AID Is Required for the Chromosomal

Breaks in *c-myc* that Lead to

c-myc/lgH Translocations

Davide F. Robbiani, Anne Bothmer, Elsa Callen, Bernardo Reina-San-Martin, Yair Dorsett, Simone Difilippantonio, Daniel J. Bolland, Hua Tang Chen, Anne E. Corcoran, André Nussenzweig, and Michel C. Nussenzweig

Figure S1. Knock-out strategy for the Myc^{Δ} allele.

(A) Targeting strategy is shown along with the genomic structure of the wild type murine *c*-*myc* locus, the targeting vector, the recombined allele in ES cells and in mice after removal of the neomycin-based ACN cassette (Bunting et al., 1999). Southern blot analysis of ES cell genomic DNA digested with SphI revealed proper integration upon hybridization with

a radiolabeled probe (PCR product of 5-CATTCTGACTCCTTTTGCCC-3 and 5-TCAGAGGTGGCTATTCAGTTGC-3), yielding fragments of the indicated sizes. Diphtheria toxin A (DTA) was used for negative selection. The following primers were used for generating the targeting vector: short arm of homology,

5-GGCGCGCCTCACAAATCCGAGAGCCACAAC-3 and

5-GGCCGGCCTGCGCAGTCCAGTAA-3; long arm of homology,

5-TTAATTAACACCCAGTGCTGAATCGCTGC-3 and

5-GCGGCCGCCACCACTCTGTAGGAAATGCC-3. For genotyping, 35 cycles of PCR

(95C, 45 s; 59C, 45 s; and 72C, 2 min) were performed with primers

5-GTGAAAACCGACTGTGGCCCTGGAA-3,

5-CAACCGCAGATGAGGTCTATGC-3. The size of the wild type allele is 0.4 kb, the Myc^{Δ} allele is 0.3 kb. (B) Flow cytometric analysis of splenocytes from age-matched wild type $(Myc^{+/+})$ and mutant $(Myc^{\Delta/+})$ mice reveals normal B lymphocyte development and activation in $Myc^{\Delta/+}$ mice. Immuno-staining was performed with the indicated markers on total spleen cells (left and center panels) or on LPS and IL-4 activated B cells labeled with CFSE to track cell division (right panels). Representative of three independent experiments.

Figure S2. Diagram of balanced *c-myc/IgH* translocation.

Schematic representation of mouse chromosome 15 with *c-myc* transcribing towards the telomere and chromosome 12 with *IgH* transcribing towards the centromere. Centromeres are symbolized by circles. The derivative chromosomes der12 and der15, products of the balanced *c-myc/IgH* translocation, are also shown.

Figure S3. Knock-in strategy for the IgH^I allele.

(A) The targeting strategy is shown along with the genomic structure of the wild type murine IgH locus, the targeting vector, the recombined allele in ES cells and in mice after removal of the neomycin-based ACN cassette (Bunting et al., 1999). Southern blot analysis of ES cell genomic DNA digested with BamHI revealed proper integration upon hybridization with a radiolabeled probe (PCR product of

5- AAATGAGGAAGGCTGAGCAAGG-3 and

5-AGGAAGGTGGGTTATGTTGGGG-3), yielding fragments of the indicated sizes. Diphtheria toxin A (DTA) was used for negative selection. The following primers were used for generating the targeting vector and introducing the I-SceI recognition sequence: long arm of homology, 5- GGCGCGCCGATGAGAGCAGTGTAGGTCTATGGG-3 and 5-GGCCGGCCCAGAAGCCACAACCATACATTCC-3; short arm of homology, 5-GCGGCCGC<u>AGTTACGCTAGGGATAACAGGGTAATATAG</u>CCACCCATCCACCTG GCTGC-3 (I-SceI site is underlined) and 5-GCGGCCGCATTCCAGTTTGGCTCATCTCG-3. For genotyping, 35 cycles of PCR (95C, 45 s; 56C, 45 s; and 72C, 30 s) were performed with primers

5-TGGGAATGTATGGTTGTGGCTTC-3 and

5-GGAGAGGTCCAGAGTCTTTGTGTGTG-3. The size of the wild type allele is 0.1 kb, the IgH^I allele is 0.25 kb. (B) Flow cytometric analysis of spleen cells from age-matched wild type (IgH^{+/+}) and mutant (IgH^{I/+}) mice reveals normal B lymphocyte development and activation in IgH^{I/+} mice. Immuno-staining was performed with the indicated markers on total spleen cells (left and center panels) or on LPS and IL-4 activated B cells labeled with CFSE to track cell division (right panels). Representative of two independent experiments.

Figure S4. Knock-in strategy for the Myc^I allele.

(A) The targeting strategy is shown along with the genomic structure of the wild type murine *c-myc* locus, the targeting vector, the recombined allele in ES cells and in mice after removal of the neomycin-based ACN cassette (Bunting et al., 1999). Southern blot analysis of ES cell genomic DNA digested with SspI revealed proper integration upon hybridization with a radiolabeled probe (PCR product of 5-CATTCTGACTCCTTTTGCCC-3 and 5-TCAGAGGTGGCTATTCAGTTGC-3), yielding fragments of the indicated sizes. Diphtheria toxin A (DTA) was used for negative selection. The following primers were used for generating the targeting vector and introducing the I-SceI recognition sequence: short arm of homology, 5- GGCCGGCCGGGAGAACCTACAGGGGGAAAGAGCCG-3 and 5-GGCCGGCC<u>ATTACCCTGTTATCCCTA</u>CAGGGCGTCTTCCCTCCCCG-3 (I-SceI site is underlined); long arm of homology,

5-TTAATTAACACCCAGTGCTGAATCGCTGC-3 and

5-GCGGCCGCCACCACTCTGTAGGAAATGCC-3. For genotyping, 35 cycles of PCR (95C, 45 s; 58C, 45 s; and 72C, 45 s) were performed with primers

5-TTGGGGGGAAACCAGAGGGAATCC-3 and

5-GGGAGGGGGTGTCAAATAAGAG-3. The size of the wild type allele is 0.25 kb, the Myc^I allele is 0.35 kb.(B) Flow cytometric analysis of spleen cells from age-

matched wild type $(Myc^{+/+})$ and mutant $(Myc^{I/+})$ mice reveals normal B lymphocyte development and activation in $Myc^{I/+}$ mice. Immuno-staining was performed with the indicated markers on total spleen cells (left and center panels) or on LPS and IL-4 activated B cells labeled with CFSE to track cell division (right panels). Representative of two independent experiments.

Figure S5. Targeted insertion of Cre recombinase into the mouse *aicda* locus (AID^{Cre/+} mice).

The targeting strategy is shown along with the genomic structure of the wild type murine *aicda* locus, the targeting vector, the recombined allele in ES cells and in mice after germline deletion of the selection cassette by crossing with FLPer mice. The inserted Cre recombinase DNA contains a nuclear localization signal, an SV40 T-antigen intron and an HSV thymidine kinase polyA signal. Expression of the neomycin resistance gene is driven by the PGK promoter. To increase the frequency of targeting, the neomycin DNA lacked a polyA and included the splice donor sequence of AID's exon 2. Southern blot analysis of ES cell genomic DNA digested with ScaI revealed proper integration upon hybridization with a radiolabeled probe (amplified with primers

5-CTGGCTGCCACGTGGAATTGTTG-3 and

5-TCCCAACATACGAAATGCATCTC-3), yielding fragments of the indicated sizes. Diphtheria toxin A (DTA) was used for negative selection. The following primers were used for generating the targeting vector: short arm of homology,

5-ATAAGAATGCGGCCGCACATTCAGAGCAAGCCGCAGTGGTG-3 and 5-CCTTAATTAATAGTACTCCAAATCTCAGGACAAGTCAAGGC-3; long arm of homology, 5-CCATTAATTAAGCAGAGCTAGAGCCGGCTTGTGGTAATAAC-3 and 5-GGCGCGCCGTGACTGTAATAACTGCAATCGTAATAGG-3; Cre recombinase DNA, combined PCR with the products of 5-GGCATAAAACTGAGTGTAACAAACGGAAGGAAC-3 and 5-

CCTTAATTAATACGCGTCGATCGAGTACTCGACCGAACAAACGACCCAACAC-3. The frt-flanked Neomycin cassette was removed in vivo by crossing to FLPer mice (a gift by Dr. Susan Dymecki (Rodriguez et al., 2000)). For genotyping, 35 cycles of PCR (95C, 45 s; 57C, 45 s; and 72C, 1 min) were performed with primers

5-GGACCCAACCCAGGAGGCAGATGT-3,

5-CACTCGTTGCATCGACCGGTAATG-3 and

5-CCTCTAAGGCTTCGCTGTTATTACCAC-3. The wild type allele is 0.5 kb, the AID^{Cre} allele is 0.3 kb. (B) Flow cytometric analysis of splenic B cells from AID^{Cre/+}, ROSA26-STOP-YFP^{+/-} (Srinivas et al., 2001) mice prior and after stimulation with LPS and IL-4 shows regulated activity of Cre.

Figure S6. AID^{Cre} mediated translocations *in vivo*.

(A) Agarose gel with 0.5 kb PCR products corresponding to precise loxP-to-loxP *c*-*myc/IgH* translocations (as verified by sequencing). B cells of the indicated genotypes were stimulated with LPS and IL-4. 100,000 cells were assayed in each lane. (B) Agarose gel with 0.5 kb PCR products corresponding to precise loxP-to-loxP *c*-*myc/IgH* translocations (as verified by sequencing). DNA from total Peyer's Patches from mice with the indicated genotypes were analyzed. 100,000 cells were assayed in each lane.

Figure S7. I-SceI induced translocations in AID deficient B lymphocytes: Southern Blot.

(A) Schematic representation of the Myc^I, Myc⁺ and IgH^I alleles with the PCR primers for detecting der12 and der15 *c-myc/IgH* translocations. Circles point to recognition sequences for I-SceI. (B) I-SceI rescues translocation in the absence of AID. Representative ethidium bromide (EtBr) stained agarose gels from Figure 4B were Southern blotted and oligo-probed for *c-myc* and *IgH*, as indicated, to verify translocations.

Figure S8. I-SceI mediated translocations in Myc^{I/+}, AID proficient B lymphocytes: Southern Blot.

(A) Schematic representation of the Myc^I, Myc⁺ and IgH⁺ alleles with the PCR primers for detecting der12 and der15 *c-myc/IgH* translocations. Circles point to recognition sequences for I-SceI. (B) I-SceI mediated translocations in the presence of AID. Representative ethidium bromide (EtBr) stained agarose gels from Figure 5B were Southern blotted and oligo-probed for *c-myc* and *IgH*, as indicated, to verify translocations. Myc^{I+} B cells were stimulated with LPS and IL-4 and infected with retroviruses encoding I-SceI or I-SceI* control. 100,000 cells were assayed in each lane.

Figure S10. Comparing translocations by retroviral AID, I-SceI and Cre in AID^{-/-} cells: Southern Blot.

(A) Schematic representation of the Myc^I, Myc⁺ and IgH^I alleles with the PCR primers for detecting der15 *c-myc/IgH* translocations. Triangles represent loxP sites, circles point to recognition sequences for I-SceI. (B) AID, I-SceI, or Cre mediated translocations in the absence of AID. Ethidium bromide (EtBr) stained agarose gels from two independent experiments were blotted and oligo-probed for *c-myc*, as indicated, to identify translocations (see also figure 6B).

Genotype	Retrovirus	Frequency of unique mutations ¹	Mutations at C/G (%) ²	Transitions at C/G (%) ³
Wild type	-	0.3 x 10 ⁻⁴ (87'890) ⁴	33.3	100
AID-/-	AID	1.2 x 10 ^{-₄} (101'541)⁵	66.7	75
AID-/-	empty	<0.07 x 10 ⁻⁴ (136'800) ^{4,5}	-	-

Table S1. Summary of mutation data in *c-myc*.

¹ Frequency of unique mutations (number of analyzed nucleotides).

² Percentage of mutations at C or G. ³ Percentage of C or G mutations that are transitions. ⁴ p = 0.08 with Student's T-Test. ⁵ p = 0.0005 with Student's T-Test.

Table S2. Translocation breakpoints from Myc^{V+} IgH^{V+} AID^{-/-} B cells infected with I-Scel. 50 nucleotides surrounding each breakpoint are shown, with the homology to germline sequence indicated by vertical bars. I-Scel site sequences are highlighted in blue, insertions are green, microhomologies are yellow. Shadowed in light grey are extended microhomologies if single nucleotides gaps are tolerated. Numbers on the right indicate the distance in base pairs between the breakpoint and the center of the corresponding I-Scel allele. The top 8 sequences are from der12, the remaining 13 from der15 translocations.

Мус	AGTTATAAGCTTTCGCGAGCTCGAA <mark>TCGGA</mark> TCCGAATTCTTAATTAACAC	75
285-1	GGCTTACCATTTGCGGTGCCTGGTT <mark>TCGGA</mark> TCCGAATTCTTAATTAACAC	
IgH'	GGCTTACCATTTGCGGTGCCTGGTT <mark>TCGGA</mark> GAGGTCCAGAGTCTTTGTGT	95
Myc'	TAACAGGGTAATGGCCGGCCCAAGG <mark>G</mark> CGAATTCATAACTTCGTATAATGT	22
285-3	GTGCCTGGTTTCGGAGAGGT <mark>CCAGAG</mark> CGAATTCATAACTTCGTATAATGT	
IgH ¹	GTGCCTGGTTTCGGAGAGGT <mark>CCAGAG</mark> TCTTTGTGTGGAATTGTTCCTTCA	84
Myc ⁱ	ACAGGGTAAT GGCCGGCCCAAGGGCGAATTCATAACTTCGTATAATGTA	24
285-4	AATTGTTCCTTCAAAG <mark>ATTAATTAA</mark> GAATTCATAACTTCGTATAATGTA	
IgH'		57
Myc	GAAGACGCCCTG <mark>TAGGGATAACAGGGTAAT</mark> GGCCGGCCCAAGGGCGAAT	4
285-7	GGTGGATGGGTGGCTAT <mark>ATTACCCTGTAAT</mark> GGCCGGCCCAAGGGCGAAT	
IgH'	GGTGGATGGGTGGCTAT <mark>ATTACCCTGTTATCCCTA</mark> GCGTAACTGCGGCC	-1
Мус	TTAACACCCAGTGCTGAATCGCTGC	118
285-8	TGGAATTGTTCCTTCAAAGCCACCG <mark>AGGG</mark> TCTCTGGTGCAGTGGCGTCA	
IgH'		48
Myc	TTCGCGAGCTCGAATCGGATCCGAA <mark>T</mark> TCTTAATTAACACCCAGTGCTGA	86
285-9	TGGATGGGTGGCTAT <mark>ATTACCCTGTT</mark> TCTTAATTAACACCCCAGTGCTGA	
IgH ¹	TGGATGGGTGGCTAT <mark>ATTACCCTGTTATCCCTA</mark> GCGTAACTGCGGCCGC	-2
Myc ^ı	CTTCGTATAATGTATGCTATACGAA <mark>GTTAT</mark> AAGCTTTCGCGAGCTCGAAT	51
285-10	GGTGGATGGGTGGCTAT <mark>ATTACCCTGTTAT</mark> AAGCTTTCGCGAGCTCGAAT	
IgH ⁱ	GGTGGATGGGTGGCTAT <mark>ATTACCCTGTTAT</mark> CCCTAGCGTAACTGCGGCCG	-4
Myc ^ı	ACAGGGTAAT GGCCGGCCCAAGGGC <mark>GA</mark> ATTCATAACTTCGTATAATGTAT	24
299-2	AAGCCACCGAGGCTGGCTGGTCCAT <mark>GA</mark> ATTCATAACTTCGTATAATGTAT	
IgH'	AAGCCACCGAGGCTGGCTGGTCCAT <mark>GA</mark> GCAGCCAGGTGGATGGGTGGCTA	33
Myc ⁱ	CAAAAGGCAGATTCCCCCCCCCCCCCCCCCCCCCCCCCC	2178
299-5	TCTAGAGCTAGCGGCCGCAGTTACGCACACACACACACCCCCAGCACCTCCGG	
IgH'	TCTAGAGCTAGCGGCCGCAGTTA <mark>CGCTAGGGATAACAGGGTAAT</mark> ATAGCC	10
Мус	GCTCCGGGGTGTAAACAGTAATAGC <mark>GC</mark> AGCATGAATTAACTGCGCGCCCG	1632
299-8	CTCTGTGTGGACTCCCTCTGGCCCT <mark>GC</mark> AGCATGAATTAACTGCGCGCCCG	
IgH'		231

Myc ^ı	GCAGGAGGGGAGCTGAGTGAGGCGA <mark>G</mark> TCGGACCCGGCAGCTGAGAGCAGC	1365
299-11	TGGGAATGTATGGTTGTGGCTTCTG <mark>G</mark> TCGGACCCGCAGCTGAGAGCAGC	
IgH'	TGGGAATGTATGGTTGTGGCTTCTG <mark>G</mark> GCCGGCGAATTCGGATCCGATTC	124
Мус	GAACGAATGAGTTATCTAGGAGCCC <mark>CCG</mark> CTCAGTGTGTGGAGTGATAGAG	1910
1212-1	GCTTCTGGGCCGGCCGAATTCGGAT <mark>CCG</mark> CTCAGTGTGTGGAGTGATAGAG	
IgH'	GCTTCTGGGCCGGCCGAATTCGGAT <mark>CCG</mark> ATTCGAGCTCGCGAAAGCTTAT	104
Myc ^ı	CCTTTGGTCGTACAGTTA <mark>TGTTGAC<mark>TGGGC</mark>ACATTCTTTCCAGAACGACC</mark>	2104
1212-2	CCCTCTGGCCCTGCTTATTGTTGAATGGGCACATTCTTTCCAGAACGACC	
IgH'	CCCTCTGGCCCTGCTTAT <mark>TGTTGAATGGGC</mark> CAAAGGTCTGAGACCAGGCT	211
Myc ^ı	GGGGTGTAAACAGTAATAGCGCAGC <mark>ATGAATT</mark> AACTGCGCGCCCGACCAT	1637
1212-4	CGTATAGCATACATTATACGAAGTT <mark>ATGAATT</mark> AACTGCGCGCCCGACCAT	
IgH'	CGTATAGCATACATTATACGAAGTT <mark>ATGAATT</mark> CTTAATTAATCTAGAGCT	46
Myc'	CGCCCGACCATTTTCTCTTGCTCGC <mark>G</mark> CGCTAGTCCTTTCCCTTTCTGTAC	1678
1212-15	AAGTTATGAATTCTTAATTAATCTAGAGCTAGTCCTTTCCCTTTCTGTAC	
IgH'	AAGTTATGAATTCTTAATTAATCTA <mark>G</mark> AGCTAGCGGCCGCAGTTACGC <mark>TAG</mark>	25
Мус	ATAAAGGGCGGGTGGGCGGGGGATTA <mark>GC</mark> CAGAGAATCTCTCTTTCTCCCCTT	1456
1212-16	ATCTAGAGCTAGCGGCCGCAGTTACGCTAGAGAATCTCTCTC	
IgH'	ATCTAGAGCTAGCGGCCGCAGTTAC <mark>GCTAGGGATAACAGGGTAAT</mark> ATAGC	7
Мус	ATTAGCCAGAGAATCTCTCTTTTCTCCCCTTCCCCACCTCTCTCT	1474
1212-17	NTGGACTTTGGGTCTCCCACCCAGACCCT	
IgH'		149
Мус	GGTCTATGCAGGAAAAACGATGTCTGGAATTTTATTAAAAATTGCTCAGCA	1982
1212-18	TTNNNNGCCAGTCCACATGCTCTGT <mark>AAT</mark> ATTTTATTAAAATTGCTCAGCA	
IgH'	 TTCTAAGCCAGTCCACATGCTCTGTGTGAACTCCCTCTGGCCCTGCTTAT	248
Мус	TTTCTGTACGGTTGTTCGGGCGCAG <mark>CGCTCGG</mark> CTGAACTGTGTTCTTGCC	1717
1212-23	AATCTAGAGCTAGCGGCCGCAGTTACGCTCGGCTGAACTGTGTTCTTGCC	
IgH'		9
Мус	CAGGCGTCTCTCTAAGGCTGGGGAA <mark>AACAG</mark> AATTTAGAAAGGGGGGAAGGA	1854
1212-27	TAGCGGCCGCAGTTACGC <mark>TAGGGATAACAG</mark> AATTTAGAAAGGGGGAAGGA	
IgH'		-2
Myc ^ı	CTCTTGCTCGCGCGCTAGTCCTTTC <mark>CC</mark> TTTCTGTACGGTTGTTCGGGCGC	1690
1212-28	TTCTTAATTAATCTAGAGCTAGCGGCGC TTCTTGTACGGTTGTTCGGGCGC	
IgH'		20

Table S3. Translocation breakpoints from Myc^{V*} B cells infected with I-Scel. 50 nucleotides surrounding each breakpoint are shown, with the homology to germline sequence indicated by vertical bars. I-Scel site sequences are highlighted in blue, insertions are green, microhomologies are yellow. Shadowed in light grey are extended microhomologies if single nucleotides gaps are tolerated. In 5 cases the breakpoint falls in the repetitive switch μ region, but cannot be precisely mapped. Numbers on the right indicate the distance in base pairs between the breakpoint and the center of the I-Scel site at the Myc¹ allele. The top 12 sequences are from der12, the remaining 3 from der15 translocations.

Мус	CCCTTGGGCCGGCC <mark>ATTACCCTGTTATCCCTA</mark> CAGGGCGTCTTCCCTCTC	-2
108A	CCCTTGGGCCGGCCATTACCCTGTTGAGCTGAGCTGGGTGAGCTGAGCTG	
lgH	GGCCTGCTGCGGGCTGGCATA <mark>CC</mark> <mark>T</mark> GAGTTGAACTTAAATGAGGAAGGCT	
Мус	GCCCTTGGGCCGGCC <mark>ATTACCCTGTTATCCCTA</mark> CAGGGCGTCTTCCCTCT	-1
112A	GCCCTTGGGCCGGCC <mark>ATTACCCTGTAGT</mark> TGGGGTGAGCTGAGCTGAGCTG	
lgH	AGCTGGAGTGAGCTGAGCTGAGCTGAGCTGAGCTGAGCT	
Мус	CGCCCTTGGGCCGGCC <mark>ATTACCCTGTTATCCCTA</mark> CAGGGCGTCTTCCCTC	0
113A	CGCCCTTGGGCCGGCC <mark>ATTACCCTG</mark> AGCTGGGCTAGCTGACATGGATTAT	
lgH	AGCTGGGATGAGGTAGGCTGGGA <mark>TG</mark> AGCTGGGCTAGCTGGCATGGATTAT	
Myc ^ı	CGCCCTTGGGCCGGCC <mark>ATTACCCTGTTATCCCTA</mark> CAGGGCGTCTTCCCTC	0
114A	CGCCCTTGGGCCGGCC <mark>ATTACCCTG</mark> GAGCTGGGGTGAGCTGAGCTGAGCT	
lgH	GAGCTGAGCTGAGCTGGGGTGAGCTGGGGTGGGGTGAGCTGAGCTGAGCT	
Мус	CCCTTGGGCCGGCC <mark>ATTACCCTGTTATCCCTA</mark> CAGGGCGTCTTCCCTCTC	-2
116A	CCCTTGGGCCGGCC <mark>ATTACCCTGTTGG</mark> TGAGCTGGGGTGAGCTGAGCTGA	
lgH	GGTGAGCTGAGCTGGGGTGAGCTGAGCTGAGCTGAGCTG	
Myc	CATTATACGAAGTTATGAATTCGCCCTTGGGCCGGCC <mark>ATTACCCTGTTAT</mark>	22
1034-4	CATTATACGAAGTTATGAATTCGCCAGCTGAGCTGAGCT	
lgH	$S\mu$ -tgagctgagctgagctgagctgagctg	
Myc	GCCCTTGGGCCGGCC <mark>ATTACCCTGTTATCCCTA</mark> CAGGGCGTCTTCCCTCT	-1
1034-8	GCCCTTGGGCCGGCCATTACCCTGTGGGGTAAGCTGAGCTG	
lgH	S_{μ} -tggggtgggtgggtaggtgggtaggtgggtg	
Myc ⁱ	GGTGTTAATTAAGAATTCGGATCC <mark>GA</mark> TTCGAGCTCGCGAAAGCTTATAAC	83
1034-9	GGTGTTAATTAAGAATTCGGATCC <mark>GA</mark> GCTGAAGCTGANCTGGGGTAAGCTG	
lgH	$S\mu$ -gt $_{GA}^{GCTGAGCTGAGCTGGGGTAAGCTG}$	
Мус	ATGAATTCGCCCTTGGGCCGGCC <mark>ATTACCCTGTTATCCCTA</mark> CAGGGCGTC	7
1034-10	ATGAATTCGCCCTTGGGCCGGCC <mark>ATT</mark> CCCCAGCTCAGCCCAGCTCAGCTC	
IgH	$S\mu$ -caccccagctcagcccagctcagctc	
Мус	TTCGCCCTTGGGCCGGCC <mark>ATTACCCTGTTATCCCTA</mark> CAGGGCGTCTTCCC	1
1108-10	TTCGCCCTTGGGCCGGCCAGTTACCCTAGCTGAGCTGGGGTGAGCTGAGCT	
IgH	S_{μ} -tgagctgagctgagctgagctgagct	

Myc ^ı	CGCCCTTGGGCCGGCC <mark>ATTACCCTGTTATCCCTA</mark> CAGGGCGTCTTCCCTC	-1
1108-11	CGCCCTTGGGCCGGCC <mark>ATTACCCTGT</mark> CCAGCTCAGCCCAGCTCAGCCCAG	
IgH	GAGCTGAGCTGAGCTGGGGTGAGCTGCCAGCTCAGCCCAGCTCAGCCCAG	
Мус	TCGTATAGCATACATTATACGAAGT <mark>T</mark> ATGAATTCGCCCTTGGGCCGGCCA	32
1108-12	TCGTATAGCATACATTATACGAAGT <mark>T</mark> GGACTCAACTGGGCTGGCTGATGG	
IgH	CTGGATGATCTGGTGTAGGGTGATC <mark>T</mark> GGACTCAACTGGGCTGGCTGATGG	
Мус	CCTCGGCGGGGAGAGGGAAGACG <mark>CC</mark> CTG <mark>TAGGGATAACAGGGTAAT</mark> GGCC	13
11-10-13	CCTCGGCGGGGAGAGGGAAGACG <mark>CC</mark> ATCTCAGCTCATCTGTGCTTTTTAG	
IgH	TAGAAGCACTCAGAGAAGCCCAC <mark>CC</mark> ATCTCAGCTCAGCTGTGCTTTTTAG	
Мус	GGGAGAGGGAAGACGCCCTG <mark>TAGGGATAACAGGGTAAT</mark> GGCCGGCCCAAG	5
11-10-17	GGGAGAGGGAAGACGCCCTG <mark>TAG</mark> GGGTTTTCTATAAAAACTAAAAACATC	
IgH	AGTTGTAGATCAAGAATGTAGTAGTAGTGTTTTCTATAAAAACCTAAAAAACATC	
Myc ^ı	CGGCGGGGAGAGGGAAGACGCC <mark>CTGTAGGGATAACAGGGTAAT</mark> GGCCGGC	10
681-6	CGGCGGGGAGAGGGAAGACGCC <mark>CTG</mark> GGGTCAGCTGAGCAAGAGTGAGTAG	
IgH	GAACTGAGCTGTGTGAGCTGAGCTGAGCTGAGCAAGAGTGAGT	

Table S4. Translocation breakpoints from uninfected wild type B cells. 50 nucleotides surrounding each breakpoint are shown, with the homology to germline sequence indicated by vertical bars. Insertions are green, microhomologies are yellow. Shadowed in light grey are extended microhomologies if single nucleotides gaps are tolerated. In 4 cases the breakpoint falls in the repetitive switch μ region, but cannot be precisely mapped. The top 5 sequences are from der12, the remaining 6 from der15 translocations.

Мус	CTAGCGCAGTGAGGAGAAGCAAAATTGGGACAGGGATGTGACCGATTCGT
931-1	TCAGCTCACCCCAGCTCAGCTCACCTGGGACAGGGATGTGACCGATTCGT
lgH	TCAGCTCACCCCAGCTCAGCTCACCCC - $S\mu$
Мус	CAGATCTGGTGGTCTTTCCCTGTGTTCTGCGTCTTGAATGTAGCGG
931-4	TCACCCTAGNTCAGCTCACCCCAGC
IgH	tcaccctagctcagctcaccccagc $Tcag$ - $S\mu$
Мус	TGAGGGGTCAAACCGGGAGGTCGCTTCGTGGTGGCCAAAGAAAG
931-6	AAGCACTCAGAGAAGCCCACCCATC
lgH	AAGCACTCAGAGAAGCCCACCCATC
Мус	TTTGGGAGCGAGAAGGCTCCGTAGCTTCTGACTTACCAGTCTCTGAGAGG
931-7	TCACCCTAGCTCAGCTCACCCCAG <mark>A</mark> TTCTGACTTACCAGTCTCTGAGAGG
lgH	tcaccctagctcagctcaccccagctca - $S\mu$
Мус	TCGCTTCGTGGTGGCCAAAGAAAGCCCTTGGAATCCTGAGGTCTTTGGAG
931-8	CAGCTCAGCTCAGCTCAGCCCAGCTCCTGGAATCCTGAGGTCTTTGGAG
lgH	CAGCTCAGCTCAGCTCAGCCCAGCTC
Мус	TTCTGACTTACCAGTCTCTGAGAGGGCATTTAAATTTCAGCTTGGTGCAT
237	TTCTGACTTACCAGTCTCTGAGAGGATGCATCGGATACTGTATAAATGCT
lgH	GTGCCCCACTCCACTCTTTGTCCCTATGCATCGGATACTGTATAAATGCT
Мус	CAGTTAATTCATGCTGCGCTA <mark>TTAC</mark> TGTTTACACCCCGGAGCCGGAGTAC
268	CAGTTAATTCATGCTGCGCTATTACCCCAGCTCAGCTCA
lgH	CTCACCCCAGCTTAGCTCAGCTC
Мус	AAACCCCGGTAAGCACAGATCTGGTGGTCTTTCCCTGTGTTCTTCTGCG
274	AAACCCCGGTAAGCACAGATCTGGTTTTCTCAATTCTGTACAGCTGTGGC
lgH	TGGCCTCAACTGCAGGTCTCTATTCTTTCTCAATTCTGTACAGCTGTGGC
Мус	GGTTAGGACAGTCTTTCTTCCATTCCTGTGCTTTTGACACTTTTCTCAAG
276	GGTTAGGACAGTCTTTCTTCCATTCATCCGCCCAATCTAGCTGATTTGTC
1911	GGTCCCCTGAAGCTGATCTGCCAGGATCCGCCCAATCTAGCTGATTTGTC
Мус	TCTCTGAGAGGGCATTTAAATTTC <mark>A</mark> GCTTGGTGCATTTCTGACAGCCTGG
278	TCTCTGAGAGGGCATTTAAATTTC <mark>A</mark> ACTCATTAAACCACATTGAGTNGTA
lgH	GAAGTACATTTACTGGCAACTTCA

Supplemental References

Bunting, M., Bernstein, K.E., Greer, J.M., Capecchi, M.R., and Thomas, K.R. (1999). Targeting genes for self-excision in the germ line. Genes Dev *13*, 1524-1528.

Rodriguez, C.I., Buchholz, F., Galloway, J., Sequerra, R., Kasper, J., Ayala, R., Stewart, A.F., and Dymecki, S.M. (2000). High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat Genet *25*, 139-140.

Srinivas, S., Watanabe, T., Lin, C.S., William, C.M., Tanabe, Y., Jessell, T.M., and Costantini, F. (2001). Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol *1*, 4.