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1 Solution of the hydrodynamic problem

Here we outline the leading-order solution for the velocity field and hydrodynamic stresses. In this
case, all quantities are evaluated on a sphere. More details can be found in Refs. (1–4).

Velocity fields are described using basis sets of fundamental solutions of the Stokes equations
appropriate for spherical geometry (5), u±jmq, defined in Section 3:

vex(r) =
∑
jmq

cjmqu−jmq(r) , vin(r) =
∑
jmq

cjmqu+
jmq(r) . (1)

∑
jmq

≡
∞∑
j=2

j∑
m=−j

2∑
q=0

(2)

The velocity field contains only q = 0, 2 due to the axial symmetry. The local area conservation
implies that the velocity field at the interface is solenoidal (1)

∇s · v = 0 . (3)

Therefore the amplitudes of the velocity field Eq. 1 are related

cjm0 =
2√

j(j + 1)
cjm2 . (4)

The component of velocity that is normal to the interface, cjm2, is determined using the stress
balance (Eq. 18 in the manuscript text), which in terms of spherical harmonics reads

δj2δm0τ
el
jmq + τhd,ex

jmq − χτ
hd,in
jmq = τmm

jmq . (5)

Tangential stresses correspond to the q = 0 component, and the normal stresses - to q = 2. δij
is the Kronecker delta function. The hydrodynamic tractions are given by Eq. 30–Eq. 33. The
electrical tractions are given by (Eq. 31 in the manuscript text), which is recast in the form

τ el = 8
√
π

5
τ el
r y202(θ, φ)− 2

√
2π
15
τ el
θ y200(θ, φ) . (6)

The membrane tractions are (1, 2)

τmm
jmq = Ca−1(τκjmq + τσjmq) + χsτ

s
jmq . (7)

where Ca is the capillary number and χs = ηmm/ηa is a surface viscosity parameter. We have
included the membrane viscous stresses for the sake of completeness. The surface viscosity of lipid
bilayers in the fluid phase is relatively low, ηmm ∼ 10−9Ns/m, and its effects are usually negligible.
Surface viscous effects become important in bilayers assembled from polymers (polymersomes),
where the membrane viscosity ηmm ∼ 10−6Ns/m (6, 7).

The bending contribution to the membrane traction is

τκjm2 = j(j + 1) (j − 1) (j + 2) fjm , τκjm0 = 0 , (8)

1



the stresses due to membrane tension are

τσjm2 = 2σjm + σ0 (j − 1) (j + 2) fjm , τσjm0 = −
√
j(j + 1)σjm , (9)

and the surface viscous stresses have only in-plane shearing component

τ sjm2 = 0 , τ sjm0 = 2 (j − 1) (j + 2) [j(j + 1)]−1/2fjm . (10)

The non-uniform part of the membrane tension, σjm, is determined from the tangential component
of the stress balance Eq. 5, q = 0,

σjm = Ca

[
τ el
jm0√

j(j + 1)
+ cjm2

2 + j + (j − 1)(χ+ 2(j + 2)χs)
j(j + 1)

]
. (11)

It is then substituted into the normal component of the stress balance Eq. 5, q = 2, to obtain the
normal velocity cjm2

cjm2 = Cjm + Ca−1(Γ1 + σ0Γ2)fjm , (12)

where
Cjm = −

√
j(j+1)

d(χ,χs,j)

[
2τ el
jm0 +

√
j(j + 1)τ el

jm2

]
, (13)

Γ1 = −(j + 2)(j − 1)[j(j + 1)]2d(χ, χs, j)
−1 , (14)

Γ2 = −(j + 2)(j − 1)j(j + 1)d(χ, χs, j)
−1 , (15)

and
d(χ, χs, j) = (4 + 3j2 + 2j3) + (−5 + 3j2 + 2j3)χ+ 4(−2 + j + j2)χs . (16)

Finally, the motion of the interface is determined from the kinematic condition (Eq. 17 in the
manuscript text)

∂fjm
∂t

= cjm2 at r = 1 . (17)

Substituting cjm2 in Eq. 17 yields the evolution equation for the shape parameters (Eq. 37 in the
manuscript text).

The normal velocity Eq. 12 and the shape evolution Eq. 17 include the yet unknown isotropic
membrane tension. It is expressed in terms of the shape modes and other known parameters in the
problem using the area constraint (2)

σ0 = −
∑
jm a(j)

[
Cjmf

∗
jm + Ca−1Γ1fjmf

∗
jm

]
Ca−1∑

jm a(j)Γ2fjmf∗jm
. (18)

The complicated dependence of the tension on the shape modes makes the shape evolution equations
nonlinear.

In order to clarify the physical significance of the isotropic tension, let us consider the particular
case when only the ellipsoidal deformation modes, j = 2, are present. Eq. 18 simplifies to

σ0(t) = −6 + CaC20
32 + 23χ+ 16χs

12
f20(t) (19)

where we have emphasized that the time dependent shape modes give rise to time-dependent
membrane tension. We see that the tension varies with deformation. At rest, the tension of a
quasi-spherical vesicle is negative (8) and increases with forcing. Once all excess area is transferred
to the f20 mode, the tension increases with the field strength Ca as

σ0 ≈ CaC20
(32 + 23χ+ 16χs)

√
2

12
∆−1/2 (20)

Similar behavior is observed with vesicles in shear flow (1).
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2 Spherical harmonics

The normalized spherical scalar harmonics are defined as (9)

Yjm(θ, ϕ) =
[

2j+1
4π

(j−m)!
(j+m)!

] 1
2 (−1)mPmj (cos θ)eimϕ, (21)

where r̂ = r/r, (r, θ, ϕ) are the spherical coordinates, and Pmj (cos θ) are the Legendre polynomials.
For example

Y10 =
√

3
4π

cos θ . (22)

The vector spherical harmonics relevant to our study are defined as (10)

yjm0 = [j (j + 1)]−
1
2 r∇ΩYjm , yjm2 = r̂Yjm (23)

where ∇Ω denotes the angular part of the gradient operator. For example

y200 = −
√

15
32π sin(2θ)θ̂, y202 = 1

8

√
5
π [1 + 3 cos(2θ)]̂r (24)

3 Fundamental set of velocity fields

Following the definitions given in Blawzdziewicz et al.(10), we list the expressions for the functions
u±jmq (r, θ, ϕ). The velocity field outside the vesicle is described by

u−jm0 = 1
2r
−j (2− j + jr−2

)
yjm0 + 1

2r
−j [j (j + 1)]1/2

(
1− r−2

)
yjm2 , (25)

u−jm2 = 1
2r
−j (2− j)

(
j

1+j

)1/2 (
1− r−2

)
yjm0 + 1

2r
−j (j + (2− j)r−2

)
yjm2 . (26)

The velocity field inside the vesicle is described by

u+
jm0 = 1

2r
j−1

(
−(j + 1) + (j + 3)r2

)
yjm0 − 1

2r
j−1 [j (j + 1)]1/2

(
1− r2

)
yjm2 , (27)

u+
jm2 = 1

2r
j−1 (3 + j)

(
j+1
j

)1/2 (
1− r2

)
yjm0 + 1

2r
j−1

(
j + 3− (j + 1)r2

)
yjm2 . (28)

On a sphere r = 1 these velocity fields reduce to the vector spherical harmonics defined by Eq. 23

u±jmq = yjmq . (29)

Hence, u±jm0 is tangential, and u±jm2 is normal to a sphere. In addition, u±jm0 defines an irrotational
velocity field.

The hydrodynamic tractions associated with the velocity fields Eq. 1 are (2)

τhd,in
jm0 = (2j + 1)cjm0 − 3

(
j + 1
j

) 1
2

cjm2 (30)

τhd,ex
jm2 = −(2j + 1)cjm0 + 3

(
j

j + 1

) 1
2

cjm2 (31)

τhd,ex
jm0 = 3

(
j

j + 1

) 1
2

cjm0 −
4 + 3j + 2j2

j + 1
cjm2 (32)

τhd,in
jm2 = −3

(
j + 1
j

) 1
2

cjm0 +
3 + j + 2j2

j
cjm2 (33)
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4 Deformation of a prolate vesicle in strong fields

Consider an initially non-spherical, non-fluctuating vesicle. This situation can occur in strong
electric fields, where the vesicle is already maximally deformed and then the field direction is
changed. The evolution to the new stationary shape is no longer described by Eq.42 in the main
text because the tension is no longer in the entropic regime. The effective tension has to be
determined self-consistently along with the field-induced changes in shape to keep the total area
constant (2), as discussed in Section 1 of the Supplementary material, see Eq. 19. The leading
order vesicle electrohydrodynamics becomes non–linear in contrast to the corresponding results for
drops and capsules (11–13). This feature of non-equilibrium vesicle dynamics has been noted by
several authors in relation to vesicle dynamics in shear flow (2, 4, 14).

Vesicle deformation is approximated by

∂f20

∂t
= Cel(1− 2∆−1f2

20)
∂f2m

∂t
= −2Cel∆−1f20f2m (34)

where the dot denotes time derivative. The modes f2m are slaved to the f20, which is forced to
change by the electric field. Eq. 34 can be integrated to yield

f20(t) = δ tanh

[
Cel

δ
t+ tanh−1

(
f20(0)
δ

)]
. (35)

This equation shows that the maximum possible deformation is

δ =

√
∆
2
. (36)

.
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