Supporting Information for:

Synthesis and Reactivity of a Mono- σ -Aryl Palladium(IV) Fluoride Complex

Nicholas D. Ball and Melanie S. Sanford*

Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109

General Procedures:

NMR spectra were obtained on a Varian Inova 400 (399.96 MHz for ¹H; 376.34 MHz for ¹⁹F; 100.57 MHz for ¹³C) or a MR400 (400.53 MHz for ¹H: 376.87 MHz for ¹⁹F; 100.71 MHz for ¹³C) spectrometer. ¹H, ¹⁹F and ¹³C chemical shifts are reported in parts per million (ppm) relative to TMS, with the residual solvent peak used as an internal reference. ¹⁹F NMR spetra are referenced on a unified scale, where the single primary reference is the frequency of the residual solvent peak in the ¹H NMR spectrum.¹ Several ¹⁹F NMR experiments were conducted using "No-D" parameters and are noted accordingly.² ¹H and ¹⁹F multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), quartet (q), and multiplet (m). Elemental analyses were conducted by Atlantic Microlabs in Norcross, Georgia. Sonication was performed using a VWR Model 75H7 ultrasound bath, with the temperature regulated by a Neslab RTE-111 recirculating chiller. IR spectra were obtained on a Perkin-Elmer Spectrum BX FT-IR spectrometer.

Materials and Methods:

The palladium complexes $Pd(dba)_2^3$ and $(t-Bu-bpy)PdCl_2^4$ were prepared according to literature procedures. Authentic samples of biaryl products 4a-c were prepared as described in the literature by McClure and coworkers.⁵ AgF, XeF₂, 1-fluoro-4-1-iodobenzotrifluoride, 1,4-difluorobenzene (3a)and 4iodobenzene. fluorobenzotrifluoride (3b) were obtained from Matrix Chemicals. 4,4'-Di-tert-butyl-2,2'bipyridine, 4-iodoanisole, 1-chloro-4-fluorobenzene, 1-fluoro-2,4,6-trimethylpyridium tetrafluoroborate, and N-fluorosulfanimide were obtained from Aldrich. 4-Fluoroanisole (3c) was obtained from Acros. All reagents were used as received. Nitrobenzene- d_5 , CD₂Cl₂, and CDCl₃ were obtained from Cambridge Isotope Laboratories, and nitrobenzene was obtained from Acros. All other solvents were obtained from Fisher Chemical. Tetrahydrofuran, dichloromethane, and pentane were purified using an Innovative Technologies (IT) solvent purification system consisting of a copper catalyst, activated alumina, and molecular sieves. CD_2Cl_2 was distilled from CaH₂. Acetone was distilled from CaSO₄. Nitrobenzene and nitrobenzene- d_5 were distilled from P₂O₅ and placed over 4Å molecular sieves. Benzene and hexanes were distilled from Na⁰/benzophenone. All syntheses were conducted using standard Schlenk techniques or in an inert atmosphere glovebox unless otherwise stated.

Experimental Details

<u>General procedure for the synthesis of complexes **1a-1c**:</u> Under nitrogen, $Pd(dba)_2$ (2.9 g, 5.1 mmol, 1.0 equiv) was weighed into a 250 mL round bottom flask and dissolved in THF (72 mL). 4, 4'-Di-*tert*-butylbipyridine (1.9 g, 6.6 mmol, 1.3 equiv) was added, and the resulting mixture was stirred at 25 °C for 15 min. The aryl iodide (7.1 mmol, 1.4 equiv) was added, and the reaction was warmed to 60 °C for 3 h. The reaction mixture was filtered through a plug of Celite, and the solvent was removed under reduced pressure. The resulting solid was washed with hexanes (3 x 50 mL) and then with a 50:50 mixture of ether and hexanes (~400 mL) until residual dibenzylidene acetone (dba) was completely removed. The product was then redissolved in CH₂Cl₂ (20 mL) and stirred with activated charcoal for 30 min. This suspension was filtered through a plug of Celite, and the products as orange solids.

<u>Complex 1a</u> (1.6 g, 31% yield). ¹H NMR (CDCl₃): δ 9.47 (d, J = 6 Hz, 1H), 7.95 (multiple peaks, 2H), 7.53 (d, J = 6 Hz, 1H), 7.48 (d, J = 6 Hz, 1H), 7.30 (multiple peaks, 3H), 6.81 (multiple peaks, 2H), 1.40 (s, 9H), 1.37 (s, 9H); ¹⁹F NMR (CDCl₃): δ -123.2 (m, 1F); ¹³C NMR (CDCl₃): δ 163.33, 163.27, 160.93 (d, J = 239.8 Hz), 155.91, 153.86, 152.52, 149.55, 138.52, 136.67 (d, J = 5 Hz), 123.86 (br s), 123.54, 118.43, 118.01, 113.98 (d, J = 19 Hz), 35.53, 35.48, 30.38, 30.26. Anal. Calc. for C₂₄H₂₈FIN₂Pd: C, 48.30, H, 4.73, N, 4.69; Found: C, 48.09, H, 4.75, N, 4.72.

Notably, small amounts (~7%) of $[(t-Bu-bpy)Pd(I)_2]$ were observed in the ¹H, and ¹³C NMR spectra of most isolated samples of **1a**.

<u>Complex 1b</u> (1.1 g, 33% yield). ¹H NMR (CDCl₃): δ 9.49 (d, *J* = 6 Hz, 1H), 7.95 (multiple peaks, 2H), 7.55 (d, *J* = 8 Hz, 2H), 7.48 (multiple peaks, 2H), 7.34 (m, 1H), 7.25 (d, *J* = 8 Hz, 2H), 1.41 (s, 9H), 1.38 (s, 9H); ¹⁹F NMR (CDCl₃): δ -61.8 (s, 3F); ¹³C NMR (CDCl₃): 163.54, 163.43, 155.94, 153.84, 153.60, 152.65, 149.52, 136.82, 125.48 (q, *J* = 32 Hz), 124.99 (q, *J* = 272 Hz), 123.97, 123.73, 123.02 (q, *J* = 4 Hz), 118.49, 118.05, 35.54, 35.48, 30.56, 30.23. Anal. Calc. for C₂₅H₂₈F₃IN₂Pd: C, 46.42, H, 4.36, N, 4.33; Found: C, 46.36, H, 4.33, N, 4.35. Notably, small amounts (~8%)

of $[(t-Bu-bpy)Pd(I)_2]$ were observed in the ¹H and ¹³C NMR spectra of most isolated samples of **1b**.

<u>Complex 1c</u> (1.0 g, 33% yield). ¹H NMR (CDCl₃): δ 9.49 (d, *J* = 6 Hz, 1H), 7.94 (multiple peaks, 2H), 7.61 (dd, *J* = 6, 2 Hz, 1H), 7.48 (dd, *J* = 6, 2 Hz, 1H), 7.31 (dd, *J* = 5, 2 Hz, 1H), 7.25 (d, *J* = 8 Hz, 2H), 6.73 (d, *J* = 8 Hz, 2H), 3.76 (s, 3H), 1.41 (s, 9H), 1.37 (s, 9H). ¹³C NMR (CDCl₃): δ 163.09, 163.05, 156.64, 155.87, 153.87, 153.77, 152.58, 149.86, 136.36, 134.06, 123.81, 123.46, 117.84, 113.58, 55.16, 35.48, 35.43, 30.38, 30.26. Anal. Calc. for C₂₅H₃₁IN₂OPd: C, 49.32, H, 5.13, N, 4.60; Found: C, 49.12, H, 5.19, N, 4.60. Notably, small amounts (~8%) of [(*t*-Bu-

bpy)Pd(I)₂] were observed in the ¹H, and ¹³C NMR spectra of most isolated samples of 1c.

<u>General procedure for the synthesis of complexes 2a-2c</u>. [(*t*-Bu-bpy)Pd(Ar)(I)] (3.6-3.8 mmol, 1 equiv) and AgF (3.9 equiv) were dissolved in benzene (20 mL) in a 50 mL amber glass jar. The jar was sealed with a Teflon-lined cap, and the reaction was sonicated in the dark at 25 °C for 1.5-4 h. The resulting mixture was filtered through a plug of Celite in the drybox. The plug was washed with benzene (1 x 5 mL) and then with CH_2Cl_2 (5 x 2 mL). This filtration was repeated to remove residual silver salts. The solvent was then removed under reduced pressure, and pentane was added to precipitate a yellow solid. The solid was collected and dried *in vacuo* to afford the product as a yellow solid. It should be noted that without the second filtration, the filtrate changes color from yellow to gold over several minutes, which is indicative of impurities in the product (as confirmed by ¹H and ¹⁹F NMR spectroscopy).

<u>Complex 2a</u> (0.42 g, 83% yield). ¹H NMR (CD₂Cl₂): δ 8.74 (d, J = 6 Hz, 1H), 8.08 (d, J = 6 Hz, 1H), 8.00 (d, J =2 Hz, 1H), 7.98 (d, J = 2 Hz, 1H), 7.62 (dd, J = 4, 2 Hz, 1H), 7.40 (multiple peaks, 2H), 7.29 (dd, J = 4, 2 Hz, 1H), 6.85 (dd, J = 11, 9 Hz, 2H), 1.44 (s, 9H), 1.38 (s, 9H); ¹⁹F NMR (CD₂Cl₂): δ –122.9 (m, 1F), –340.67 (br s, 1F); ¹³C NMR (CD₂Cl₂): δ 164.71, 163.88, 161.75 (d, J = 238 Hz), 157.34, 153.44, 153.05, 148.49 (d, J = 3 Hz), 146.60, 135.80 (d, J = 5 Hz), 124.27, 124.11, 119.66, 118.59, 113.54 (d, J = 19 Hz), 36.13, 35.98, 30.72, 30.47.

Complex **2a** is extremely hygroscopic, and even after extensive drying under vacuum, ¹H NMR spectroscopic analysis in dry CD_2Cl_2 showed the presence of 0.60 equiv of H₂O/complex (observed as a broad resonance at 1.42 ppm). The microanalysis results are consistent with this stoichiometry. Anal. Calc. for $C_{24}H_{28}F_2N_2Pd\bullet0.60$ H₂O: C, 57.68, H, 5.77, N, 5.61; Found: C, 57.89, H, 5.87, N, 5.31. Notably, traces (~3%) of [(*t*-Buby)Pd(F)₂] were observed in the ¹H, ¹⁹F, and ¹³C NMR spectra of most isolated samples of **2a**.

<u>Complex 2b</u> (0.39 g, 77% yield). ¹H NMR (CD₂Cl₂): δ 8.74 (d, J = 6 Hz, 1H), 8.01 (multiple peaks, 3H), 7.64 (multiple peaks, 3H), 7.30 (multiple peaks, 3H), 1.45 (s, 9H), 1.39 (s, 9H); ¹⁹F NMR (CD₂Cl₂): -62.10 (s, 3F), -341.6(s, 1F); ¹³C NMR (CD₂Cl₂): δ 164.94, 164.17, 157.31, 153.45, 152.96, 148.44 (q, J = 4 Hz), 136.84, 135.87 (q, J = 3 Hz), 126.10 (q, J = 31 Hz), 125.80 (q, J = 271 Hz), 124.37, 124.11, 122.84 (q, J = 4 Hz), 119.87, 118.77, 36.17, 36.02, 30.71, 30.46. Complex **2b** is extremely hygroscopic, and even after extensive drying under vacuum, ¹H NMR

spectroscopic analysis in dry CD_2Cl_2 showed the presence of 0.67 equiv of H₂O/complex (observed as a broad resonance at 1.41 ppm). The microanalysis results are consistent with this stoichiometry. Anal. Calc. for $C_{25}H_{28}F_4N_2Pd \cdot 0.67 H_2O$: C, 54.42, H, 5.23, N, 5.07; Found: C, 54.28, H, 5.43, N, 5.05. Notably, trace amounts (~4%) of [(*t*-Bu-bpy)Pd(F)₂] were observed in the ¹H, ¹⁹F, and ¹³C NMR spectra of most isolated samples of **2b**.

<u>Complex 2c</u> (0.21 g, 45% yield). Notably, trace amounts (~6%) of [(*t*-Bu-bpy)Pd(F)₂] were observed in the ¹H, ¹⁹F, and ¹³C NMR spectra of most isolated samples of 2c. ¹H NMR (CD₂Cl₂): δ 8.77 (d, *J* = 6 Hz, 1H), 8.17 (d, *J* = 6 Hz, 1H), 8.02 (d, *J* = 2 Hz, 1H), 7.99 (d, *J* = 2 Hz, 1H), 7.61 (dd, *J* = 4, 2 Hz, 1H), 7.31 (d, *J* = 8 Hz, 2H), 7.28 (d, *J* = 8, 2 Hz, 1H), 6.72 (d, *J* = 8 Hz, 2H), 3.77 (s, 3H), 1.44 (s, 9H), 1.38 (s, 9H); ¹⁹F NMR (CD₂Cl₂): δ -338.7 (s, 1F); ¹³C NMR (CD₂Cl₂): δ 164.53, 163.65, 157.64, 157.30, 153.41, 153.18, 148.48, 135.86, 135.31, 124.17, 124.05, 119.57, 118.52,

113.06, 55.63, 36.10, 35.94, 30.72, 30.47. Complex **2c** is extremely hygroscopic, and even after extensive drying under vacuum, ¹H NMR spectroscopic analysis in dry CD₂Cl₂ showed the presence of 0.86 equiv of H₂O/complex (observed as a broad resonance at 1.41 ppm). The microanalysis results are consistent with this stoichiometry. Anal. Calc. for C₂₅H₃₁FN₂OPd•0.86 H₂O: C, 58.26, H, 6.23, N, 5.44; Found: C, 58.02, H, 6.18, N, 5.29. Notably, trace amounts (~4%) of [(*t*-Bu-bpy)Pd(F)₂] were observed in the ¹H, ¹⁹F, and ¹³C NMR spectra of most isolated samples of **2b**.

<u>Complex 5a</u>. In a glovebox, **2a** (10 mg, 0.02 mmol, 1 equiv) was dissolved in nitrobenzene (1 mL) and added to a 4 mL scintillation vial containing XeF₂ (10 mg, 0.06 mmol, 3 equiv). The vial was sealed with a Teflon-lined cap and stirred for 25 °C for 10 s to yield an orange solution. The reaction mixture was then stirred at 80 °C for 2 min to afford a yellow solution. Hexanes (10 mL) was added to precipitate the crude inorganic product. The resulting yellow solid was collected, washed with hexanes (3 x 2 mL), and dried *in vacuo* to yield the crude product. This material was further purified by

recrystallization from THF/hexanes and was obtained as a pale yellow solid (4.1 mg,

38% yield). The microanalysis results were consistently slightly low in carbon, which is likely due to traces of H_2O (see above for a discussion of the hygroscopicity of 2-c). Anal. Calc. for C₂₄H₂₉F₅N₂Pd: C, 52.71, H, 5.34, N, 5.12; Found: C, 51.99, H, 5.56, N, 5.30. Characterization by NMR spectroscopy is reported in d_5 -nitrobenzene and CD₂Cl₂, and low temperature NMR experiments were carried out in CD₂Cl₂ (due to the high freezing point of nitrobenzene). However, it is to be noted that 5a shows significant reactivity with CD₂Cl₂ at room temperature; therefore, some impurities were observed in the spectra in CD₂Cl₂, and these grew in as the samples were allowed to stand for longer times.⁸ ¹H NMR (d_5 -nitrobenzene): δ 9.48 (d, J = 6 Hz, 2H), 8.76 (s, 2H), 8.03 (d, 6Hz, 2H), 7.58 (m, 2H), 6.88 (m, 2H), 1.42 (s, 18H); ¹⁹F NMR (d_5 -nitrobenzene): δ –116.7 (m, 1F), -204.8 (br. s, 1F, Pd-F trans from C), -253.2 (br s, 2F, Pd-F trans to N). A minor impurity with ¹⁹F NMR resonances at δ –116.6 and –247 ppm proved extremely challenging to remove completely from samples of 5a. ¹H NMR (CD₂Cl₂, 22 °C): δ 12.86 (br s, 1H), 8.96 (d, J = 6 Hz, 2H), 8.19 (s, 2H), 7.83 (d, J = 6 Hz, 2H), 6.89 (m, 2H), 6.82 (m, 2H), 1.48 (s, 18H); ¹⁹F NMR (CD₂Cl₂, 22 °C): δ –117.2 (br s, 1F), –206.3 (m, 1F, Pd-F trans to Ar), -257.4 (br s, 2F, Pd-F trans to N); ¹H NMR (CD₂Cl₂, -70 °C): δ 12.71 (dd, J = 370, 31 Hz, 1H, Pd–F*H*F), 8.96 (br s, 2H), 8.10 (br s, 2H), 7.84 (br s, 2H), 6.83 (m, 4H), 1.41 (s, 18H); ¹⁹F NMR (CD₂Cl₂, -70 °C): δ –116.7 (m, 1F), –177.6 (dd, *J* = 364, 116 Hz, 1F, Pd–FHF), -204.5 (m, 1F, Pd–FHF), -256.9 (d, J = 60 Hz, 2F, trans to N).

<u>(*t*-Bu-bpy)Pd(I)₂</u>.⁶ Using standard air-free techniques, (*t*-Bu-bpy)PdCl₂ (500 mg, 1.1 mmol, 1 equiv) was dissolved in acetone (15 mL). NaI (0.49 g, 3.0 mmol, 2.7 equiv) was added, and the reaction mixture was stirred for 2 h. The resulting purple precipitate was collected on a frit and washed with copious amounts of acetone (~50 mL).⁷ The crude product was then dissolved in CH₂Cl₂ (20 mL) and stirred with charcoal for 30 min. This suspension was filtered through a plug of Celite and washed with CH₂Cl₂ (20 mL). The solvent was removed *in vacuo* to afford the

product as a purple solid (0.64 g, 91% yield). ¹H NMR (CDCl₃): δ 9.89 (d, J = 6 Hz, 2H), 7.93 (d, J = 2 Hz, 2H), 7.53 (dd, J = 6, 2 Hz, 2H), 1.45 (s, 9H); ¹³C NMR (CDCl₃): δ 164.00, 156.28, 153.77, 124.39, 119.00, 35.68, 30.28. Anal. Calc. for C₁₈H₂₄I₂N₂Pd: C, 34.39, H, 3.85, N, 4.46; Found: C, 34.49, H, 3.77, N, 4.49.

<u>(*t*-Bu-bpy)Pd(F)</u>₂. Using a modification of Vigalok's procedure,⁷ (*t*-Bu-bpy)Pd(I)₂ (90 mg, 0.14 mmol, 1.0 equiv) and AgF (50 mg, 0.42 mmol, 3.0 equiv) were weighed into a 20 mL scintillation vial and dissolved in CH₂Cl₂ (4 mL). The vial was covered in aluminum foil, and the mixture was stirred for 3 h at room temperature. The resulting suspension was filtered through a plug of Celite, concentrated, and the product was precipitated with pentane. This solid was collected and washed with pentane (3 x 2 mL). It was then redissolved in CH₂Cl₂ (2 mL), and

the suspension was filtered through a plug of Celite. The solvent was removed *in vacuo*, to yield the product as a pale yellow solid (20 mg, 35% yield). ¹H NMR (CD₂Cl₂): δ 8.51 (d, *J* = 6 Hz, 2H), 7.88 (s, 2H), 7.54 (d, *J* = 6 Hz, 2H), 1.42 (s, 18H); ¹⁹F NMR (CD₂Cl₂): δ -354.06 (s, 2F); ¹³C NMR (CD₂Cl₂): δ 165.95, 156.05, 149.49, 124.19, 119.46, 36.37, 30.59. Complex **6** is extremely hygroscopic, and even after extensive drying under vacuum, ¹H NMR spectroscopic analysis in dry CD₂Cl₂ showed the presence of 0.86 equiv of H₂O/complex (observed as a broad resonance at 1.45 ppm). The microanalysis results are consistent with this stoichiometry. Anal. Calc. for C₁₈H₂₄F₂N₂Pd•0.86 H₂O: C, 50.47, H, 5.85, N, 6.54; Found: C, 50.70, H, 5.92, N, 6.41.

<u>General procedure for oxidative fluorination of 2a-2c.</u> In a glovebox, the Pd^{II} fluoride (2a-2c) (10 mg, 1 equiv) was dissolved in nitrobenzene (1 mL). This solution was added to a 4 mL scintillation vial containing XeF₂ (3 equiv). The vial was sealed with a Teflonlined cap, vigorously shaken, and then heated at 90 °C for 1 h. The resulting mixture was cooled to room temperature, hexafluorobenzene was added as an internal standard, and the reactions were analyzed by ¹⁹F NMR spectroscopy. The identities of the organic products were confirmed by the synthesis of authentic samples of these materials.

It is important to note that the optimal conditions for ${}^{19}F$ NMR spectroscopic analysis of these reactions were as follows: spectral width = -80 to -180 ppm, relaxation delay = 5 s, and acquisition time = 6.4 s. These conditions were required due to the faster relaxation time of the standard relative to the fluoroarene products.

<u>Studies of the reactivity of 5a.</u> In a glovebox, **5a** (1 equiv) was dissolved in nitrobenzene (0.012 M solution). Hexafluorobenzene was added as an internal standard, the NMR tube was sealed with a Teflon-lined cap, and the reaction mixture was shaken vigorously. This reaction was then analyzed by ¹⁹F NMR spectroscopy to determine the ratio of starting material to standard. The NMR tube was the returned to the glovebox, and the oxidant (3 equiv) was added as a solid. The tube was shaken vigorously, removed from the glovebox, and heated in an oil bath at 80 °C for 1 h. After cooling, the reaction was again analyzed by ¹⁹F NMR to determine the percent conversion of the starting material to the product.

Table S1: Reactivity of 5a with Electrophilic Oxidants

^a18% of 1-chloro-4-fluorobenzene was also formed. ^b87% of 1-acetoxy-4-fluorobenzene was formed. **Figure S1**: ¹⁹F NMR spectrum of **5a** in d^5 -nitrobenzene.

Pulse Sequence: s2pul Solvent: nitrobenzene Ambient temperature Operator: nball INOVA-400 "Zr.Chem.LSA.UMich.Edu"

t-Bu

Figure S3: ORTEP drawing of **2a**.

Figure S4: ORTEP drawing of **5a**.

References

¹ For further information on using this method to reference NMR spectra, refer to the following website: <u>www.iupac.org/publications/pac/2001/7311/7311x1795.html</u>.

² Hoye, T. R.; Eklov, B. M.; Ryba, T. D.; Voloshin, M.; Yao, L. Org. Lett. **2004**, *6*, 953-956.

³ Takahashi, Y.; Ito, S. S., Sukai, S.; Ishii, Y. J. Chem. Soc. Dalton Trans. 1970, 17, 1065-1066.

⁴ Foley, S. R.; Han, S.; Qadeer, U. A.; Jordan, R. F. Organometallics 2004, 23, 600-609.

⁵ Wright, S. W.; Hageman, D. L.; McClure, L. D. J. Org. Chem. 1994, 59, 6095-6097.

⁶ Fryzuk, M. D.; Lloyd, B. R.; Clentsmith, G. K. B.; Rettig, S. J. J. Am. Chem. Soc. **1994**, *116*, 3804-3812.

⁷ (a) Yahav, A.; Goldberg, I; Vigalok, A. J. Am. Chem. Soc. **2003**, 125. 13634-13635. (b) Yahav, A. Goldberg, I; Vigalok, A. Inorg. Chem. **2005**, 44, 1547.

⁸ Jasim, N. A.; Perutz R. N. J. Am. Chem. Soc., 2000, 122, 8685.

Structure Determination of Complex 2a

Yellow, blade-like crystals of 2a were grown from a fluorobenzene/pentane solution at -30 deg. C. A crystal of dimensions 0.25 x 0.10 x 0.09 mm was mounted on a Bruker SMART APEX CCD-based X-ray diffractometer equipped with a low temperature device and fine focus Mo-target X-ray tube ($\lambda = 0.71073$ A) operated at 1500 W power (50 kV, 30 mA). The X-ray intensities were measured at 85(1) K; the detector was placed at a distance 5.055 cm from the crystal. A total of 3365 frames were collected with a scan width of 0.5° in ω and 0.45° in phi with an exposure time of 60 s/frame. The integration of the data yielded a total of 70232 reflections to a maximum 2θ value of 50.10° of which 11189 were independent and 9308 were greater than $2\sigma(I)$. The final cell constants (Table 1) were based on the xyz centroids of 9918 reflections above $10\sigma(I)$. Analysis of the data showed negligible decay during data collection; the data were processed with SADABS and corrected for absorption. The structure was solved and refined with the Bruker SHELXTL (version 6.12) software package, using the space group Ia with Z = 4 for the formula $2(C_{24}H_{28}N_2F_2Pd)$, $3(C_6H_6)_{0.5}$. There are two crystallographically independent molecules in the asymmetric unit. All non-hydrogen atoms were refined anisotropically with the hydrogen atoms placed in idealized positions. Full matrix least-squares refinement based on F^2 converged at R1 = 0.0552 and wR2 = 0.1553 [based on I > 2sigma(I)], R1 = 0.0700 and wR2 = 0.1651 for all data. Additional details are presented in Table 1 and are given as Supporting Information in a CIF file.

Sheldrick, G.M. SHELXTL, v. 6.12; Bruker Analytical X-ray, Madison, WI, 2001. Sheldrick, G.M. SADABS, v. 2007/4. Program for Empirical Absorption Correction of Area Detector Data, University of Gottingen: Gottingen, Germany, 2007. Saint Plus, v. 7.34, Bruker Analytical X-ray, Madison, WI, 2006

 Table S2. Crystal data and structure refinement for 2a.

Identification code	2a
Empirical formula	C57 H65 F4 N4 Pd2
Formula weight	1094.93
Temperature	85(2) K
Wavelength	0.71073 A
Crystal system, space group Unit cell dimensions	Monoclinic, Ia a = 17.9592(12) A alpha = 90 deg. b = 17.5332(12) A beta = 95.135(1) deg.

	c = 20.2950(14) A gamma = 90 deg.
Volume	6364.9(8) A^3
Z, Calculated density	4, 1.143 Mg/m^3
Absorption coefficient	0.610 mm^-1
F(000)	2252
Crystal size	0.25 x 0.10 x 0.09 mm
Theta range for data collection	2.28 to 25.05 deg.
Limiting indices	-21<=h<=21, -20<=k<=20, -24<=l<=24
Reflections collected / unique	70232 / 11189 [R(int) = 0.0652]
Completeness to theta $= 25.05$	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9472 and 0.8625
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	11189 / 218 / 682
Goodness-of-fit on F^2	1.135
Final R indices [I>2sigma(I)]	R1 = 0.0552, wR2 = 0.1553
R indices (all data)	R1 = 0.0700, wR2 = 0.1651
Absolute structure parameter	-0.01(4)
Largest diff. peak and hole	0.805 and -0.469 e.A^-3

Table S3. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² x 10³) for nb96.

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	у	Z	U(eq)
Pd(1)	6312(1)	8562(1)	4325(1)	38(1)
Pd(2)	4128(1)	1052(1)	1788(1)	37(1)
F(1)	7409(2)	8351(3)	4456(2)	45(1)
F(2)	6265(4)	8562(6)	7326(3)	113(3)
F(3)	4192(3)	-77(2)	1803(2)	44(1)
F(4)	4956(3)	948(3)	4782(2)	64(2)
N(1)	6304(4)	8661(4)	3300(3)	39(2)
N(2)	5211(4)	8765(4)	4081(3)	44(2)
N(3)	3975(3)	2169(4)	1633(3)	40(1)
N(4)	3754(4)	1053(4)	792(3)	38(2)
C(1)	6264(5)	8563(5)	5297(4)	44(2)
C(2)	5997(5)	9189(7)	5634(4)	65(3)
C(3)	6004(6)	9156(9)	6316(5)	91(5)
C(4)	6269(6)	8578(8)	6656(4)	76(4)
C(5)	6546(6)	7960(7)	6360(4)	74(3)

C(6)	6565(5)	7956(6)	5679(4)	50(2)
C(7)	6885(5)	8627(5)	2962(4)	43(2)
C(8)	6873(5)	8855(6)	2294(4)	49(2)
C(9)	6204(5)	9114(5)	1983(4)	45(2)
C(10)	5584(4)	9137(5)	2344(3)	42(2)
C(11)	5649(4)	8901(5)	2989(4)	40(2)
C(12)	5021(4)	8905(5)	3422(3)	39(2)
C(13)	4281(4)	9019(4)	3199(3)	39(2)
C(14)	3709(4)	8975(5)	3620(4)	43(2)
C(15)	3930(5)	8839(5)	4275(4)	47(2)
C(16)	4661(5)	8735(6)	4489(4)	51(2)
C(17)	6149(4)	9416(6)	1271(4)	51(2)
C(18)	5954(5)	10279(6)	1282(4)	60(2)
C(19)	5511(5)	8970(7)	861(4)	64(3)
C(20)	6875(5)	9311(7)	952(4)	64(3)
C(21)	2879(4)	9089(5)	3382(4)	47(2)
C(22)	2792(5)	9346(7)	2653(5)	64(3)
C(23)	2546(5)	9718(5)	3781(4)	49(2)
C(24)	2489(5)	8354(7)	3479(6)	70(3)
C(25)	4448(5)	1101(4)	2748(4)	37(2)
C(26)	3955(5)	1347(5)	3205(4)	48(2)
C(27)	4102(5)	1302(6)	3882(4)	50(2)
C(28)	4797(5)	1026(5)	4116(4)	48(2)
C(29)	5317(5)	813(6)	3700(4)	53(2)
C(30)	5153(4)	848(5)	3004(4)	46(2)
C(31)	4150(4)	2724(5)	2083(3)	42(2)
C(32)	4010(5)	3488(5)	1932(4)	45(2)
C(33)	3680(4)	3712(5)	1314(4)	41(2)
C(34)	3498(4)	3127(5)	867(3)	39(2)
C(35)	3648(4)	2377(5)	1023(3)	36(2)
C(36)	3507(4)	1720(5)	559(4)	41(2)
C(37)	3133(4)	1810(5)	-70(3)	39(2)
C(38)	3032(4)	1161(5)	-471(4)	44(2)
C(39)	3304(4)	468(5)	-224(4)	46(2)
C(40)	3661(5)	429(5)	421(4)	45(2)
C(41)	3534(5)	4551(5)	1172(4)	47(2)
C(42)	4297(6)	4959(6)	1197(5)	63(2)
C(43)	3048(6)	4886(6)	1681(4)	68(3)
C(44)	3151(6)	4682(6)	459(4)	68(3)
C(45)	2570(5)	1226(5)	-1156(4)	46(2)
C(46)	1775(5)	1467(6)	-1026(4)	55(2)
C(47)	2935(6)	1824(6)	-1562(4)	60(2)
C(48)	2515(6)	472(6)	-1525(4)	65(3)
C(49)	4728(11)	8164(12)	9045(10)	84(4)
C(50)	4771(12)	8142(13)	8376(11)	88(4)
C(51)	4162(13)	8327(13)	7960(11)	93(4)

C(52)	3527(12)	8531(11)	8185(11)	85(4)
C(53)	3475(11)	8502(11)	8838(11)	81(4)
C(54)	4057(10)	8316(9)	9299(8)	81(4)
C(55)	1433(10)	6288(9)	1932(8)	108(5)
C(56)	1371(15)	6965(12)	2264(12)	108(5)
C(57)	1085(13)	7600(12)	1926(12)	99(5)
C(58)	782(10)	7625(11)	1324(11)	85(4)
C(59)	785(11)	6955(11)	1013(10)	89(4)
C(60)	1129(14)	6302(12)	1277(10)	98(5)
C(61)	69(18)	6250(20)	4123(18)	174(9)
C(62)	381(17)	6820(17)	3781(19)	169(9)
C(63)	726(18)	6610(19)	3236(18)	166(9)
C(64)	863(16)	5910(20)	3070(17)	167(9)
C(65)	455(17)	5356(17)	3328(19)	168(9)
C(66)	161(18)	5499(19)	3928(19)	173(9)

Pd(1)-C(1)	1.981(8)
Pd(1)-F(1)	1 999(4)
Pd(1)-N(2)	2 026(6)
Pd(1)-N(1)	2.020(0) 2.086(7)
Pd(2)-C(25)	1.983(9)
Pd(2)-F(3)	1.903(9) 1.983(4)
Pd(2)-N(3)	1.909(4) 1.998(7)
Pd(2)-N(4)	2.073(7)
F(2) - C(4)	1.360(11)
F(4) - C(28)	1 363(9)
N(1) - C(7)	1.303(7)
N(1) - C(1) N(1) - C(11)	1.300(11) 1.351(10)
N(1)-C(11) N(2) C(16)	1.331(10) 1.247(10)
N(2) - C(10) N(2) - C(12)	1.347(10) 1.272(0)
N(2) - C(12) N(2) - C(21)	1.372(9) 1.252(10)
N(3)-C(31) N(2)-C(25)	1.333(10) 1.270(0)
N(3)-C(33)	1.370(9) 1.222(11)
N(4)-C(30)	1.323(11)
N(4)-C(40)	1.331(11)
C(1)-C(6)	1.397(11)
C(1)-C(2)	1.400(13)
C(2)-C(3)	1.384(12)
C(3)-C(4)	1.294(15)
C(4)-C(5)	1.354(14)
C(5)-C(6)	1.386(11)
C(7)-C(8)	1.412(11)
C(8)-C(9)	1.382(12)
C(9)-C(10)	1.388(11)
C(9)-C(17)	1.534(11)
C(10)-C(11)	1.367(11)
C(11)-C(12)	1.492(11)
C(12)-C(13)	1.380(10)
C(13)-C(14)	1.396(11)
C(14)-C(15)	1.372(11)
C(14)-C(21)	1.540(10)
C(15)-C(16)	1.358(12)
C(17)-C(20)	1.519(12)
C(17)-C(18)	1.553(14)
C(17)-C(19)	1.563(13)
C(21)-C(24)	1.487(14)
C(21)-C(23)	1.521(12)
C(21)-C(22)	1.541(12)
C(25)-C(30)	1.397(12)
	. ,

Table S4. Bond lengths [A] and angles [deg] for 2a.

_

C(25)-C(26)	1.407(12)
C(26)-C(27)	1.377(12)
C(27)-C(28)	1.381(12)
C(28) - C(29)	1.367(12)
C(29) - C(30)	1.418(11)
C(31) - C(32)	1.392(12)
C(32)-C(33)	1.395(11)
C(33)-C(34)	1 389(11)
C(33)-C(41)	1 518(12)
C(34)-C(35)	1.374(11)
C(35)-C(36)	1.37(11) 1 497(11)
C(36)- $C(37)$	1.397(10)
C(37)- $C(38)$	1.397(10) 1 401(12)
C(38)- $C(39)$	1.401(12) 1.388(12)
C(38) - C(45)	1.500(12) 1.558(11)
C(30)-C(40)	1.330(11) 1.407(11)
C(37) - C(40) C(41) C(43)	1.407(11) 1.528(13)
C(41) - C(43) C(41) - C(42)	1.520(13) 1.542(12)
C(41)- $C(42)C(41)$ $C(44)$	1.342(12) 1.562(11)
C(41)- $C(44)C(45)$ $C(47)$	1.302(11) 1.518(12)
C(45)-C(47)	1.318(13) 1.510(12)
C(45) - C(48)	1.319(13) 1.524(12)
C(45) - C(46)	1.534(13)
C(49) - C(50)	1.366(18)
C(49)-C(54)	1.379(18)
C(50)-C(51)	1.360(19)
C(51)-C(52)	1.32(2)
C(52)-C(53)	1.338(19)
C(53)-C(54)	1.378(18)
C(55)-C(56)	1.375(18)
C(55)-C(60)	1.392(18)
C(56)-C(57)	1.382(19)
C(57)-C(58)	1.293(19)
C(58)-C(59)	1.334(18)
C(59)-C(60)	1.387(18)
C(61)-C(62)	1.37(2)
C(61)-C(66)	1.384(19)
C(62)-C(63)	1.37(2)
C(63)-C(64)	1.31(2)
C(64)-C(65)	1.35(2)
C(65)-C(66)	1.393(19)
C(1)-Pd(1)-F(1)	89.9(3)
C(1)-Pd(1)-N(2)	96.6(3)
F(1)-Pd(1)-N(2)	173.5(2)
C(1)-Pd(1)-N(1)	174.3(3)
F(1)-Pd(1)-N(1)	93.8(2)

N(2)-Pd(1)-N(1)	79.7(3)
C(25)-Pd(2)-F(3)	90.9(3)
C(25)-Pd(2)-N(3)	97.9(3)
F(3)-Pd(2)-N(3)	171.0(2)
C(25)-Pd(2)-N(4)	176.8(3)
F(3)-Pd(2)-N(4)	91.6(2)
N(3)-Pd(2)-N(4)	79.5(2)
C(7)-N(1)-C(11)	118.2(7)
C(7)-N(1)-Pd(1)	126.0(6)
C(11)-N(1)-Pd(1)	114.8(5)
C(16)-N(2)-C(12)	118.3(6)
C(16)-N(2)-Pd(1)	126.6(5)
C(12)-N(2)-Pd(1)	115.0(5)
C(31)-N(3)-C(35)	118.2(7)
C(31)-N(3)-Pd(2)	125.3(5)
C(35)-N(3)-Pd(2)	116.4(5)
C(36)-N(4)-C(40)	120.2(7)
C(36)-N(4)-Pd(2)	114.7(5)
C(40)-N(4)-Pd(2)	124 4(6)
C(6)-C(1)-C(2)	117 3(8)
C(6)-C(1)-Pd(1)	120 2(6)
C(2)-C(1)-Pd(1)	122.3(7)
C(3)-C(2)-C(1)	118.9(10)
C(4)-C(3)-C(2)	122.4(10)
C(3)-C(4)-C(5)	121 4(9)
C(3)-C(4)-F(2)	121.0(10)
C(5)-C(4)-F(2)	117.6(10)
C(4)-C(5)-C(6)	119.3(9)
C(5)-C(6)-C(1)	120.5(9)
N(1)-C(7)-C(8)	123.4(8)
C(9)-C(8)-C(7)	118.0(8)
C(8)-C(9)-C(10)	118.3(7)
C(8)-C(9)-C(17)	121.6(8)
C(10)-C(9)-C(17)	120.0(7)
C(11)-C(10)-C(9)	119.5(7)
N(1)-C(11)-C(10)	122.5(7)
N(1)-C(11)-C(12)	113.5(7)
C(10)-C(11)-C(12)	123.9(7)
N(2)-C(12)-C(13)	119.7(6)
N(2)-C(12)-C(11)	115.9(6)
C(13)-C(12)-C(11)	124.4(6)
C(12)-C(13)-C(14)	122.0(7)
C(15)-C(14)-C(13)	116.0(7)
C(15)-C(14)-C(21)	121.0(7)
C(13)-C(14)-C(21)	123.0(7)
C(16)-C(15)-C(14)	121.4(7)
· · · · · · · · · · · · · · · · · · ·	

N(2)-C(16)-C(15)	122.6(7)
C(20)-C(17)-C(9)	112.0(7)
C(20)-C(17)-C(18)	109.1(8)
C(9)-C(17)-C(18)	108.6(6)
C(20)-C(17)-C(19)	109.2(7)
C(9)-C(17)-C(19)	108.1(8)
C(18)-C(17)-C(19)	109.9(7)
C(24)-C(21)-C(23)	110.2(8)
C(24)-C(21)-C(14)	107.4(7)
C(23)-C(21)-C(14)	110.0(6)
C(24)-C(21)-C(22)	111.8(8)
C(23)-C(21)-C(22)	106.8(8)
C(14)-C(21)-C(22)	110.6(7)
C(30)-C(25)-C(26)	117.1(8)
C(30)-C(25)-Pd(2)	121.7(6)
C(26)-C(25)-Pd(2)	121 1(6)
C(27)-C(26)-C(25)	124 4(8)
C(26)-C(27)-C(28)	116 7(8)
F(4)-C(28)-C(29)	119 4(8)
F(4)-C(28)-C(27)	118 6(7)
C(29)-C(28)-C(27)	122.0(7)
	122.0(7)
C(28)-C(29)-C(30)	120.7(7)
C(25)-C(30)-C(29)	119.0(7)
N(3)-C(31)-C(32)	121.1(7)
C(31)-C(32)-C(33)	121.5(8)
C(34)-C(33)-C(32)	115.9(7)
C(34)-C(33)-C(41)	124.4(7)
C(32)-C(33)-C(41)	119.7(7)
C(35)-C(34)-C(33)	121.7(7)
N(3)-C(35)-C(34)	121.6(7)
N(3)-C(35)-C(36)	113.5(7)
C(34)-C(35)-C(36)	124.9(6)
N(4)-C(36)-C(37)	123.0(8)
N(4)-C(36)-C(35)	115.0(6)
C(37)-C(36)-C(35)	122.0(8)
C(36)-C(37)-C(38)	117.8(8)
C(39)-C(38)-C(37)	118.6(7)
C(39)-C(38)-C(45)	121.9(7)
C(37)-C(38)-C(45)	119.3(8)
C(38)-C(39)-C(40)	119.7(8)
N(4)-C(40)-C(39)	120.7(8)
C(33)-C(41)-C(43)	110.1(7)
C(33)-C(41)-C(42)	107.8(7)
C(43)-C(41)-C(42)	111.1(8)
C(33)-C(41)-C(44)	111.8(7)

C(43)-C(41)-C(44)	109.8(8)
C(42)-C(41)-C(44)	106.2(7)
C(47)-C(45)-C(48)	110.2(7)
C(47)-C(45)-C(46)	111.0(8)
C(48)-C(45)-C(46)	107.8(8)
C(47)-C(45)-C(38)	108.2(7)
C(48)-C(45)-C(38)	112.4(7)
C(46)-C(45)-C(38)	107.3(6)
C(50)-C(49)-C(54)	120.4(17)
C(51)-C(50)-C(49)	119.8(19)
C(52)-C(51)-C(50)	121.5(19)
C(51)-C(52)-C(53)	118.2(19)
C(52)-C(53)-C(54)	124.5(18)
C(53)-C(54)-C(49)	115.2(16)
C(56)-C(55)-C(60)	114.2(15)
C(55)-C(56)-C(57)	119.7(18)
C(58)-C(57)-C(56)	127.1(19)
C(57)-C(58)-C(59)	113.4(18)
C(58)-C(59)-C(60)	124.5(19)
C(59)-C(60)-C(55)	120.5(17)
C(62)-C(61)-C(66)	119(2)
C(63)-C(62)-C(61)	117(2)
C(64)-C(63)-C(62)	125(2)
C(63)-C(64)-C(65)	117(2)
C(64)-C(65)-C(66)	118(2)
C(61)-C(66)-C(65)	119(2)

Symmetry transformations used to generate equivalent atoms:

Table S5. Anisotropic displacement parameters (A^2 x 10^3) for 2a.The anisotropic displacement factor exponent takes the form: $-2 pi^2 [h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12]$

	U11	U22	U33	U23	U13	U12
Pd(1)	27(1)	60(1)	25(1)	3(1)	-5(1)	2(1)
Pd(2)	27(1)	56(1)	26(1)	0(1)	-4(1)	5(1)
F(1)	31(2)	76(3)	28(2)	7(2)	-6(2)	5(2)
F(2)	84(5)	222(10)	30(3)	-9(4)	-14(3)	31(5)
F(3)	42(2)	58(3)	31(2)	3(2)	-7(2)	7(2)
F(4)	66(3)	97(4)	26(2)	-2(2)	-11(2)	6(3)

N(1)	30(4)	58(4)	28(3)	-5(3)	-7(3)	2(3)
N(2)	31(3)	73(5)	29(3)	8(3)	-2(3)	-1(3)
N(3)	33(3)	59(4)	25(3)	5(3)	-4(2)	2(3)
N(4)	30(4)	53(4)	29(3)	0(3)	0(3)	1(3)
C(1)	27(4)	65(5)	41(4)	-1(4)	3(4)	-1(4)
C(2)	40(5)	116(9)	36(4)	-5(5)	-9(4)	14(5)
C(3)	48(6)	180(14)	41(5)	-33(7)	-12(4)	39(7)
C(4)	45(5)	153(11)	30(4)	-2(6)	-1(4)	23(6)
C(5)	60(6)	118(9)	40(5)	11(5)	-18(4)	8(6)
C(6)	38(4)	80(6)	32(4)	15(4)	1(3)	7(4)
C(7)	30(4)	68(5)	31(4)	7(4)	1(3)	2(4)
C(8)	38(5)	77(6)	32(4)	-4(4)	4(3)	7(4)
C(9)	36(4)	63(5)	33(4)	-7(4)	-9(3)	10(4)
C(10)	29(4)	71(6)	25(4)	-6(3)	-1(3)	1(3)
C(11)	28(4)	59(5)	32(4)	-6(3)	-10(3)	10(3)
C(12)	27(4)	62(5)	27(3)	-10(3)	-6(3)	0(3)
C(13)	28(4)	57(5)	30(4)	-1(3)	-4(3)	1(3)
C(14)	27(4)	65(5)	35(4)	-4(4)	-5(3)	-4(4)
C(15)	33(4)	73(6)	36(4)	6(4)	5(3)	-1(4)
C(16)	33(4)	90(7)	29(4)	6(4)	3(3)	4(4)
C(17)	33(4)	95(7)	24(3)	1(4)	-1(3)	11(4)
C(18)	55(5)	95(7)	28(4)	10(4)	5(4)	7(5)
C(19)	44(5)	114(9)	32(4)	-7(5)	-5(4)	12(5)
C(20)	52(5)	117(8)	23(4)	0(4)	0(3)	15(5)
C(21)	25(4)	72(6)	44(4)	-7(4)	-5(3)	-2(4)
C(22)	29(5)	104(9)	54(6)	-8(5)	-12(4)	7(5)
C(23)	35(4)	61(5)	52(5)	-3(4)	4(3)	-4(4)
C(24)	33(5)	83(7)	91(8)	2(6)	-12(5)	-3(5)
C(25)	32(5)	43(5)	35(4)	0(3)	1(4)	-3(3)
C(26)	27(4)	76(6)	40(4)	7(4)	-1(3)	10(4)
C(27)	33(4)	79(6)	37(4)	-2(4)	6(4)	-5(4)
C(28)	50(5)	69(6)	25(4)	-2(4)	-3(3)	3(4)
C(29)	32(4)	88(7)	38(4)	-4(4)	-10(3)	6(4)
C(30)	27(4)	76(6)	33(4)	-11(4)	-1(3)	4(4)
C(31)	38(4)	60(5)	26(3)	-2(3)	-4(3)	-6(4)
C(32)	36(4)	67(6)	31(4)	-4(3)	5(3)	1(4)
C(33)	31(4)	59(5)	31(4)	2(3)	-2(3)	1(3)
C(34)	30(4)	60(5)	24(3)	0(3)	-5(3)	-2(3)
C(35)	24(3)	60(5)	25(3)	3(3)	1(3)	1(3)
C(36)	32(4)	59(5) 56(5)	32(4)	-4(4)	0(3)	-10(4)
C(37)	33(4)	36(3)	2/(3)	3(3)	-1(3)	-/(3)
C(38)	55(4)	/3(6)	23(4)	-4(3)	5(3)	-8(4)
C(39)	41(4)	64(3)	51(4)	-3(4)	-0(3)	-3(4) 5(4)
C(40)	44(3)	00(5)	51(4) 22(4)	-2(4) 7(4)	2(3) 5(2)	3(4)
C(41)	43(4)	03(3)	55(4)	/(4)	-3(3)	-2(4)
U(42)	00(0)	02(0)	<u> </u>	-3(4)	-3(4)	-20(3)

C(43)	77(7)	76(7)	49(5)	5(5)	-1(5)	2(6)
C(44)	74(7)	79(7)	47(5)	9(5)	-15(5)	-10(5)
C(45)	47(5)	64(5)	27(4)	2(3)	5(3)	-3(4)
C(46)	44(5)	84(7)	33(4)	3(4)	-15(4)	-6(4)
C(47)	73(7)	79(6)	28(4)	3(4)	-1(4)	1(5)
C(48)	72(6)	91(7)	29(4)	-6(4)	-13(4)	-4(5)
C(49)	82(8)	53(7)	113(10)	4(8)	-5(8)	-9(7)
C(50)	86(8)	60(8)	116(10)	8(8)	-1(8)	-13(7)
C(51)	98(9)	59(8)	119(10)	11(8)	-11(8)	-16(8)
C(52)	88(9)	40(7)	122(10)	12(8)	-20(9)	-15(7)
C(53)	82(8)	32(7)	125(10)	10(8)	-9(8)	-18(7)
C(54)	85(9)	41(7)	116(10)	9(8)	-4(8)	-4(7)
C(55)	76(9)	103(9)	145(12)	-40(9)	7(9)	-25(8)
C(56)	77(9)	107(10)	139(11)	-45(9)	7(9)	-25(9)
C(57)	67(9)	98(9)	133(11)	-45(9)	26(8)	-25(8)
C(58)	42(7)	95(8)	125(11)	-33(9)	40(7)	-36(7)
C(59)	56(8)	100(9)	117(11)	-32(8)	34(8)	-36(7)
C(60)	73(9)	97(9)	128(11)	-42(9)	30(8)	-28(8)
C(61)	66(11)	194(19)	260(20)	89(18)	-3(12)	34(12)
C(62)	58(11)	189(18)	250(20)	88(18)	-20(12)	31(11)
C(63)	63(12)	188(18)	240(20)	93(18)	-23(11)	27(12)
C(64)	66(11)	189(19)	240(20)	98(18)	-19(11)	30(11)
C(65)	71(12)	186(18)	240(20)	104(18) -9(12)	37(11)
C(66)	73(12)	189(18)	260(20)	94(19)) 3(12)	35(12)

	x	у	Z	U(eq)		
H(2A)	5813	96	528	5398	78		
H(3A)	5807	95	74	6542	100	1	
H(5A)	6725	75	34	6616	89		
H(6A)	6785	75	38	5470	60		
H(7A)	7341	84	39	3175	52		
H(8A)	7311	88	32	2065	59		
H(10Å)	5118	9	315	214	5 5()	
H(13A)	4156	9	131	274	4 46		
H(15A)	3564	8	818	4584	4 57	r	
H(16A)	4789	8	638	494	6 61		
H(18A)	6353	10	554	154	3 8	9	
H(18B)	5481	10	349	148	0 8)	
H(18C)	5905	10	477	829	9 8)	
H(19A)	5465	9	157	404	. 9	5	
H(19B)	5038	90	049	1057	7 9	5	
H(19C)	5632	84	425	865	9	5	
H(20A)	7276	9	593	120	5 96)	
H(20B)	6815	9:	505	497	96		
H(20C)	7003	8′	768	946	96		
H(22A)	3050	9	834	261	0 95	2 1	
H(22B)	2260	94	408	2507	7 95		
H(22C)	3011	89	961	2378	8 95		
H(23A)	2806	10	199	371	2 74		
H(23B)	2605	9:	584	4252	2 74		
H(23C)	2014	9′	775	363	7 74		
H(24A)	2560	82	208	394′	7 105		
H(24B)	2697	79	958	3209	9 105		
H(24C)	1954	84	413	3346	5 105		
H(26A)	3489	1	557	303	6 57	/	
H(27A)	3744	14	454	417.	3 60)	
H(29A)	5795	6	640	3879	64		
H(30A)	5517	7	'01	2716	55		
H(31A)	4372	2	590	251	0 50	1	
H(32A)	4143	3	865	225	7 54		
H(34A)	3263	32	249	441	46)	
H(37A)	2952	2	294	-220) 46		
H(39A)	3249		21	-489	55		

Table S6. Hydrogen coordinates ($x \ 10^{4}$) and isotropic displacement parameters (A² x 10³) for **2a**.

H(40A)	3837	-49	593	54	
H(42A)	4562	4895	1638	95	
H(42B)	4219	5504	1107	95	
H(42C)	4596	4738	864	95	
H(43A)	3294	4809	2127	101	
H(43B)	2561	4630	1644	101	
H(43C)	2978	5433	1599	101	
H(44A)	3064	5229	387	102	
H(44B)	2672	4411	410	102	
H(44C)	3476	4489	134	102	
H(46A)	1554	1078	-757	82	
H(46B)	1470	1522	-1448	82	
H(46C)	1793	1955	-790	82	
H(47A)	3442	1660	-1636	90	
H(47B)	2958	2311	-1324	90	
H(47C)	2641	1888	-1989	90	
H(48A)	3017	302	-1611	98	
H(48B)	2209	538	-1946	98	
H(48C)	2285	89	-1256	98	
H(49A)	5164	8074	9336	101	
H(50A)	5225	7998	8203	105	
H(51A)	4196	8308	7495	112	
H(52A)	3116	8695	7892	102	
H(53A)	3005	8616	8994	97	
H(54A)	4000	8295	9760	98	
H(55A)	1664	5848	2133	129	
H(56A)	1523	6997	2724	130	
H(57A)	1115	8069	2161	118	
H(58A)	577	8077	1123	102	
H(59A)	534	6923	582	107	
H(60A)	1158	5860	1009	117	
H(61A)	-207	6361	4489	209	
H(62A)	358	7338	3916	203	
H(63A)	879	7005	2956	200	
H(64A)	1234	5789	2780	200	
H(65A)	370	4882	3106	202	
H(66A)	26	5089	4200	208	

Structure Determination of Complex 5a.

Colorless blocks of **5a** were grown from an acetone/pentane solution at 25 deg. C. A crystal of dimensions 0.28 x 0.16 x 0.16 mm mounted on a Bruker SMART APEX CCD-based X-ray diffractometer equipped with a low temperature device and fine focus Mo-target X-ray tube (1 = 0.71073 A) operated at 1500 W power (50 kV, 30 mA). The X-ray intensities were measured at 85(2) K; the detector was placed at a distance 5.055 cm from the crystal. A total of 3336 frames were collected with a scan width of 0.5° in w and 0.45° in phi with an exposure time of 20 s/frame. The integration of the data yielded a total of 44156 reflections to a maximum 2q value of 56.74° of which 7631 were independent and 6810 were greater than 2s(I). The final cell constants (Table 1) were based on the xyz centroids of 9998 reflections above 10s(I). Analysis of the data showed negligible decay during data collection; the data were processed with SADABS and corrected for absorption. The structure was solved and refined with the Bruker SHELXTL software package, using the space group P1bar with Z = 4 for the formula C24H29F5N2Pd, 2(C3H6O). All non-hydrogen atoms were refined anisotropically with the hydrogen atoms placed in idealized positions. The para-fluorophenyl ligand is disordered over two positions modeled by placement of partial occupancy atoms. Restraints (SADI/SIMU/DELU) were employed to maintain chemically sensible geometries. Full matrix least-squares refinement based on F^2 converged at R1 = 0.0448 and wR2 = 0.1019 [based on I > 2sigma(I)], R1 = 0.0524 and wR2 = 0.1088 for all data. Additional details are presented in Table 1 and are given as Supporting Information in a CIF file.

Sheldrick, G.M. SHELXTL, v. 2008/3; Bruker Analytical X-ray, Madison, WI, 2008. Sheldrick, G.M. SADABS, v. 2008/1. Program for Empirical Absorption Correction of Area Detector Data, University of Gottingen: Gottingen, Germany, 2008. Saint Plus, v. 7.53, Bruker Analytical X-ray, Madison, WI, 2008.

Table S7. (Crystal	data and	structure	refinement	for	5 a.
-------------	---------	----------	-----------	------------	-----	-------------

Identification code	5a
Empirical formula	C30 H41 F5 N2 O2 Pd
Formula weight	663.05
Temperature	85(2) K
Wavelength	0.71073 A
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	a = 9.6894(7) A alpha = 73.672(1) deg.
	b = 12.7681(9) A beta = 77.180(1) deg.
	c = 13.8914(10) A gamma = 69.587(1) deg.
Volume	1530.97(19) A^3
Z, Calculated density	2, 1.438 Mg/m^3
Absorption coefficient	0.665 mm^-1
F(000)	684
Crystal size	0.28 x 0.16 x 0.16 mm
Theta range for data collection	1.75 to 28.36 deg.
Limiting indices	-12<=h<=12, -17<=k<=17, -18<=l<=18
Reflections collected / unique	44156 / 7631 [R(int) = 0.0399]
Completeness to theta =	28.36 99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9010 and 0.8356
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	7631 / 96 / 438
Goodness-of-fit on F ²	1.105
Final R indices [I>2sigma(I)]	R1 = 0.0448, $wR2 = 0.1019$
R indices (all data)	R1 = 0.0526, $wR2 = 0.1088$
Largest diff. peak and hole	1.715 and -2.979 e.A^-3

	x	y z	U(eq)	
Pd(1)	1752(1)	-293(1)	2261(1)	29(1)
F(1)	2605(2)	-1369(2)	1392(1)	37(1)
F(2)	2559(2)	-1419(2)	3408(1)	58(1)
F(3)	-224(2)	-757(2)	2656(2)	48(1)
F(4)	7524(5)	727(4)	1311(4)	32(1)
F(4A)	7365(5)	1311(5)	1100(4)	37(1)
F(5)	-2057(2)	223(2)	3785(2)	46(1)
N(1)	841(2)	904(2)	3045(2)	27(1)
N(2)	775(2)	954(2)	1183(2)	20(1)
C(1)	957(3)	775(3)	4015(2)	38(1)
C(2)	252(3)	1652(3)	4511(2)	38(1)
C(3)	-610(3)	2705(3)	4016(2)	30(1)
C(4)	-733(3)	2814(3)	3001(2)	27(1)
C(5)	3(3)	1918(3)	2532(2)	23(1)
C(6)	-29(3)	1941(2)	1475(2)	22(1)
C(7)	-787(3)	2874(2)	798(2)	26(1)
C(8)	-743(3)	2802(3)	-197(2)	26(1)
C(9)	63(3)	1760(2)	-460(2)	23(1)
C(10)	814(3)	852(2)	246(2)	22(1)
C(11)	-1435(4)	3702(3)	4521(2)	36(1)
C(12)	-965(5)	3490(4)	5561(2)	49(1)
C(13)	-3106(4)	3856(3)	4659(2)	42(1)
C(14)	-1110(5)	4788(3)	3851(2)	47(1)
C(15)	-1607(4)	3840(3)	-927(2)	32(1)
C(16)	-1273(4)	3637(3)	-2001(2)	36(1)
C(17)	-1191(5)	4899(3)	-946(2)	41(1)
C(18)	-3266(4)	4013(4)	-550(3)	49(1)
C(19)	3603(12)	-12(7)	1894(8)	14(2)
C(19A)	3620(11)	345(8)	1886(9)	20(2)
C(20)	4177(6)	367(5)	916(4)	22(1)
C(20A)	3518(7)	1459(6)	1299(5)	37(1)
C(21)	5520(6)	611(5)	707(4)	26(1)
C(21A)	4820(7)	1784(6)	1024(5)	39(2)
C(22)	6224(7)	475(7)	1511(6)	21(1)
C(22A)	6120(8)	991(8)	1341(6)	28(2)

Table S8. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² x 10³) for **5a**.

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

C(23)	5716(6)	65(5)	2501(4)	21(1)
C(23A)	6189(7)	-63(7)	1903(7)	29(1)
C(24)	4371(6)	-167(5)	2710(4)	19(1)
C(24A)	4895(7)	-398(5)	2187(5)	29(1)
O(1)	6766(5)	6214(4)	5917(4)	100(1)
C(25)	5937(6)	7151(5)	6021(7)	94(2)
C(26)	4888(8)	7228(6)	7029(6)	117(3)
C(27)	5807(8)	8136(6)	5221(9)	163(5)
C(28)	6234(3)	6081(3)	1874(2)	32(1)
C(29)	4947(4)	6251(3)	2679(2)	36(1)
C(30)	6694(5)	7107(4)	1331(4)	77(2)
O(2)	6892(3)	5152(2)	1671(2)	49(1)

Table S9. Bond lengths [A] and angles [deg] for **5a**.

Pd(1)-C(19)	1.883(10)
Pd(1)-F(2)	1.9226(18)
Pd(1)-F(1)	1.9307(19)
Pd(1)-N(1)	1.968(3)
Pd(1)-N(2)	1.977(2)
Pd(1)-F(3)	2.113(2)
Pd(1)-C(19A)	2.140(9)
F(4)-C(22)	1.358(8)
F(4A)-C(22A)	1.349(8)
N(1)-C(1)	1.336(4)
N(1)-C(5)	1.360(4)
N(2)-C(10)	1.335(3)
N(2)-C(6)	1.350(4)
C(1)-C(2)	1.373(5)
C(2)-C(3)	1.389(4)
C(3)-C(4)	1.404(4)
C(3)-C(11)	1.516(5)
C(4)-C(5)	1.372(4)
C(5)-C(6)	1.468(4)
C(6)-C(7)	1.381(4)
C(7)-C(8)	1.402(4)
C(8)-C(9)	1.392(4)
C(8)-C(15)	1.527(4)
C(9)-C(10)	1.388(4)
C(11)-C(14)	1.529(5)
C(11)-C(12)	1.534(4)
C(11)-C(13)	1.536(5)
C(15)-C(16)	1.531(4)
C(15)-C(17)	1.532(5)
C(15)-C(18)	1.533(5)

C(19)-C(20)	1.368(11)
C(19)-C(24)	1.422(11)
C(19A)-C(24A)	1.338(12)
C(19A)-C(20A)	1.408(11)
C(20)-C(21)	1.392(7)
C(20A)-C(21A)	1.405(8)
C(21)-C(22)	1.375(9)
C(21A)-C(22A)	1.383(11)
C(22)-C(23)	1.372(9)
C(22A)-C(23A)	1.340(11)
C(23)-C(24)	1.387(7)
C(23A)-C(24A)	1.403(9)
O(1)-C(25)	1.213(6)
C(25)-C(27)	1.413(10)
C(25)-C(26)	1.544(10)
C(28)-O(2)	1.214(4)
C(28)-C(29)	1 477(4)
C(28)-C(30)	1.478(5)
C(19)-Pd(1)-F(2)	87.1(3)
C(19)-Pd(1)-F(1)	84.5(3)
F(2)-Pd(1)-F(1)	92.11(9)
C(19)-Pd(1)-N(1)	95.0(3)
F(2)-Pd(1)-N(1)	92.61(10)
F(1)-Pd(1)-N(1)	175.21(8)
C(19)-Pd(1)-N(2)	95.5(3)
F(2)-Pd(1)-N(2)	174.08(9)
F(1)-Pd(1)-N(2)	93.47(9)
N(1)-Pd(1)-N(2)	81.84(9)
C(19)-Pd(1)-F(3)	174.9(3)
F(2)-Pd(1)-F(3)	90.59(10)
F(1)-Pd(1)-F(3)	91.14(9)
N(1)-Pd(1)-F(3)	89.59(9)
N(2)-Pd(1)-F(3)	87.31(9)
C(19)-Pd(1)-C(19A)	10.9(4)
F(2)-Pd(1)-C(19A)	92.0(3)
F(1)-Pd(1)-C(19A)	93.9(3)
N(1)-Pd(1)-C(19A)	85.1(3)
N(2)-Pd(1)-C(19A)	89.6(3)
F(3)-Pd(1)-C(19A)	174.2(3)
C(1)-N(1)-C(5)	119.9(3)
C(1)-N(1)-Pd(1)	125.3(2)
C(5)-N(1)-Pd(1)	114.78(18)
C(10)-N(2)-C(6)	120.5(2)
C(10)-N(2)-Pd(1)	124.70(19)
C(6)-N(2)-Pd(1)	114.67(17)

N(1)-C(1)-C(2)	121.4(3)
C(1)-C(2)-C(3)	120.7(3)
C(2)-C(3)-C(4)	116.8(3)
C(2)-C(3)-C(11)	123.5(3)
C(4)-C(3)-C(11)	119.7(3)
C(5)-C(4)-C(3)	120.5(3)
N(1)-C(5)-C(4)	120.7(2)
N(1)-C(5)-C(6)	114.2(3)
C(4)-C(5)-C(6)	125.2(3)
N(2)-C(6)-C(7)	120.5(2)
N(2)-C(6)-C(5)	114.5(2)
C(7)-C(6)-C(5)	125.0(3)
C(6)-C(7)-C(8)	120.3(3)
C(9)-C(8)-C(7)	117.5(3)
C(9)-C(8)-C(15)	123.1(2)
C(7)-C(8)-C(15)	119.4(3)
C(10)-C(9)-C(8)	119.9(2)
N(2)-C(10)-C(9)	121.2(3)
C(3)-C(11)-C(14)	109.3(3)
C(3)-C(11)-C(12)	111.7(3)
C(14)-C(11)-C(12)	108.5(3)
C(3)-C(11)-C(13)	108.2(3)
C(14)-C(11)-C(13)	110.1(3)
C(12)-C(11)-C(13)	108.9(3)
C(8)-C(15)-C(16)	111.3(2)
C(8)-C(15)-C(17)	109.8(2)
C(16)-C(15)-C(17)	109.0(3)
C(8)-C(15)-C(18)	107.3(3)
C(16)-C(15)-C(18)	108.7(3)
C(17)-C(15)-C(18)	110.8(3)
C(20)-C(19)-C(24)	120.5(7)
C(20)-C(19)-Pd(1)	123.6(7)
C(24)-C(19)-Pd(1)	115.8(6)
C(24A)-C(19A)-C(20A)	122.6(7)
C(24A)-C(19A)-Pd(1)	116.0(6)
C(20A)-C(19A)-Pd(1)	121.2(7)
C(19)-C(20)-C(21)	120.4(6)
C(21A)-C(20A)-C(19A)	117.8(7)
C(22)-C(21)-C(20)	117.9(5)
C(22A)-C(21A)-C(20A)	118.1(6)
F(4)-C(22)-C(23)	118.0(6)
F(4)-C(22)-C(21)	118.1(7)
C(23)-C(22)-C(21)	123.9(6)
C(23A)-C(22A)-F(4A)	118.7(8)
C(23A)-C(22A)-C(21A)	123.1(7)

F(4A)-C(22A)-C(21A)	118.2(8)
C(22)-C(23)-C(24)	118.1(5)
C(22A)-C(23A)-C(24A)	119.5(7)
C(23)-C(24)-C(19)	119.2(6)
C(19A)-C(24A)-C(23A)	119.0(7)
O(1)-C(25)-C(27)	122.1(8)
O(1)-C(25)-C(26)	117.9(7)
C(27)-C(25)-C(26)	119.6(6)
O(2)-C(28)-C(29)	122.2(3)
O(2)-C(28)-C(30)	121.5(3)
C(29)-C(28)-C(30)	116.3(3)

Symmetry transformations used to generate equivalent atoms:

Table S10. Anisotropic displacement parameters (A² x 10³) for **5a**. The anisotropic displacement factor exponent takes the form: -2 pi² [h² a^{*2} U11 + ... + 2 h k a^{*} b^{*} U12]

	U11	U22	U33	U23	U13	U12	
Pd(1)	17(1)	36(1)	19(1)	5(1)	1(1)	-1(1)	
F(1)	33(1)	29(1)	32(1)	2(1)	6(1)	-2(1)	
F(2)	43(1)	60(1)	22(1)	12(1)	3(1)	20(1)	
F(3)	35(1)	38(1)	56(1)	3(1)	15(1)	-16(1)	
F(4)	20(2)	45(3)	33(2)	-6(2)	0(2)	-17(2)	
F(4A) 24(2)	55(3)	44(3)	-21(3)	5(2)	-25(3)	
F(5)	25(1)	79(2)	26(1)	-5(1)	-4(1)	-13(1)	
N(1)	14(1)	43(1)	15(1)	2(1)	-1(1)	-5(1)	
N(2)	16(1)	26(1)	19(1)	0(1)	-5(1)	-9(1)	
C(1)	20(1)	60(2)	15(1)	1(1)	-3(1)	5(1)	
C(2)	24(1)	65(2)	13(1)	-3(1)	-5(1)	-4(1)	
C(3)	27(1)	48(2)	15(1)	-4(1)	-4(1)	-14(1)	
C(4)	31(1)	35(2)	16(1)	0(1)	-7(1)	-12(1)	
C(5)	19(1)	35(2)	16(1)	1(1)	-6(1)	-12(1)	
C(6)	23(1)	28(1)	18(1)	-3(1)	-6(1)	-12(1)	
C(7)	34(2)	27(1)	18(1)	-5(1)	-10(1)	-6(1)	
C(8)	29(1)	30(1)	19(1)	-4(1)	-10(1)	-6(1)	
C(9)	24(1)	31(1)	20(1)	-8(1)	-6(1)	-10(1)	
C(10)) 18(1)	28(1)	23(1)	-6(1)	-4(1)	-10(1)	
C(11)) 46(2)	49(2)	14(1)	-6(1)	-6(1)	-14(2)	

C(12)	65(2)	68(3)	16(1)	-11(2)	-10(2)	-20(2)
C(13)	44(2)	49(2)	22(1)	-9(1)	-2(1)	-2(2)
C(14)	71(3)	54(2)	20(1)	-10(1)	-5(2)	-23(2)
C(15)	42(2)	35(2)	16(1)	-7(1)	-13(1)	0(1)
C(16)	50(2)	37(2)	19(1)	-7(1)	-15(1)	-2(1)
C(17)	66(2)	28(2)	21(1)	-7(1)	-17(1)	3(2)
C(18)	41(2)	66(2)	24(2)	-6(2)	-16(1)	7(2)
C(19)	17(3)	16(4)	17(3)	-8(3)	0(2)	-12(3)
C(19A) 12(2)	29(5)	28(3)	-16(4)	2(2)	-14(4)
C(20)	15(2)	30(3)	17(2)	2(2)	-4(2)	-7(2)
C(20A) 24(3)	42(3)	39(3)	5(3)	-6(2)	-14(3)
C(21)	16(2)	38(3)	19(2)	2(2)	1(2)	-10(2)
C(21A) 33(3)	42(4)	41(4)	2(3)	-1(3)	-22(3)
C(22)	14(3)	18(4)	30(4)	-1(3)	-2(2)	-7(3)
C(22A) 21(3)	42(4)	28(4)	-15(4)	5(2)	-17(3)
C(23)	17(2)	29(3)	18(2)	-9(2)	-2(2)	-5(2)
C(23A) 16(3)	31(4)	43(4)	-17(3)	-6(3)	-4(3)
C(24)	18(2)	26(3)	13(2)	-8(2)	1(2)	-6(2)
C(24A) 25(3)	27(3)	37(3)	-6(3)	-5(3)	-8(2)
O(1)	96(3)	65(2)	116(4)	-33(2)	-6(3)	10(2)
C(25)	57(3)	50(3)	188(7)	-53(4)	-50(4)	8(2)
C(26)	118(6)	96(5)	145(7)	-88(5)	-48(5)	26(4)
C(27)	69(4)	68(4)	322(14)	36(6)	-61(6)	-26(3)
C(28)	31(2)	36(2)	22(1)	-2(1)	-8(1)	-2(1)
C(29)	37(2)	34(2)	32(2)	-7(1)	-2(1)	-8(1)
C(30)	42(2)	54(3)	92(4)	29(2)	8(2)	-9(2)
O(2)	53(2)	50(2)	31(1)	-19(1)	-9(1)	10(1)

Table S11. Hydrogen coordinates ($x \ 10^{4}$) and isotropicdisplacement parameters (A² $x \ 10^{3}$) for **5a**.

	Х	y z	U(eq)		
H(5F)	-1210(8	-220(60)	3300(50)	70(20)	
H(1A)	1540	62	4369	46	
H(2A)	354	1537	5201	45	
H(4A)	-1329	3512	2637	33	
H(7A)	-1340	3568	1009	32	
H(9A)	100	1670	-1122	28	
H(10A)	1367	144	60	27	

H(12A)	-1231	2827	6014	74
H(12B)	-1477	4168	5847	74
H(12C)	112	3340	5485	74
H(13A)	-3416	3993	3997	63
H(13B)	-3663	4512	4967	63
H(13C)	-3306	3162	5099	63
H(14A)	-41	4679	3763	70
H(14B)	-1655	5436	4172	70
H(14C)	-1426	4945	3188	70
H(16A)	-206	3488	-2239	55
H(16B)	-1833	4318	-2454	55
H(16C)	-1566	2975	-1999	55
H(17A)	-1480	5072	-273	61
H(17B)	-1712	5554	-1439	61
H(17C)	-116	4748	-1139	61
H(18A)	-3502	3319	-527	73
H(18B)	-3855	4664	-1011	73
H(18C)	-3500	4166	130	73
H(20A)	3656	466	377	26
H(20B)	2600	1973	1095	44
H(21A)	5936	862	30	31
H(21B)	4808	2527	631	47
H(23A)	6269	-56	3029	25
H(23B)	7105	-579	2107	35
H(24A)	3968	-426	3388	22
H(24B)	4925	-1142	2588	35
H(26A)	4681	6496	7327	176
H(26B)	3954	7841	6903	176
H(26C)	5362	7396	7498	176
H(27A)	6403	7915	4600	245
H(27B)	6165	8681	5394	245
H(27C)	4762	8495	5116	245
H(29A)	4656	5549	2925	53
H(29B)	4113	6886	2406	53
H(29C)	5218	6430	3239	53
H(30A)	7098	7344	1793	115
H(30B)	5832	7731	1083	115
H(30C)	7457	6925	756	115

 Table S12.
 Hydrogen bonds for 5a [A and deg.].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
F(5)-H(5F)F(3)	1.05(7)	1.29(7)	2.344(3)	176(7)

Symmetry transformations used to generate equivalent atoms: