			∇					
GABA	α_1	11	TTVFTRILDR	LLDGYDNRLR	PGLGERVTEV	KTDIFVTSFG	PVSDHDMEYT	60
GABA	β_2	9	MSLVKETVDR	LLKGYDIRLR	PDFGGPPVAV	GMNIDIASID	MVSEVNMDYT	58
GABA	Υ ₂	24	EGDVTVILNN	LLEGYDNKLR	PDIGVKPTLI	HTD MY VNSIG	PVNAINMEYT	73
AChBP		1	-FDRADILYN	IRQTSRPDVI	PTQRDRPVAV	SVSLKFINIK	EVNEITNEVD	49
			<u>()</u> α1 ()		β1			
			Loop D			Loo	ν Α α	
GABA	α_1	61	IDVFFRQSWK	DERLKFKGPM	TVLRLNNLMA	SKIWTPDTFF	HNGKKSVAHN	110
GABA	β_2	59	LTMYFQQAWR	DKRLSYNVIP	LNLTLDNRVA	DQLWVP <mark>DT¥</mark> F	LNDKKSFVHG	108
GABA	Υ ₂	74	IDI F F A QTWY	DRRLKFNSTI	KVLRLNSNMV	GKIWIP <mark>DTFF</mark>	RNSKKADAHW	123
AChBP		50	VVFWQQTTWS	DRTLAWNSSH	SPDQVS-VPI	SSLWVPDLAA	YNAISKPE	96
			- β2	-	β3	β4	β5 —	
			v Le	DOD E	c	ysteine loop	Loop B	
GABA	α_1	111	MTMPNKLLRI	TEDGTLLYTM	rltvrae <mark>c</mark> pm	HLEDFPMDAH	A <mark>C</mark> PLKFGS Y A	160
GABA	β_2	109	VTVK <mark>NRMIRL</mark>	HPDGTVLYGL	RITTTAA <mark>C</mark> MM	DLRRYPLDEQ	N <mark>C</mark> TLEIES¥G	158
GABA	Y2	124	ITTPNRMLRI	WNDGRVLYTL	RLTIDAE <mark>C</mark> QL	QLHNFPMDEH	S <mark>C</mark> PLEFSSYG	173
AChBP		97	VLTP-QLARV	VSDGEVLYMP	SIRQRFSCDV	SGVDTES-GA	T <mark>C</mark> RIKIGSWT	144
			- β5` βθ	6 — β6' —			β7	
				VVV LO	op F		Loop C	
GABA	α_1	161	YTRAEVVYEW	TREPARSVVV	AE-DGSRLNQ	YDLLGQTVDS	GIVQSSTGEY	210
GABA	β_2	159	YTTDDIEFYW	RGDDNAV	TGVTKIELPQ	FSIVDYKLIT	KKVVFSTGSY	206
GABA	Y2	174	YPREEIVYQW	KRSSVEV	GDTRSWRLYQ	FSFVGLRNTT	EVVKTTSGDY	221
AChBP		145	HHSREISVDP	TTENSDD	SE-YFSQYSR	FEILDVTQKK	NSVTYSCCPE	190
			β8			β9		
					TM1		TM2	
GABA	α_1	211	VVMT THFHLK	-RKIG <mark>YFVIQ</mark>	TYLPCIMTVI	LSQVSFWLNR	ESVPARTVFG	258
GABA	β_2	207	PRLSLSFKLK	-RNIG <mark>YFILQ</mark>	TYMPSILITI	LSWVSFWINY	DASAARVALG	256
GABA	γ_2	222	VVMSVYFDLS	-RRMG <mark>YFTIQ</mark>	TYIPCTLIVV	LSWVSFWINK	DAVPARTSLG	269
AChBP		191	AYEDVEVSLN	FRKKG <mark></mark>				205
			810	61			61	

Supplemental Figure 1

Supplemental Figure 1. Alignment of the ligand-binding domain of the GABA_AR α_1 , β_2 and γ_2 subunits and AChBP. Residues forming the cysteine loop are highlighted in blue. The secondary structure is represented by barrels (helices) and arrows (β -sheets) pictured underneath the alignment. Colored highlighting indicates six regions thought to play a role in ligand binding: loops A, B, C, D, E and F. Residues that are thought to contribute to the agonist recognition site are in red and those thought to contribute to the BZD binding site are in blue. Residues within a radius of 5 Å of nicotine molecules in the AChBP structure are indicated in green (Brjec et a., 2001). The ∇ symbol indicates structurally ambiguous areas of alignment of the GABA_AR subunits and AChBP. Precursor peptide sequences of rat subunits were obtained from NCBI (acc. codes: P18504 for alpha1; P15432 for beta2; P22723 for gamma2). Ligand binding domains were aligned using the Align123 algorithm from Discovery Studio software package.

Supplemental Figure 2. Superposition of orientations of DZ obtained by manual and automated docking (**A**-**G**). For DZ there is a good overlap between DZ2h (orange-blue) and DZ dock 1 (yellow-violet) (**A**, **B**; RMSD = 1.8Å) and between DZ2v (orange-blue) and DZ dock 2 (yellow-violet) (**C**, **D**; RMSD = 1.36Å). The DZ dock 3 (green-pink) is also depicted. Pairs of images depict the BZD binding pocket viewed from outside of the receptor (**A**, **C**, **E**) and from within the binding pocket looking toward the α subunit (**B**, **D**, **G**).

Supplemental Figure 3. Superposition of FNZ orientations obtained via manual and automated docking (A-J). Automated docking orientations FNZ dock 1 (A and B, orange-violet) and FNZ dock 2 (C and D, green-cyan) resemble manual docking orientation FNZ2v (yellow-blue) with respective RMSD of 0.81Å and 3.04Å. Similarly, automated docking orientations FNZ dock 3 (E and F, green, pink), FNZ dock 4 (E and F, orange-violet) and FNZ dock 5 (I and J, green-cyan) resemble manual orientation FNZ2h (G and H, yellow-blue) with respective RMSD of 3.82 Å, 1.06Å and 1.46Å. Pairs of images depict the BZD binding pocket viewed from outside of the receptor (A, C, E, G, I) and from within the binding pocket looking toward the α subunit (B, D, F, G, J).

	Ligands	Energy, (kcal/mol)	Population, %
м	DZ1h	-110	100%
A	DZ1v	-96	100%
N U	DZ2h [#]	-78	100%
A	DZ2v ^{##}	-77	100%
L	FNZ1h	-329	100%
D	FNZ1v	-314	100%
C O	FNZ2h*	-275	100%
K	FNZ2v**	-286	100%
С	DZ dock1 [#]	-58	35%
D O	DZ dock2##	-68	35%
C	DZ dock3	-38	30%
к Е	FNZ dock1**	-249	30%
R	FNZ dock2	-228	20%
D	FNZ dock3	-160	25%
0 C	FNZ dock4*	-255	5%
K	FNZ dock5*	-266	20%

Supplemental Table 1. DZ and Flu docking energies (kcal/mol). Manual docking of DZ (DZ1h, DZ1v, DZ2h, DZ2v) and FNZ (FNZ1h, FNZ1v, FNZ2h, FNZ2v) docking simulations was carried out as detailed under *Materials and Methods*. Automated docking using CDocker yielded three orientations of DZ (DZ dock1-3) and five orientations of FNZ (FNZ dock1-5). Potential energies were calculated using Calculate Interaction Energy protocol. Symbols (#, ##, *, **) identify similar models.

Residue (atom number)	Distance, Å	Chain (Flu-2h)/Atom ID
α1F99 (HE1)	3.8	F-H (7441)
α1H101 (HD1)	2.1	F-N (7433)
α1N102 (HA)	6.9	F-O (7448)
α1K155 (HZ3)	1.7	F-O (7447)
α1Y159 (HA)	2.3	F-H (7441)
α1T162 (HA)	7.7	F-H (7441)
α1G200 (O)	7.2	F-O (7447)
α1V202 (HG11)	3.1	F-O (7447)
α1S204 (HG)	1.8	F-O (7431)
α1S205 (HN)	2.8	F-O (7431)
α1T206 (HG23)	3.3	F-N (7423)
α1Y209 (HH)	5.0	F-H (7442)
α1V211 (HG11)	2.6	F-H (7440)
α1T213 (H21)	3.8	F-O (7431)
γ2Y58 (HD1)	3.0	F-H (7438)
γ2N60 (OD1)	5.3	F-H (7437)
γ2D75 (OD1)	9.3	F-H (7437)
γ2F77 (HE2)	4.1	F-H (7437)
γ2A79 (HB2)	6.9	F-F (7443)
γ2T126 (HG1)	5.9	F-H (7441)
γ2M130 (HE1)	5.4	F-H (7442)
γ2T142 (HG21)	4.5	F-F (7443)
γ2R144 (HH12)	6.9	F-O (7448)
γ2V188 (HG11)	5.7	F-O (7431)
γ2T193 (HG22)	2.3	F-H (7444)
γ2R194 (HH11)	1.6	F-O (7431)
γ2W196 (HE1)	5.6	F-H (7434)

Supplemental Table 2. Interatomic distances between closest pair of atoms belonging to the binding site residue and that of Flu were measured by 'Monitor Distance' tool of Discovery Studio using the pdb file with 2h orientations.