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Choice of hyperfine coupling constants for the [FADH• + O•−
2 ]

radical pair

For a qualitative understanding of the feasibility of a magnetic field effect in the
suggested reaction we consider only one representative spin-1/2 nucleus on the FADH•

radical with anisotropic hyperfine coupling tensor A, as also assumed in (1), given by

A =




10 G 0 0
0 10 G 0
0 0 0


 . (S1)

The values of the hyperfine coupling tensor are chosen to be close to the values,
which were calculated (2, 3) and measured (3–5) for the nuclei of the FADH• radical
at different conditions. The main purpose of the suggested generic model is to demon-
strate to what extent the interplay among hyperfine coupling strength, magnetic field
strength, and rate constants kb, ket affects the FADH•+O•−

2 →FADH− +O2 reaction
in cryptochrome. The goal is solely to illustrate the feasibility of a magnetic compass
in birds based on the reaction in Fig. 2 rather than to present a quantitative model
for the magnetoreception capability.

Substituting Eqs. (10)-(12) and Eq. (S1) into Eqs. (8)-(9) one obtains

ĤFADH =
gµB

2
[Bx(σ̂x ⊗ E2) + Bz(σ̂z ⊗ E2)] +

aµB

4
[σ̂x ⊗ σ̂x + σ̂y ⊗ σ̂y] (S2)

ĤO2− =
gµB

2
[Bxσ̂x + Bzσ̂z] , (S3)

where a = 10 G is the hyperfine coupling, which follows from Eq. (S1); the first factor
of the tensor product in Eq. (S2) acts on the electron spin, the second factor acts on
the nuclear spin, and the operators in Eq. (S3) act on the electron spin.
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Calculation of FADH•+O•−
2 → FADH−+O2 reaction energies

In determining the energy difference between 1[FADH• + O•−
2 ] and 1[FADH− + O2]

states we proceed as follows. The structure and energy of the stable FADH•, FADH−,
O•−

2 and O2 molecules was determined using density functional theory used in physics
and chemistry to investigate the electronic structure of many-body systems. With
this theory, the properties of a many-electron system can be determined. We use
the so-called B3LYP density functional as it has been proven to be successful for the
calculation of properties of various organic molecules (6–10).

To determine the energy of a molecule within the framework of the density func-
tional theory one has to solve the Kohn-Sham equations (11, 12) and determine the
wavefunction of the system. This is often achieved via expanding the wavefunction
in an a priori set of orthonormal functions, known as the basis functions. For the
computations we used the program Gaussian 03 (13), and employed the widely used
cc-pVTZ set of basis functions developed by Dunning and coworkers (14).

From the calculated energies of the individual molecules involved in the FADH•

+O•−
2 → FADH−+O2 reaction we calculate its enthalpy difference ∆E.

Exchange and Dipolar Interactions in the Radical pair Hamil-
tonian

The part of the Hamiltonian accounting for electron-electron exchange and dipolar
interactions is

Ĥint = ĤJ(R) + ĤD(R,~n), (S4)

where ĤJ and ĤD are the exchange and the dipolar interactions respectively, defined
as (15, 16)

ĤJ(R) = −µBJ0 exp [−βR]

(
1

2
+ 2 ~̂S1 · ~̂S2

)
(S5)

ĤD(R,~n) =
g2µ2

B

R3

[
~̂S1 · ~̂S2 − 3( ~̂S1 · ~̂n)( ~̂S2 · ~n)

]
. (S6)

Here R is the edge-to-edge distance between the radicals, ~n is the unit vector in the
direction of ~R which specifies the orientation of the radical pair, J0 is the exchange
coupling constant, and β is a range parameter. According to Eqs. (S5)-(S6) the
strength and the distance dependence of the dipolar and the exchange coupling pa-
rameters can be expressed as an effective magnetic field, i.e., in units of Gauss (15, 16),
namely as

J(R) = J0 exp [−βR] (S7)

D(R) = −3

2

g2µB

R3
. (S8)
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The eliminated factor −µB (1
2

+ 2 ~̂S1 · ~̂S2) in Eq. (S5) assume values +µB and −µB

in case of electron spin singlet and triplet states, respectively. The eliminated factor

−2
3
µB [ ~̂S1 · ~̂S2 − 3 ( ~̂S1 · ~̂n1) ( ~̂S2 · ~̂n2)] likewise assume values 0 and −µB( m2 − 2

3
). An

exchange interaction comparable to or larger than the Zeeman interaction lifts the
zero-field degeneracies of the singlet and triplet states and, thereby, suppresses the ef-
fect of the external magnetic field (17). A dipolar interaction produces a similar result
(15). Thus, if |D(R)| or |J(R)| in Eqs. (S7)-(S8) are too large compared to Zeeman
and hyperfine interaction, singlet↔triplet interconversion that would otherwise be
driven by the weak Zeeman interaction will be blocked. According to Eqs. (S7)-(S8)
for |D(R)| or |J(R)| to be . 0.5 G, the radicals should be R & 35 Å apart. Such
large separations R are inconsistent with some other conditions that the [FADH• +
O•−

2 ] radical pair must satisfy to act as a magnetoreceptor (e.g. the size of the molec-
ular pocket in cryptochrome is less than 20-25 Å; the electron transfer rate from O•−

2

to FADH• is expected to be too low at large radical separations, as discussed below).
A possible way out of this dilemma has been suggested recently by Efimova and

Hore (16), who showed that at certain conditions exchange and dipolar interactions
can become of approximately the same size, but possessing different signs, i.e., then
cancel each other. The cancelation condition can be derived if one considers the
matrix elements of the exchange and dipolar Hamiltonians in the basis of singlet
state S0 and triplet states Tm (m = 0,±1) (16, 18)

ES = 〈S|Ĥint|S〉 = 〈S|ĤJ + ĤD|S〉 = J (S9)

ET = 〈Tm|Ĥint|Tm〉 = 〈Tm|ĤJ + ĤD|Tm〉 = −J + D

(
m2 − 2

3

)
, (S10)

The exchange and dipolar interactions cancel each other for ES = ET , resulting in
the condition (16)

D =
2J

m2 − 2
3

, m = 0,±1. (S11)

According to Eq. (S11) the partial cancelation of the effects of the exchange and
dipolar interactions occurs at

D = 6J, or D = −3J. (S12)

Since D is negative the first case can arise when J0 < 0 and the later case when
J0 > 0.

In (16) it was demonstrated that the cancelation conditions Eqs. (S12) can be re-
alized in the photoactivation cycle of cryptochrome if the separation distance between
the radical partners is ∼18-22 Å. These distances are consistent with the separation
between the FADH• and Trp324+ radicals involved in the photoactivation reaction
of cryptochrome (16, 19). However the distance at which the cancelation conditions,
Eqs. (S12), are fulfilled strongly depend on the exchange coupling constant J0 and
the range parameter β (see Eqs. (S7)-(S8)). For the estimates performed in (16) the
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values β = 1.4 Å−1 and J0 = 1.6 × 1012 G were used, which were taken from the
primary radical pair in the reaction center of the purple photosynthetic bacterium
(16, 20–22). The values for J0 and β are different for the acylketyl biradicals, namely
J0 = 7× 109 G and β = 2.14 Å−1 (15, 23).

The exchange interaction parameters for the [FADH•+O−
2 ] radical pair are not

known and, in principle, should be different from exchange interaction parameters in
the photosynthetic bacterium or in the acylketyl biradicals. To study the feasibility
of magnetic field effects in the [FADH•+O−

2 ] radical pair the cancelation conditions
Eqs. (S12) are considered for a wide range of parameters β and J0. According to
the literature (15, 16, 20–23) the exchange coupling constant is expected to lie in the
range ∼ 109 − 1013 G with β ∼ 1− 2 Å−1.

Using Eqs. (S12) one can estimate the radical pair separation distance at which
J − D cancelation arises. Figure S2 shows the radical pair separation as a function
of J0 and β. In the present paper the value of J0 is assumed positive and, therefore,
the distances shown in Fig. S2 are obtained as the solution of D = −3J . Assuming a
distance between FADH• and O•−

2 of 10-12 Å, which conforms with the 20-25 Å depth
of cryptochrome’s pocket shown in Fig. S1, Fig. S2 shows that exchange and dipolar
interactions cancel each other rather well for J0 and β in the range J0 ∈ (109...1012) G
and β ∈ (1.8...2.2) Å−1, i.e., parameters also employed in earlier studies (15, 16, 20–
23).

For the stated choice of exchange and dipolar interaction strength, the sum of the
interactive terms can be neglected and a magnetic field effect in the [FADH•+O−

2 ]
radical pair reaction becomes possible.

Another key factor determining the feasibility of a magnetic field effect on the
back-reaction of cryptochrome is the value of the electron transfer rate ket which
depends sensitively on the edge-to-edge distance R arising also in Eqs. (S7)-(S8). It
was shown (24, 25) that electron transfer in proteins obeys the empirical relationship

log10 ket = 15− 0.6R− 3.1
(∆E + λ)2

λ
. (S13)

Here λ is the (reorganization) energy required to repolarize the protein matrix upon
electron transfer and ∆E is the driving force for the electron transfer (16, 19). The
optimum electron transfer rate occurs when ∆G = −λ (16, 25), in which case holds

R = [25− 0.7238 log(ket)] Å. (S14)

Using Eq. (S14) one can estimate the characteristic distance at which the electron
transfer between the radicals occurs at a rate ket. Then ket, R, ∆E ∼ λ are in units
of s−1, Å, and eV.

Duration of the FADH•+O•−
2 →FADH−+O2 reaction

Since the O•−
2 radical can escape from both spin states of the radical pair, its escape

yield can be written

4



Φ
(n)
b = kb

∫ ∞

0

Tr
[
(QS + QT )ρ(n)(t)

]
dt = kb

∫ ∞

0

Tr
[
ρ(n)(t)

]
dt. (S15)

The superscript (n) denotes that the [FADH•+O•−
2 ] radical pair was created for the

n-th time. The initial condition for the density matrix in this case is

ρ(n)(0) = Φ
(n−1)
b

Q̂S + Q̂T

Tr
[
Q̂S + Q̂T

] = Φ
(n−1)
b ρ(1)(0). (S16)

Substituting Eq. (S16) into Eq. (5) and the resulting equation into Eq. (S15) one
obtains

Φ
(n)
b = kbΦ

(n−1)
b

∫ ∞

0

Tr
[
ρ(1)(t)

]
dt = Φ

(n−1)
b Φ

(1)
b . (S17)

With Φ
(1)
b ≡ 1−α, where α is the probability that an FADH•+O•−

2 encounter actually
leads to reduction of FADH• and to an end of cryptochrome signalling, follows

Φ
(n)
b = (1− α)n. (S18)

If a radical pair is created for the n-th time the corresponding electron transfer yield
from the O•−

2 radical to the FADH• radical is Φ
(n)
et = Φ

(n−1)
b − Φ

(n)
b . Substituting

Eq. (S18) one obtains

Φ
(n)
et = α(1− α)n−1. (S19)

Accordingly, the electron transfer yield is described by a geometrical series with initial
value α and common ratio (1 − α). Since 0 < 1 − α < 1 holds it follows from

Eq. (S19),
∑∞

n=1 Φ
(n)
et = 1, i.e., at the end of the FADH•+O•−

2 →FADH−+O2 reaction
the probability to find the FAD cofactor in its reduced FADH− form equals unity, as
expected.

It follows from Eq. (S19) that the electron transfer yield decreases with n, i.e.,
with time. Let τox = 1/kox be the characteristic time scale at which the [FADH•+O•−

2 ]
radical pair is formed. Due to the low concentration of O•−

2 (26, 27) this time is fairly
long, likely in the millisecond range (see below). The expected value of the reaction
duration time 〈τ〉 can be calculated according to probability theory (28) using

〈τ〉 =
∞∑

n=1

nτoxp(n). (S20)

Here nτox describes the time needed for n attempts of forming an [FADH•+O•−
2 ]

radical pair, neglecting the radical pair lifetime in comparison with τox. p(n) ≡ Φ
(n)
et

is the probability that the formation of FADH− occurs in the n-th encounter of FADH•

and an O•−
2 . Substituting Eq. (S19) into Eq. (S20) one obtains

〈τ〉 = τox

∞∑
n=1

nΦ
(n)
et = τoxα

∞∑
n=1

n(1− α)n−1. (S21)

The summation in Eq. (S21) gives
∞∑

n=1

n(1− α)n−1 = − ∂

∂α

∞∑
n=0

(1− α)n = − ∂

∂α

(
1

α

)
=

1

α2
. (S22)
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Substituting Eq. (S22) into Eq. (S21) one obtains

〈τ〉 =
τox

α
(S23)

where α is magnetic field dependent.
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Figure S1: Structure of Arabidopsis thaliana cryptochrome-1. Shown is the solute
accessible surface of cryptochrome; the molecular pocket directed towards the FAD
cofactor is clearly visible. The structure is taken from (29). The coloring of different
atoms in the protein shows the distance of the corresponding atom from the center
of cryptochrome, i.e., the most central atoms are marked red, while the peripheral
residues are colored blue.

10



Figure S2: Dependence of the radical pair separation distance R on the exchange
interaction parameters J0 and β according to Eq. (S7). The shaded area marks the
distances expected in cryptochrome.
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