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I. Thermodynamic analysis

Following Ref. (1), we consider a mechanical folding experiment system that consists of four parts (see Fig. S2)

(1) :

1. The spring, which models the force measuring device, suchas the potential well of the optical trap in optical

tweezer experiments.

2. The double-stranded (ds) DNA linker which separates RNA from the substrate to avoid RNA-substrate surface

interaction. In fact, previous studies (2) showed that the linker can distort the force-extension curve and perturb

the folding thermodynamics (3). The dsDNA is described as a wormlike chain with the force (f )-extension

(xDNA) relation given by (4) :

f =
kBT
lp

(

1
4(1− xlinker/L)2

+
xlinker

L
−

1
4

)

(1)

wherelp = 3.57 nm is the persistence length andL is the length of the dsDNA.

3. The double-stranded RNA (dsRNA) between nucleotidesa andb; see Fig. S2a.

4. The single-stranded RNA. For anN-nt ssRNA, the force (f )- extension (xRNA) relation can be given by the

following equation (1).

xRNA = N lss

(

coth
f b

kBT
−

kBT
f b

)

(2)

whereb = 15 Å is the Kuhn length andlss=5.6 Å is the nucleotide length.

A. Constant distance ensemble

If we consider only hairpin structures for the RNA, the partition functionZ(x) for a given total end-to-end distance

(see Fig. S1a) is given by:

Z(x) =
∑

a,b

x
∫

0

Zlinker(xlinker) ZssRNA(xRNA) ZdsRNA(a, b)
e−

1
2λx2

sp/kBT

√
2πkBT/λ

dxRNA (3)

whereλ is the spring constant,xsp = x − R is the displacement of the spring andR = xRNA + xlinker (see Fig. S2a).

In Eq. 3, ZdsRNA is the partition function for all the possible chain conformations closed by base pair (a, b). The

calculation of ZdsRNA for a given sequence requires a statistical mechanical model. We compute ZdsRNA for a given

RNA sequence from our virtual bond-based RNA folding model (Vfold) (5).
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The partition function for the single-stranded (ss) RNA segments or the linkerZlinker or ssRNA is related to the

Gibbs free energy∆Glinker or ssRNAthrough:

Zlinker or ssRNA= e−∆Glinker or ssRNA/kBT . (4)

Here the Gibbs free energy∆Glinker or ssRNAis equal to the quasi-static work performed on the chain during extension:

∆Glinker or ssRNA=

∫

f (x′) dx′ (5)

where the forcef (x) are given by Eqs. 1 and 2 for the linker and the ssRNA, respectively.

The total partition functionZ(x) determines the total free energyF(x) = −kBT ln Z(x) of the system, which gives

the mean pulling forcef and the mean extensionR:

f = −∂F(x)/∂x

R = x − xsp = x −
f
λ

Here we have made use of the relationf = λxsp for the spring.

B. Constant force ensemble

For an ensemble with constant forcef , the partition function of the system can be written as:

Z( f ) =
∑

a,b

Zlinker( f ) ZssRNA( f ) ZdsRNA(a, b) (6)

whereZlinker( f ) andZssRNA( f ) are the partition functions of the linker and the single-stranded RNA under constant

force f , respectively:

Zlinker or RNA( f ) = e−∆Glinker or RNA( f )/kBT (7)

where the free energy∆Glinker or RNA( f ) =
f
∫

0

x( f ′)d f ′ with x( f ) given by Eqs. 1 and 2 for the linker and the ssRNA,

respectively. According to Eq. 2, the free energy of ssRNA isproportional to the lengthN of ssRNA. The free energy

per nucleotide is (see also Fig. S2b)

gs( f ) = ∆GssRNA( f )/N = lss

f
∫

0

(

coth
f ′b

kBT
−

kBT
f ′b

)

d f ′ (8)

The partition function Z(f) gives the average extension fora given constant forcef :

R( f ) = −kBT
∂

∂ f
ln Z( f ) (9)

C. Theory-experiment comparisons

A key factor that determines the accuracy of the theoreticalpredictions is the partition function for the RNA. Our

recently developed virtual bond-based (Vfold) model for RNA conformational statistics enables accurate calculation
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for RNA conformational statistics and partition functions(5). Extensive experimental tests indicated that the Vfold

model is reliable (6, 7). Therefore, we use the Vfold model totreat RNA hairpin folding here.

We compute the force-extension curve (FEC) (f vs. x) based on the theory described above and compare the the-

oretical predictions with the experimental results. Specifically, we choose TAR RNA, whose mechanical folding was

recently measured by Li and Tinoco et al (8), to test our model. In the experiment, the ion concentration is 0.1 M KCl.

However, our available entropy and enthalpy parameters forthe base stacks are under standard 1M NaCl (9) condition.

We use the previously developed ion electrostatic theory (10, 11) to account for the corrections to the base stacking

parameters due to the different ionic conditions. Theory-experiment comparison shows satisfactory agreement; see

Fig. S1. We find that the force-extension curve is sensitive to the spring constant. Forλ = 0.01 pN/nm, the FEC is

in agreement with the soft spring limit for the constant force ensemble. The critical force for unzipping the RNA is

about 13 pN, which is in good agreement with the experimentalvalue (13.4 pN) (8). We choose the experimental data

with the slowest pulling rate 0.4 pN/s, which may be the closest to the quasistatic thermodynamicequilibrium process.

II. Master equation and kinetic cluster theory

In a master equation description, the kinetics for the fractional population (or the probability) pi(t) for the i-th

state (i = 0, ..,Ω − 1, whereΩ is the total number of chain conformations) is described as the difference between the

rates for transitions entering and leaving the state:

d
dt

pi(t) =
Ω−1
∑

j=0

(

k j→i pj(t) − ki→ j pi(t)
)

wherek j→i andki→ j are the rate constants for the respective transitions. In terms of the rate matrix, defined asM is

the rate matrix defined asMi j = ki→ j for i , j andMi j = −
∑

l,i kil for i = j, we can write the above master equation

in a matrix form:dp(t)/dt = M · p(t), wherep(t) is the fractional populational vector col [p0(t), p1(t), ..., pΩ−1(t)],

For a given initial folding condition att = 0, by diagonalizing the rate matrixM, we obtain the populational

kineticsp(t) as a sum over all the possible eigenmodes of the rate matrix:

p(t) =
Ω−1
∑

m=0

Cmnme−λmt (10)

where−λm andnm are them-th eigenvalue and eigenvector of the rate matrixM , andCm is the coefficient that is

dependent on the initial condition. The eigenvalue spectrum contains a static equilibrium state corresponding to the

eigenvalueλ0 = 0. We denote the first and second nonzero eigenvalues asλ1 andλ2, respectively. A large gap

betweenλ1 andλ2 indicates a single exponential kinetics with the rate constant equal toλ1.

In our calculation, a kinetic move is defined as the formation/disruption of a stack or a stacked base pair. We

use the transition state theory to calculate the rate constant for each kinetic move. We assume that the transition

state for the formation of a base stack is the state that the bases have been juxtaposed to the restricted base pairing

(stacking) positions, but have not yet “reacted” to form thestabilizing base stacking and base pairing interactions.

Similarly, the transition state for the disruption of a basestack is the state that the stabilizing stacking and base

pairing interactions have been disrupted but the nucleotides have not yet been liberated from the (restricted) base

pairing/stacking positions.
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According to the transition state model, we obtain the following (force-free) transition rate for the formation

(k+(0)) and disruption (k−(0)) of a base stack:

k+(0) = k0 e−∆S/kB ; k−(0) = k0 e−∆H/kBT . (11)

where∆S and∆H are the entropy and enthalpy changes for the formation/disruption of a base stack or a stacked base

pair, respectively.k0 is a prefactor. Fitting from a series of experimental data givesk0 = 6.6× 1012 for a AU base pair

and 6.6× 1013 for a GC base pair (15).

Due to large number of possible states for a long chain, the master equation is practically limited to short se-

quences. The kinetic cluster theory (12–16), however, based on the classification of conformations into reduced

states, can effectively reduce the size of the conformational ensemble. From the rate constants (Eq. 11), we can

identify groups of conformations such that their inter-conversion rates are fast so they will quickly reach local pree-

quilibration. We define such a group of conformations as a kinetic cluster (a macrostate). Transitions between

conformations belonging to different clusters have slow rates. In terms of the preequilibrated clusters, the overall

kinetics corresponds to the equilibration between the clusters. For example, if there exists a single outstandingly

slow rate constant that corresponds to the formation/disruption of a particular base stack denoted ass∗, the original

conformational ensemble can be reduced to two clusters U andN:

clusterN = all the conformations withs∗ formed;

clusterU = all the conformations withouts∗.

The formation/disruption of s∗ is the rate-limiting step for the formation/disruption of the N states. Transitions

between the different clusters (U ↔ N) are through micro-transitionsUi ↔ Ni between conformationsUi (in cluster

U) andNi (in clusterN), whereUi ↔ Ni corresponds to a single kinetic move. There usually exist many such (Ui,Ni)

pairs, i.e., many pathways for the inter-cluster transitions. The sum over all these (micro)inter-cluster pathways

(
∑

Ui↔Ni
) determines the inter-cluster transition rate:

kU→N =
∑

Ui→Ni

pUi kUi→Ni ; kN→U =
∑

Ni→Ui

pNi kNi→Ui . (12)

where pUi and pNi are the equilibrium fractional populations ofUi andNi in the respective clusters:

pUi = e−(GUi−GU )/kBT ; pNi = e−(GNi−GN )/kBT (13)

GUi andGNi are the free energies of conformationsUi andNi, respectively, andGU andGN are the free energies of

clustersU andN, respectively:

GU = −kBT ln(
∑

j

e−GU j /kBT ); GN = −kBT ln(
∑

j

e−GN j /kBT ) (14)

Here
∑

j is the sum over all the possible conformations in the respective clusters. An important conclusion from

Eq. 12 is that the inter-cluster transition ratekU↔N and hence the overall folding rate is determined not only by the

rate for each individual transitionkUi↔Ni between two conformations, but also by the populational distribution of the

conformations (pUi and pNi ) in the respective clusters.

4



The kinetic cluster theory is advantageous over the rate matrix master equation not only in its ability to treat

longer sequences, but also in its ability to give the rates and pathways. The most probable (dominant) pathway for the

transition between two clustersN → U in Eq. 12 is the transition between conformations Ui → Ni with the maximum

value of PUikUi→Ni in Eq. 12. In general, a folding reaction may involve multiple parallel dominant pathways and each

pathway often involves multiple intermediate states (clusters). The slowest inter-cluster transitions in the pathways

give the rate-limiting steps of the folding reaction. Moreover, we can estimate the folding rate from the pathways.

For a multi-step pathwayC0 → C1 → C2... → Cn (Ci is thei-th cluster along the pathway), the folding rate (kn) for

C0→ Cn is can be conveniently (and crudely) estimated from the following equation (14, 16):

kn = k1rn−1

n−2
∏

p=1

rp

1− r′p+1rp
(15)

where k1 is the rate forC0 → C1, ri and r′i are the probabilities for the forwardCi → Ci+1 and the backward

(rebounce)Ci → Ci−1 reactions, respectively:

ri =
kCi→Ci+1

kCi→Ci+1 + kCi→Ci−1

; r′i = 1− ri. (16)

We note that the rigorous master equation based on the original rate matrix can also give the rates and the rate-limiting

steps (17). For the short sequences that allows for master equation calculations, we find that the original rate matrix

and the approximate formula (Eq. 16 give the same results forthe kinetic rates and the rate-limiting steps.
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Figure 1: (a) A sketch of the system. The potential of opticaltrap is approximated as a linear spring with spring

constantλ. (b) The elastic free energy (gs( f )) per nucleotide for different force.
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Figure 2: (a) The predicted secondary structure for TAR RNA.(b) The force extension curve (FEC) for two different

spring constantsλ = 0.2pN/nm(solid line) and 0.01 pN/nm (dashed line) at 0.1M KCl. (c) The calculated FEC for

TAR RNA for constant force (solid line) ensemble and constant distance ensemble (dashed line) with spring constant

λ = 0.01pN. We obtain a critical force about 13 pN, which is in good agreement with the experimental value (13.4

pN) (8).
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Figure 3: The predicted secondary structures for two hairpins (a) HP1 and (b) HP2.
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Figure 4: The secondary structures for four larger hairpinsS10, S11, S12 and S13 with the lengths 60, 80, 100 and

120 nts, respectively.
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Figure 5: (a) The computational time for four larger RNA hairpins (S10, S11, S12 and S13) using the new kinetic

method. In the calculation,Ωc is set to be 20. For the 120-nt hairpin S13, it takes less than half an hour to compute

the folding rate. Thus, our new method is computationally efficient and useful for larger RNA hairpins. (b) The force

dependence of the relaxation rate with differentΩc. The temperature is 25◦C. We find that the folding rates converge

for Ωc ≥ 20.
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Figure 6: (a) The secondary structures of the native-like (I3) and misfolded (I1 and I2) intermediates for HP1. (b) The

secondary structures of the native-like (I5 and I6) and nonnative (I1, I2, I3, I4) intermediates for HP2.
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Figure 7: The force dependence of the relaxation rate atT = 25◦C. We compare the results from the complete

ensemble model and from the new kinetic model for two sequences (a) HP3 and (b) HP4. We find that the folding

rates from the new kinetic model withΩc = 20 agree well with the results from the complete ensemble model for

force≥2 pN.
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