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1 Materials and methods

Figure 1: Ld phase of a phase separated vesicle with fitted circle (black) superimposed. The cross
marks the position of the center. Scalebar: 20 µm.

2 Monte Carlo simulation of domain size distributions

For short enough times, when the system is still far from complete phase separation, the evolution of
domain sizes can be modeled by a master equation (1):

Ṅn =
1
2

n−1∑

m=1

km,n−mNmNn−m −
∞∑

m=1

kn,mNnNm (1)

where Nn is the number of domains with area n, kn,m the fusion rate for domains of area n and m
and the dot refers to the time derivative. Since Nn can assume continuous values, the master equation
approach breaks down for domain numbers on the order of 1.

In agreement with our experimental observations we do not allow for scission events, i.e. the fission
of a domain into two smaller domains. Due to the high line tension such events never occur in our
experiments.

If the fusion rate is assumed to be independent of domain area (kn,m = k) the continuous master
equation

∂

∂t
N(x, t) = k

(
1
2

∫ x

0
dy N(y, t)N(x− y, t)−

∫ ∞

0
dy N(x, t)N(y, t)

)
(2)

can be solved exactly. The ansatz N(x, t) = a(t) exp(−b(t)x) results in a system of ordinary differential
equations for the functions a and b:

{
ȧ(t) = −k

2a(t)
ḃ(t) = −k a2(t)

b(t)

⇒
{

a(t) =
(
k0 + k

2 t
)−2

b(t) =
(
k0 + k

2 t
)−1 (3)

1
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With the initial condition of 1/ε equally sized domains of area ε and ε → 0 the solution is:

N(x, t) =
1(

k
2 t
)2 e

− 1
k
2 t

x
(4)

While the total domain area is constant
∫ ∞

0
dx xN(x, t) = 1, (5)

the total number of domains decays over time
∫ ∞

0
dx N(x, t) =

1
k
2 t

, (6)

and consequently the average domain size increases
∫∞
0 dx xN(x, t)∫∞
0 dx N(x, t)

=
k

2
t. (7)

Obviously, the master equation approach is only valid for t ¿ 2
k .

The solution of the continuous master equation is an approximate solution of the discrete master
equation if the distribution is binned with binsize ε

Nn(t) ≈ ε
1(

k
2 t
)2 e

− 1
k
2 t

n
(8)

Figure 2a shows a comparison of the exact solution Eq. 8 of the continuous master equation to
Monte Carlo simulations results for the corresponding discrete master equation. The good agreement
proves the validity of our Monte Carlo scheme.

As shown in the main text, interaction between domains leads to the occurrence of a local maximum
in the domain size distributions and an exponentially decaying tail. Here we want to substantiate the
claim that, to get this qualitative result, it is sufficient to have a probability for domain merger which is
monotonically decreasing with domain size. In the main text we use the probability pmerge

n,m = c/(n∗m)
for the merger of two domains of sizes n and m respectively. Here we supplement the results presented
there by a simulation in which we use pmerge

n,m = c/
√

n ∗m. The resulting size distributions, shown in
Figure 2b, are qualitatively identical to the ones obtained in the main text.
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Figure 2: Domain size distributions determined using Monte Carlo simulations. (a) Domain size
distribution for 4 different Monte Carlo times averaged over 1000 simulation runs (open circles) with
theoretically expected distribution (red line) for fusion rate k = 1. Initial condition: 104 domains of area
ε = 10−4. (b) Domain size distribution for 4 different Monte Carlo times averaged over 1000 simulation
runs (open circles) including diffusion and interaction of domains. Here pmerge

n,m = 10−3/
√

n ∗m. Initial
condition: 104 domains of area ε = 10−4.
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Figure 3: Minimum of the energy (Eq. 14 in the main text) for a given number of domains. Since
the line tension contribution is the largest, decreasing the number of domains (and hence shortening
the total domain boundary) lowers the energy, in correspondence with the result that the fully phase-
separated vesicle is the ground state. From the logarithmic plot shown here we find that the total
energy as a function of the number of domains behaves as a power law with exponent 0.53.

4 Measuring the interactions

The diffusion coefficient depends only very weakly on the domain size r. With micrometer sized, liquid
ordered domains in a liquid disordered background (with a sufficiently small membrane viscosity) one
would expect the diffusion coefficient to follow (2):

D(r) =
kBT

16η
1
r

(9)

where η ≈ 10−3 Ns/m2 is the bulk viscosity of water (see dashed line in Fig. 4). This relation holds
if the friction between the domain and the surrounding water is big compared to the friction between
domain and surrounding membrane. Therefore the 2D membrane viscosity η′ does not play a role and
does not appear in Eq. 9. The fact that the measured diffusion coefficients are significantly smaller
than predicted by Eq. 9 shows that either the membrane friction is much higher than expected or the
interaction between the domains has some influence on the diffusion coefficient.

In order to determine the 2D membrane viscosity η′ we employ the Hughes-Pailthorpe-White (3)
model for the radius-dependent diffusion constant D(r) which is valid for arbitrary domain size r, water
viscosity η and membrane viscosity η′. Instead of the exact form of this model we use an approximation
due to Petrov and Schwille (4). By fitting this approximation to the data (thick solid line in Fig. 4) we
find the 2D membrane viscosity to be η′ = 4.8 × 10−8 Ns/m. This value is comparable to the values
found in (2) where the diffusion of unbudded, liquid disordered domains in a liquid ordered background
is measured.

5 Movie

Movie S1: repelling domains, 55 × 51 µm, sped up 5 times. The Ld phase is stained and appears light,
the Lo domains are dark.
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Figure 4: Diffusion coefficient versus domain radius (circles) for 103 trajectories. The squares represent
binned data. For comparison, the dashed-dotted line gives the behavior of D(r) according to Eq. 9 if
the viscosity of water is dominant. The gray solid line shows a fit to the model described in (4) which
gives η′ = 4.8× 10−8 Ns/m for the 2D membrane viscosity. Reported error bars are standard errors of
the mean.
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Figure 5: Spring constant determined by domain distance statistics. Upper plot: relative frequency of
edge-edge distances; lower plot: -log(rel. frequency) with fit to harmonic potential (solid line).
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Figure 6: Shell radius versus central domain radius, the solid line corresponds to a linear fit with slope
1.5 and offset 4.1 µm.
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