential characteristics (see "Parameter Estimation" from Ref. (8)). * denotes parameter was modified from original model.

** denotes parameter was added to model framework.

Plasma Membrane Conductances										
Ca ²⁺ Currents										
$g_{Ca(T)}$	800 pS	S37	F _{SW}	$E_{Ca(T)}$	17 mV	S37	(8)			
g _{Ca(Ext)}	100 fA	S38	F _{SW}	K _{Ca(Ext)}	1.0 µM	S38	F _{SW}			
K ⁺ Currents										
$g_{\mathrm{K(v1.1)}}$	10 pS	S39	F _{SW}	$g_{\rm K(ERG)}$	6 pS	S40	F_{SW}			
$g_{ m K(B)}$	13.5 pS	S41	F _{SW}	$E_{\rm K(B)}$	-70 mV	S41	F_{SW}			
Other Curr	ents									
$g_{ m L}$	0.8 pS	S42	F _{SW}	$E_{ m L}$	0 mV	S42	(3)			
Intracellular	Ca ²⁺ Fluxes									
$\mu_{\rm Cy}$	1.3 s^{-1}	S45	F_{SW}	C_{∞}	0.12 μM	S45	F_{SW}			
Gating Varia	ble Rate Equa	ations								
O_T Rate Eq	uations									
$\alpha_{\rm OT}$	240 s ⁻¹	S46	F_{SW}	$\beta_{\rm OT}$	72 s ⁻¹	S46	F_{SW}			
$d_T Rate Equ$	uations									
$k_{ m dT}$	-0.60 mV^{-1}	S48	(9)	$V_{\rm dT}$	-53 mV	S48	(9)			
$A_{dT(1)}$	0.0025 s	S49	(9)							
f_T Rate Equ	ations									
$k_{ m fT}$	1 mV^{-1}	S48	(9)	$V_{\rm fT}$	-65 mV	S48	(9)			
$A_{\rm fT(1)}$	0.019 s	S50	(9)	$A_{\rm fT(2)}$	6.75 s	S50	(9)			
$A_{\rm fT(3)}$	2 mV^{-1}	S50	(9)	$A_{\rm fT(4)}$	-40 mV	S50	(9)			
$d_{v1.1}$ Rate E	quations									
$A_{dv(1)}$	1000 s^{-1}	S52,S53	(10)	$A_{\rm dv(2)}$	0.80	S52,S53	(10)			
$A_{dv(3)}$	-0.13 mV^{-1}	S52,S53	(10)	$A_{dv(4)}$	25 mV	S52,S53	(10)			
f _{v1.1} Rate Equations										
$A_{\rm fv(1)}$	333 s^{-1}	S52,S53	(10)	$A_{\rm fv(2)}$	0.10	S52,S53	(10)			
$A_{\rm fv(3)}$	0.23 mV^{-1}	S52,S53	(10)	$A_{\rm fv(4)}$	44.8 mV	S52,S53	(10)			
d _{ERG} Rate Equations										
$A_{\text{dERG}(1)}$	1000 s^{-1}	S52,S53	(10)	$A_{dERG(2)}$	0.70	S52,S53	(10)			
$A_{\rm dERG(3)}$	-0.56 mV^{-1}	S52,S53	(10)	$A_{\rm dERG(4)}$	30 mV	S52,S53	(10)			

WHOLE CELL CURRENT EQUATION PARAMETERS

 Table S2 – Whole Cell Current Model Equation Parameters

Numbers in parenthesis denotes literary reference. FSW denotes that parameter was fitted to reproduce slow wave characteristics (see "Parameter Estimation" section in manuscript).

Universal Constants									
R	8.31×10^3 aJ zmol ⁻¹ K ⁻¹	S8,S9,S43	Т	310.16 K	S8,S9,S43				
F	9.649 x 10 ⁻² fC zmol ⁻¹	S8,S9,S43							
Ion/Meta	Ion/Metabolite Concentrations								
$C_{\rm O}$	$1.8 \ge 10^3 \mu M$	S8	No	$140 \ge 10^3 \mu M$	S9				
Ko	$5.4 \times 10^3 \mu\text{M}$	S43	Ki	145 x 10 ³ μM	S43				
Р	1 µM	S15,S36							
Ion Vale	ncy								
Z _{Ca}	2	S8,S31,S55	Z _{Na}	1	S9,S35				
$Z_{\rm K}$	1	S43							
Compart	mental Volume Ratios								
% 1	100	S30	γ_{S2}	1	S30				
∕∕er	20	S30	γмт	200	S30				
γ _{Cy}	1000	S30							
Cell Constants									
$\delta_{\rm S(Cy)}$	2 x 10 ⁻³ μM C ⁻¹	S55	$\delta_{\rm S(PU)}$	9.25 μM C ⁻¹	S31,S35				
$C_{\rm m}$	20 pF	S54	<i>n</i> _{PU(Base)}	50	S10				

CELL CONSTANTS AND GLOBAL PARAMETERS

 Table S3 – Model Cell Constants and Other Global Parameters

INITIAL STATE VARIABLE VALUES

Pacemaker Unit State Variables							
C_{S1}	0.120 μM	C_{S2}	0.023 μM				
$C_{ m ER}$	200 µM	$C_{\rm MT}$	0.200 μM				
$N_{\rm S1}$	$1.01 \ge 10^4 \mu M$	Н	0.200				
ζ	0.300						
Whole Cell Current Gating Variables							
d_{T}	0.010	$f_{\rm T}$	0.001				
O_{T}	0.000	$d_{\rm v1.1}$	0.000				
$f_{\rm v1.1}$	1.000	d_{ERG}	0.000				
Global Variables							
$V_{\rm m}$	-70 mV	C_{Cy}	0.12 μM				

 Table S4 – Model State Variable Initial Values

PU #	$n_{PU} = 5$	$n_{PU} = 6$	$n_{PU} = 7$	$n_{PU} = 8$	$n_{PU} = 9$	$n_{PU} = 10$	$n_{PU} = 15$	$n_{PU} = 20$	$n_{PU} = 25$
1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	0.4788	0.4133	0.4071	0.3662	0.3520	0.3361	0.2150	0.1544	0.1136
3	0.6843	0.5577	0.4752	0.4253	0.3850	0.3658	0.4367	0.3260	0.2489
4	0.9335	0.7464	0.6244	0.5441	0.4829	0.4357	0.5096	0.4981	0.3872
5	1.1673	0.9389	0.7818	0.6750	0.5935	0.5351	0.4565	0.4844	0.5217
6		1.1184	0.9388	0.8062	0.7095	0.6366	0.5033	0.4455	0.5672
7			1.0827	0.9357	0.8240	0.7386	0.5390	0.4628	0.4886
8				1.0545	0.9325	0.8361	0.6042	0.5127	0.4790
9					1.0336	0.9320	0.6642	0.5458	0.5179
10						1.0185	0.7348	0.5831	0.5282
11							0.7977	0.6366	0.5536
12							0.8619	0.6802	0.5883
13							0.9241	0.7256	0.6200
14							0.9812	0.7694	0.6541
15							1.0344	0.8221	0.6935
16								0.8690	0.7305
17								0.9096	0.7684
18								0.9550	0.8036
19								0.9965	0.8343
20								1.0347	0.8712
21									0.9092
22									0.9435
23									0.9768
24									1.0079
25									1.0361

SUBSPACE 2/BULK CYTOPLASM Ca²⁺ DIFFUSION RATES

Table S5 – Subspace 2/Bulk Cytoplasmic (μ_{S2Cy}) Ca²⁺ Diffusion Rates

DOSE-RESPONSE SIMULATIONS

The following is of the dose-response simulations that have been included in the supplementary materials:

Figure 1 – Decreased $[Ca^{2+}]_0$ Figure 2 – Decreased $[Na^+]_0$ Figure 3 – Increased $[K^+]_0$ Figure 4 – Varying $[IP_3]$ Figure 5 – J_{NCX} Inhibition Figure 6 – $I_{K(ERG)}$ Inhibition

The format of each dose-response simulation figure is comprised of 9 subplots (*A-I*). The subplots *A-H* are separated into two columns, the first column illustrating the simulated $V_{\rm m}$ response and the second the pacemaker unit discharge rastergram. Each row, within this subplot group, is the response generated by the proportional change in the target parameter (see Table 5 of the manuscript) which indicated by the key given in subplot *I*. The final subplot (*I*) shows the change in the slow wave characteristic values from control conditions, a list of which is given below:

- MDP (mV),
- Amplitude (mV),
- $\{dV_{\rm m}/dt\}_{\rm max} \,({\rm mV \, s^{-1}})$, and
- Frequency (cpm)

Figure S1 – Decreased Extracellular [Ca²⁺] Dose Response Simulation

Figure S2 – Decreased Extracellular [Na⁺] Dose Response Simulations

Figure S3 – Increase Extracellular $[K^+]$ Dose Response Simulations

Figure S4 – Varying [IP₃] Dose Response Simulations

Figure S5 – J_{NCX} Inhibition Dose Response Simulations

Figure S6 – $I_{K(ERG)}$ Inhibition Dose Response Simulations

PACEMAKER UNIT FIRING DISTRIBUTION

Inverse Distribution Function

The cumulative distribution function, $\psi(t)$ that describes pacemaker unit discharge over time is given by the 2-parameter Boltzmann function as follows:

$$\psi(t) = \frac{1}{1 + e^{-k_{\psi}(t - T_{\psi})}}$$
 (S.A1)

Therefore, in order to determine the time at which a proportion, P_x , of the pacemaker unit population has fired, we invert $\psi(t)$ as follows:

$$t = \psi^{-1}(P_x) = T_{\psi} - \frac{1}{k_{\psi}} \log_e \left(\frac{1}{P_x} - 1\right)$$
 (S.A2)

Pacemaker Unit Firing Probability

If a pacemaker unit population is comprised of n_{PU} units, then each pacemaker unit represents a proportion of $1/n_{PU}$ of the entire population. Therefore, the proportion of the population which has fired after the discharge of *i* pacemaker units is given by the equation:

$$P_{x(i)} = \frac{i}{n_{PU}} \tag{S.A3}$$

Note that as we are making a discrete approximation to a continuous distribution, this proportion is fixed as the midpoint of the interval over which it represents (i.e., $1/n_{PU}$).

i.e.
$$P_{x(i)} = \frac{i}{n_{PU}} - \frac{1}{2n_{PU}} = \frac{2i-1}{2n_{PU}}$$
 (S.A4)

Substituting eqn. (S.A4) into eqn. (S.A2) therefore gives the time at which the i^{th} pacemaker unit will discharge:

$$t_i = T_{\psi} - \frac{1}{k_{\psi}} \log_e \left(\frac{2n_{PU}}{2i - 1} - 1\right)$$
 (S.A5)

Pacemaker Cycle Landmark

As $\Psi(t)$ can be shifted in time to coincide with any arbitrary landmark point within the slow wave cycle, then the value of T_{Ψ} is also arbitrary. Therefore, $\psi(t)$ was fixed such that the firing of the first pacemaker unit was set at t = 0. This is due to the fact that this is

a landmark point which is common to any pacemaker unit population, independent of size. Subtituting t = 0 into eqn. (S.A5) and rearranging gives:

$$T_{\psi} = \frac{1}{k_{\psi}} \log_e \left(\frac{1}{P_{x(1)}} - 1 \right)$$
 (S.A6)

From eqn. (S.A4), we know that $P_{x(1)} = 1/(2n_{PU})$. Therefore, substituting eqn. (S.A4) into (S.A6) gives the following equation which describes T_{ψ} as a function of n_{PU} :

$$T_{\psi} = \frac{1}{k_{\psi}} \log_e (2n_{PU} - 1)$$
 (S.A7)

Pacemaker Unit Firing Time Distribution

Substituting eqn. (S.A7) into eqn. (S.A5) gives the final equation describing the time at which the i^{th} pacemaker unit, from a population of n_{PU} units, will discharge as follows:

$$t_{i} = \frac{1}{k_{\psi}} \left[\log_{e} (2n_{PU} - 1) - \log_{e} \left(\frac{2n_{PU}}{2i - 1} - 1 \right) \right]$$
(S.A8)

REFERENCES

- 1. Sneyd J., K. Tsaneva-Atanasova, J.I. Bruce, R.F. Straub, D.R. Giovannucci, and D.I. Yule. 2003. A model of calcium waves in pancreatic and parotid acinar cells. *Biophys J* 85:1392–1405.
- 2. De Weer, P., D.C. Gadsby, and R.F. Rakowski. 2001. Voltage dependence of the apparent affinity for external Na(+) of the backward-running sodium pump. *J Gen Physiol* 117: 315-28.
- 3. Koh, S.D., J.Y. Jun, T.W. Kim, and K.M. Sanders. 2002. A Ca(2+)-inhibited nonselective cation conductance contributes to pacemaker currents in mouse interstitial cell of Cajal. *J Physiol* 540: 803-814,.
- 4. Higgins, E.R., M.B. Cannell, and J. Sneyd. 2006. A buffering SERCA pump in models of calcium dynamics. *Biophys J* 91:151–163.
- 5. Gunter, T.E., and D.R. Pfeiffer. 1990. Mechanisms by which mitochondria transport calcium. *Am J Physiol* 258:C755–C786.
- 6. Colegrove, S.L., M.A. Albrecht, D.D. Friel. 2000. Quantitative analysis of mitochondrial Ca2+ uptake and release pathways in sympathetic neurons. Reconstruction of the recovery after depolarization evoked [Ca2+]i elevations. *J Gen Physiol* 115:371–388.
- 7. Sneyd, J., A. LeBeau, and D.I. Yule. 2000. Traveling waves of calcium in pancreatic acinar cells: model construction and bifurcation analysis. *Physica D* 145:158–179.
- 8. Iftinca, M., B.E. McKay, T.P. Snutch, J.E. McRory, R.W. Turner, and G.W. Zamponi. 2006. Temperature dependence of T-type calcium channel gating. *Neuroscience* 142: 1031-1042.
- 9. Edwards, F.R., and G.D. Hirst. 2005. An electrical description of the generation of slow waves in the antrum of the guinea-pig. *J Physiol* 564: 213-32.
- 10. Corrias, A., and M.L. Buist. 2008. Quantitative cellular description of gastric slow wave activity. *Am J Physiol Gastrointest Liver Physiol* 294: G989-995.