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Appendix A: Extrinsic and intrinsic contributions

of noise

We model the time evolution of the number of molecules x and z through

a Stochastic Hybrid System (SHS) with state y = [z,x]T characterized by

trivial continuous dynamics

ẏ =

 ż

ẋ

 = 0 (A.1)

and four reset maps

y 7→ φ1(y) =

 z + Nz

x

 , y 7→ φ2(y) =

 z− 1

x

 (A.2)

y 7→ φ3(y) =

 z

x + Nx

 , y 7→ φ4(y) =

 z

x− 1

 (A.3)

with corresponding transition intensities given by

λ1(y) = Kz, λ2(y) = dzz, (A.4)

λ3(y) = g(x∗, z∗) +
dg(x, z∗)

dx
|x=x∗(x− x∗) +

dg(x∗, z)
dz

|z=z∗(z− z∗),

(A.5)

λ4(y) = dxx. (A.6)
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Using Dynkin’s formula (Eq. 6 of the paper) we have that the time evolution

of all the first and second order moments of y is given by



dE[z]
dt

dE[x]
dt

dE[z2]
dt

dE[x2]
dt

dE[zx]
dt


= ā + Ā



E[z]

E[x]

E[z2]

E[x2]

E[zx]


(A.7)

for some vector ā and matrix Ā. A steady-state analysis of Eq. A.7 shows

that the total noise level in the protein population is given by Eq. 24 of the

paper.

Appendix B: Limit of noise suppression

It is not easy to derive an explicit expression for the minimum protein noise,

CVtot−min. However, for the biologically meaningful case of

Tz � Tnr, (A.8)

analytical formulations for both CVtot−min and the optimal level of feedback

strength which achieves this minimum noise are possible. Using Eq. A.8 we

have from Eq. 24 of the paper that the total protein noise level is given by

CV 2
tot = CV 2

int−nr

(
1 + (ax∗)M

)2

1 + (M + 1)(ax∗)M
+ S2CV 2

z

(
1 + (ax∗)M

1 + (M + 1)(ax∗)M

)2

.

(A.9)
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Straightforward calculus shows that the right-hand-side of Eq. A.9 is mini-

mum when

(ax∗)M =
M − 2 +

√
M

√
8S2CV 2

z + MCV 2
int−nr/CVint−nr

2(M + 1)
, (A.10)

which implies from Eq. A.9 that

CV 2
tot−min =

2L

(1 + M)2
(√

MCVint−nr +
√

8S2CV 2
z + MCV 2

int−nr

)2

L = 4S4CV 4
z + 19MS2CV 2

z CV 2
int−nr + 4M2CV 4

int−nr

+ 5
√

MS2CV 2
z CVint−nr

√
8S2CV 2

z + MCV 2
int−nr

+ 4
√

M3CV 3
int−nr

√
8S2CV 2

z + MCV 2
int−nr (A.11)

and

amin =
dx

√
M

2g0Nx(M + 1)

(
3
√

M +
√

8S2CV 2
z + MCV 2

int−nr/CVint−nr

)
P

(A.12a)

P =

M − 2 +
√

M
√

8S2CV 2
z + MCV 2

int−nr/CVint−nr

2(M + 1)


1
M

. (A.12b)

From Eq. A.9 we conclude that when Tz � Tnr, the protein noise

CVtot−nr when there is no feedback is

CV 2
tot−nr = CV 2

int−nr + S2CV 2
z . (A.13)
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Hence, given experimental measurements of CVtot−nr and the minimal noise

CVtot−min in the protein population, one can determine CVz by simultane-

ously solving Eq. A.11 and Eq. A.13. In cases where only CVtot−min is

obtained experimentally, then given an estimate of CVint−nr, one can com-

pute CVz from Eq. A.11.

In addition to the above assumption (i.e., Tz � Tnr) if we also have that

CV 2
int−nr � S2CV 2

z , (A.14)

then Eq. A.11 reduce to

CV 2
tot−min ≈

S2CV 2
z

(1 + M)2
+

5SCVzCVint−nr

√
M√

2(1 + M)2
. (A.15)

Appendix C: Estimating the noise in the exogenous

signal

Assuming the source of extrinsic noise to be the plasmid population, we

have that g(x, z) = zg(x) and therefore

S =
z∗

g(x∗, z∗)
dg(x∗, z)

dz
|z=z∗ = 1. (A.16)

For this synthetic auto-regulatory gene network we calculate from the reac-

tion rates provided in Table I of reference (24) of the paper,

CV 2
int−nr ≈ 0.008, Tnr/Tz ≈ 0.1. (A.17)
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As Eq. A.8 holds, we use the formulas in Appendix B to quantify the noise

CVz in the exogenous signal. Using M = 1, the above estimate of CVint−nr,

and the experimentally obtained value of CVtot−min ≈ 0.4, we obtain from

Eq. A.15 that CVz = CVplasmid is approximately 0.64.

Appendix D: Keeping the number of protein molecules

fixed

When the feedback strength is changed along with the maximum transcrip-

tion rate g0 such that x∗ is fixed, we have from Eq. 18, 24, 28, 29, 32 of the

paper that the total noise in the protein population is given by

CV 2
tot =

1 + (ax∗)M

1 + (1 + M)(ax∗)M

N2
x + V 2

x + Nx

2Nxx∗

+ S2CV 2
z

(
1 + (ax∗)M

1 + (1 + M)(ax∗)M

)2 1

1 + Tnr
Tz

1+(ax∗)M

1+(1+M)(ax∗)M

. (A.18)

On the hand, if the feedback strength is varied with the protein degradation

rate dx then we have

CV 2
tot =

1 + (ax∗)M

1 + (1 + M)(ax∗)M

N2
x + V 2

x + Nx

2Nxx∗

+ S2CV 2
z

(
1 + (ax∗)M

1 + (1 + M)(ax∗)M

)2 1

1 + x∗ln(2)
g0NxTz

(1+(ax∗)M )2

1+(1+M)(ax∗)M

. (A.19)

A detailed analysis of both Eq. A.18 and Eq. A.19 shows that in these

methods of varying the feedback strength, the total noise in the protein

population always decreases with increasing feedback strength a.
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Finally, we consider the situation where the feedback strength is varied

with the average burst size. For simplicity, we assume that the protein burst

size Nx follows a geometric distribution, in which case V 2
x = N2

x +Nx. This

is a valid approximation when the mRNA half-life is much shorter than the

protein half-life. In this case the noise in protein numbers is given by

CV 2
tot =

1 + (ax∗)M

1 + (1 + M)(ax∗)M

dx(1+(ax∗)M )x∗

g0
+ 1

x∗

+ S2CV 2
z

(
1 + (ax∗)M

1 + (1 + M)(ax∗)M

)2 1

1 + Tnr
Tz

1+(ax∗)M

1+(1+M)(ax∗)M

. (A.20)

Analysis on Mathematics of Eq. A.20 shows that

lim
a→0

dCV 2
tot

daM
< 0, lim

a→∞

dCV 2
tot

daM
> 0. (A.21)

This result shows that in this case the protein noise is a decreasing function

of feedback strength (when feedback strength is small) and an increasing

function of feedback strength (when feedback strength is large). Thus, if

increasing feedback strength is accompanied by an increasing mean burst

size so as to keep x∗ fixed, then protein noise is minimized at an optimal

level of feedback strength.
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Appendix E: Fano factor

We have from Eq. 24 of the paper that the steady-state Fano factor is given

by

F =
Tr

Tnr

N2
x + V 2

x + Nx

2Nx
+ x∗S2CV 2

z

(
Tr

Tnr

)2 Tz

Tz + Tr
. (A.22)

Recall that both x∗ and response time Tr are decreasing functions of the

feedback strength a. This implies from (A.22) that F is a monotonically

decreasing function of a.


