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|. Thermodynamic analysis

Following Ref. (1), we consider a mechanical folding expemt system that consists of four parts (see Fig. S2)

1):

1. The spring, which models the force measuring device, asdhe potential well of the optical trap in optical
tweezer experiments.

2. The double-stranded (ds) DNA linker which separates RigAfthe substrate to avoid RNA-substrate surface
interaction. In fact, previous studies (2) showed thatitieek can distort the force-extension curve and perturb
the folding thermodynamics (3). The dsDNA is described asoemike chain with the force f{)-extension
(Xona) relation given by (4) :

f =

F 4(1 - Xinker/L)? L 4
wherel, = 3.57 nm is the persistence length anés the length of the dsDNA.
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3. The double-stranded RNA (dsRNA) between nucleotadasdb; see Fig. S2a.
4. The single-stranded RNA. For &hnt ssRNA, the force f)- extension Xgna) relation can be given by the
following equation (1).
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whereb = 15 A is the Kuhn length anlds=5.6 A is the nucleotide length.
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A. Constant distance ensemble

If we consider only hairpin structures for the RNA, the pi#oti functionZ(x) for a given total end-to-end distance
(see Fig. S1a) is given by:
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whereA is the spring constanks, = X — Ris the displacement of the spring aRd= Xrna + Xinker (S€€ Fig. S2a).
In Eq. 3, Zjsrna is the partition function for all the possible chain confetmns closed by base pair (a, b). The
calculation of Zsgrna for a given sequence requires a statistical mechanical méde compute 4srna for a given
RNA sequence from our virtual bond-based RNA folding modébld) (5).



The partition function for the single-stranded (ss) RNAmegts or the linkeZjinker or ssrna IS related to the
Gibbs free energWGiinker or ssrnathrough:

ZIinker or ssRNA= e_AG”nker o SSRNA/kBT- (4)

Here the Gibbs free enerd\Giinker or ssrnaIS €qual to the quasi-static work performed on the chainngueixtension:

AGIinker or ssRNA= f f(X,) dx’ (5)

where the forcef (x) are given by Egs. 1 and 2 for the linker and the sSRNA, respyt
The total partition functiorZ(x) determines the total free ener§y{x) = —kgT In Z(X) of the system, which gives
the mean pulling forcé and the mean extensid

f —0F(x)/0x
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Here we have made use of the relatibe: AXsp for the spring.
B. Constant force ensemble

For an ensemble with constant for€gethe partition function of the system can be written as:

Z(f) = " Zinker(f) Zssrna( ) Zasrna(a, b) (6)
ab

whereZinker(f) andZgsgna(f) are the partition functions of the linker and the singlesstied RNA under constant
force f, respectively:

Zinker or Rna(f) = g AGiinker or RNA(f)/ke T 7)

f
where the free energ&¥Giinker or RNA(T) = f x(f)df’” with x(f) given by Eqgs. 1 and 2 for the linker and the ssRNA,

0
respectively. According to Eq. 2, the free energy of ssRNgraportional to the lengthN of sSRNA. The free energy
per nucleotide is (see also Fig. S2b)

f'b kBT)df,
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The partition function Z(f) gives the average extensionggiven constant forcé:

_ P
R() = ~kaT 2= InZ(f) (9)

C. Theory-experiment comparisons

A key factor that determines the accuracy of the theorepioadictions is the partition function for the RNA. Our
recently developed virtual bond-based (Vfold) model forRébnformational statistics enables accurate calculation
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for RNA conformational statistics and partition functiofly. Extensive experimental tests indicated that the Vfold
model is reliable (6, 7). Therefore, we use the Vfold moddteat RNA hairpin folding here.

We compute the force-extension curve (FECY§. x) based on the theory described above and compare the the-
oretical predictions with the experimental results. Sfieally, we choose TAR RNA, whose mechanical folding was
recently measured by Li and Tinoco et al (8), to test our mdaehe experiment, the ion concentration is 0.1 M KCI.
However, our available entropy and enthalpy parameterth&base stacks are under standard 1M NacCl (9) condition.
We use the previously developed ion electrostatic theddy {1) to account for the corrections to the base stacking
parameters due to theftirent ionic conditions. Theory-experiment comparisorwsheatisfactory agreement; see
Fig. S1. We find that the force-extension curve is sensitvéhé spring constant. Far= 0.01 pNnm, the FEC is
in agreement with the soft spring limit for the constant ®mensemble. The critical force for unzipping the RNA is
about 13 pN, which is in good agreement with the experimeavatiale (13.4 pN) (8). We choose the experimental data
with the slowest pulling rate 0.4 il which may be the closest to the quasistatic thermodynaqiitibrium process.

II. Master equation and kinetic cluster theory

In a master equation description, the kinetics for the foaetl population (or the probability); () for the i-th
state (= 0,..,Q — 1, whereQ is the total number of chain conformations) is describechadftference between the
rates for transitions entering and leaving the state:

Q-1

%pi(t) = > (kimi Py —kimj PiCV)

J:

o

wherekj_; andki_,; are the rate constants for the respective transitions.ring®f the rate matrix, defined &4 is
the rate matrix defined adj; = ki_,j fori # jandM;j = - 3, ki fori = j, we can write the above master equation
in a matrix form:dp(t)/dt = M - p(t), wherep(t) is the fractional populational vector coldfp), p1(t), ..., pa-1(t)],

For a given initial folding condition at = 0, by diagonalizing the rate matridl, we obtain the populational
kineticsp(t) as a sum over all the possible eigenmodes of the rate matrix:

Q-1
p(t) = > Crne™ ! (10)
m=0

where -1, and ny, are them-th eigenvalue and eigenvector of the rate maix andCy, is the codicient that is
dependent on the initial condition. The eigenvalue speatitontains a static equilibrium state corresponding to the
eigenvaluelg = 0. We denote the first and second nonzero eigenvaluelg aad 1, respectively. A large gap
betweem; and ., indicates a single exponential kinetics with the rate camtsequal tol;.

In our calculation, a kinetic move is defined as the format@mnuption of a stack or a stacked base pair. We
use the transition state theory to calculate the rate confba each kinetic move. We assume that the transition
state for the formation of a base stack is the state that thesbiaave been juxtaposed to the restricted base pairing
(stacking) positions, but have not yet “reacted” to form #t&bilizing base stacking and base pairing interactions.
Similarly, the transition state for the disruption of a batack is the state that the stabilizing stacking and base
pairing interactions have been disrupted but the nuclestithve not yet been liberated from the (restricted) base
pairing/stacking positions.



According to the transition state model, we obtain the feitg (force-free) transition rate for the formation
(k. (0)) and disruptionK_(0)) of a base stack:

ki (0) = ko €45/%; Kk (0)=ko e 2H/keT, (11)

whereAS andAH are the entropy and enthalpy changes for the formatisruption of a base stack or a stacked base
pair, respectivelykg is a prefactor. Fitting from a series of experimental dat@sfkg = 6.6 x 10 for a AU base pair
and 6.6x 10" for a GC base pair (15).

Due to large number of possible states for a long chain, thetena&quation is practically limited to short se-
guences. The kinetic cluster theory (12-16), however, dasethe classification of conformations into reduced
states, canfeectively reduce the size of the conformational ensembl@mFthe rate constants (Eg. 11), we can
identify groups of conformations such that their interoension rates are fast so they will quickly reach local pree-
quilibration. We define such a group of conformations as atiincluster (a macrostate). Transitions between
conformations belonging to filerent clusters have slow rates. In terms of the preequigdralusters, the overall
kinetics corresponds to the equilibration between thetetas For example, if there exists a single outstandingly
slow rate constant that corresponds to the formgadisnuption of a particular base stack denotedsaghe original
conformational ensemble can be reduced to two clusters UINand

clusterN all the conformations witls* formed;

clusterU all the conformations withoug".

The formatiordisruption of s« is the rate-limiting step for the formatigaisruption of the N states. Transitions
between the dierent clusters < N) are through micro-transitiond; < N; between conformationd; (in cluster

U) andN; (in clusterN), whereU; « N; corresponds to a single kinetic move. There usually existynsach U;, N;)
pairs, i.e., many pathways for the inter-cluster transgio The sum over all these (micro)inter-cluster pathways
(Zu,oN) determines the inter-cluster transition rate:

kuon = Z Pu; kUi—>Ni; Knou = Z Pn; kNi—>Ui' (12)
Ui—-N Ni—U;j

where pj; and py, are the equilibrium fractional populations 0f andN; in the respective clusters:

pu, = e Gy —GU)/kBT; PN, = e (Gn—Gn)/keT (13)

Gy, andGy; are the free energies of conformatiddsandN;, respectively, anGy andGy are the free energies of
clustersU andN, respectively:

Gy = —ksTIn(Y e eT); Gy = —kgTIn(H e 'ty (14)
j ]
Here Y ; is the sum over all the possible conformations in the resgediusters. An important conclusion from
Eq. 12 is that the inter-cluster transition réde.,n and hence the overall folding rate is determined not onlyhay t
rate for each individual transitioky,.n; between two conformations, but also by the populationdtitdigion of the
conformations (p, and py;) in the respective clusters.



The kinetic cluster theory is advantageous over the rateixnaiaster equation not only in its ability to treat
longer sequences, but also in its ability to give the ratelspathways. The most probable (dominant) pathway for the
transition between two clustel$ — U in Eq. 12 is the transition between conformationsJ N; with the maximum
value of Ry ky,— N, in Eq. 12. In general, a folding reaction may involve mukiplarallel dominant pathways and each
pathway often involves multiple intermediate states (elts. The slowest inter-cluster transitions in the patsva
give the rate-limiting steps of the folding reaction. Moreg we can estimate the folding rate from the pathways.
For a multi-step pathwa@y — C; — C,... — C,, (G; is thei-th cluster along the pathway), the folding rate)(for
Co — C, is can be conveniently (and crudely) estimated from thewalg equation (14, 16):

n-2
r
ko = ka1 | | —F— (15)
lpl 1- Moea'p
where K is the rate forCo — Cy, rj andr] are the probabilities for the forwar@; — Cj,; and the backward
(rebounceC; — Ci_; reactions, respectively:

kCi—>Ci+1
kCi—>Ci+1 + I<Ci—>Ci-1

We note that the rigorous master equation based on the afigite matrix can also give the rates and the rate-limiting
steps (17). For the short sequences that allows for mastetieq calculations, we find that the original rate matrix
and the approximate formula (Eq. 16 give the same resultthékinetic rates and the rate-limiting steps.

ri = ;o =1-ri. (16)
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Figure 1. (a) A sketch of the system. The potential of opttcap is approximated as a linear spring with spring
constantd. (b) The elastic free energy {d)) per nucleotide for dierent force.
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Figure 2: (a) The predicted secondary structure for TAR RA.The force extension curve (FEC) for twdidirent
spring constantd = 0.2pN/nm(solid line) and 0.01 pMm (dashed line) at 0.1M KCI. (c) The calculated FEC for
TAR RNA for constant force (solid line) ensemble and conistiistance ensemble (dashed line) with spring constant
A = 0.01pN. We obtain a critical force about 13 pN, which is in gogdeement with the experimental value (13.4

pN) (8).
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Figure 3: The predicted secondary structures for two hagrjég) HP1 and (b) HP2.
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S10
5’AUAUACGAUAUACGAUAUAUAGCUAUAU CC

3UAUAUGCUAUAUGCUAUAUAUCGAUAUACC
S11

5’ ACGAUAUACGAUAUACGAUAUACGAUAUAUAGCUAUAU CC

3'UGCUAUAUGCUAUAUGCUAUAUGCUAUAUAUCGAUAUA CC

S12
S UAUACGAUAUACGAUAUACGAUAUACGAUAUACGAUAUAUAGCUAUAU CC

3’AUAUGCUAUAUGCUAUAUGCUAUAUGCUAUAUGCUAUAUAUCGAUAUA CC

, S13
5’ CGAUAUACGAUAUACGAUAUACGAUAUACGAUAUACGAUAUACGAUAUAUAGCUAUAU (:C

3' GCUAUAUGCUAUAUGCUAUAUGCUAUAUGCUAUAUGCUAUAUGCUAUAUAUCGAUAUA CC

Figure 4: The secondary structures for four larger hair846€, S11, S12 and S13 with the lengths 60, 80, 100 and
120 nts, respectively.
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Figure 5: (a) The computational time for four larger RNA lpgms (S10, S11, S12 and S13) using the new kinetic
method. In the calculatiorf); is set to be 20. For the 120-nt hairpin S13, it takes less tladfrah hour to compute
the folding rate. Thus, our new method is computationaflicient and useful for larger RNA hairpins. (b) The force
dependence of the relaxation rate witffeiientQ.. The temperature is 28C. We find that the folding rates converge
for Q¢ > 20.
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Figure 6: (a) The secondary structures of the native-likegihd misfolded (I and b) intermediates for HP1. (b) The

secondary structures of the native-like &nd k) and nonnative {l, I, I3, 14) intermediates for HP2.
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Figure 7: The force dependence of the relaxation raté at 25°C. We compare the results from the complete

ensemble model and from the new kinetic model for two seqeeii@) HP3 and (b) HP4. We find that the folding

rates from the new kinetic model wifd. = 20 agree well with the results from the complete ensembleainiod
force>2 pN.
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Figure 8: The secondary structures for two intermediatesd b in TAR RNA folding process at £ 8 pN and T=
25°C.
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