
Supplementary Methods

Empirical Estimator for Conditonal ERD

Suppose a finite set of 2K observed single trials, i.e., D =
{(
P k· , ck, zk

)}2K

k=1
,

where P k· = (Pt)t∈T represents the instantaneous power of the rhythmic activity
under investigation of the kth single trial in the interval T . Correspondingly
zk denotes the realizations of the explanatory variable, while ck serves as the
indicator variable, that distinguishes between catch and event-related trials.
For simplicity we will assume an equal number of K observed trials at both
conditions and denote the corresponding subsets of trials by C0 = {k : ck = 0}
and C1 = {k : ck = 1}, respectively. In order to attain an empirical estimator
for

gERD |Z=z[t] :=
E[Pt |C = 1, Z = z]
E[Pt |C = 0, Z = z]

− 1, t ∈ T , (1)

the generalized conditional ERD, we have to find the corresponding empirical
estimators for the conditional expectations. In case of a discrete variable Z the
empirical estimators are easy to derive as straightforward average across trials
with identical realization Z = z. Using Ci(z) := {k ∈ Ci : zk = z}, i = 0, 1
for the set of trials with realization Z = z, the empirical estimators of the
expectation values in (1) become

Eemp[Pt |C = i, Z = z,D] =
1

|Ci(z)|
∑

k∈Ci(z)

P k
t , i = 0, 1. (2)

A continuously valued variable Z requires a more extended approach: For each
instance t ∈ T , the factorization theorem of probability theory ensures the
existence of functions ψ0

t , ψ
1
t : R→ R, such that

ψ0
t (z) = E[Pt |Z = z, C = 0] and ψ1

t (z) = E[Pt |Z = z, C = 1] , (3)

where for each instance t ∈ T , ψ0
t and ψ1

t correspond to a separate regression
function of the explanatory variable Z on the dependent variable Pt for the rest
and the event-related condition, respectively. In principle any regression model
could be fitted to the observed data D. However, since the regression model has
to be repeatedly estimated at every instance t, we propose the use a Nadaraya
Watson estimator [1, 2] for reasons of efficiency. In case of ψ1

t (z) the Nadaraya
Watson estimator is of the following form

ψ̂1
t (z |D) =

∑
k∈C1

P k
t g

1
k(z), (4)

where the local weighting factors g1
k(z) are given as

g1
k(z) = Φ

(
zk − z
h

)(∑
l∈C1

Φ
(
zl − z
h

))−1

. (5)
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Those weightings depend on the choice of the kernel function Φ as well as on
the local smoothing parameter h. In the present analysis we used Gaussian
kernels along with the optimal (with respect to the Asymptotic Mean Integrated
Squared Error) choice of the bandwidth [3], i.e.,

h :=
(

4
3

) 1
5

σZ K
− 1

5 ≈ 1.06 σ̂Z K
− 1

5 , (6)

where σZ is the standard deviation of the distribution of Z, σ̂Z the corresponding
empirical estimate and K the number of observations. Advantageously, the
weighting factors g1

k(z) are independent of t and can therefore be efficiently
calculated in a single sweep directly from the realizations of the explanatory
variable Z.

Accordingly, we define the empirical estimator ψ̂0
t (z |D) of the state condi-

tional dynamics at rest by just exchanging the set C1 with C0, such that the
empirical estimator for conditional gERD is finally determined by

gERD |Z=z[t |D] =
ψ̂1

t (z |D)

ψ̂0
t (z |D)

− 1. (7)

Remark: For the sake of completeness we would like to mention that the em-
pirical estimator of the simple extension of the conventional framework towards
state conditonal ERD, i.e.,

ERD |Z=z[t] :=
E[Pt |Z = z]
E[Pref |Z = z]

− 1, t ∈ T , (8)

can be attained in an identical manner. To this end the empirical estimator of
the conditional event-related dynamics (4) has to be contrasted with an estimate
of the conditional expectation of the static baseline level, where the latter can
be derived (cf. above) as a weigthed average of the single trial observations of
the baseline levels {P k

ref : k ∈ C1}, that is strictly speaking

ψ̂ref(z |D) =
∑
k∈C1

P k
ref g

1
k(z). (9)

Data preprocessing

Spatial Projection Generally, EEG signals obtained at individual sensors
are often composed as a (linear) superposition of several distinct signals. In
order to recover the signals of interest, while simultaneously suppressing inter-
ferences, we applied a specialised method to derive optimal spatial linear filters.
For the present analysis of conditional ERD two spatial filters are required, one
for the left-hemispheric µ-rhythm and the other for occipital α-activity. To this
end, we used the Common Spatial Pattern (CSP) algorithm [4] on the band-
pass filtered signal to project onto the signal originating from the contra-lateral
somatosensory cortex, while an Independent Component Analysis (ICA) was
applied on the broadband signals for the extraction of an occipital α-source.
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Figure 1: The left panel shows the conventionally estimated ERD response to
the second stimulus, separately for the stimulation condition (black) and the
reference condition (green). The virtual conditions T1 and T2 for the CSP are
indicated by the gray shaded regions. The color panels at the right depict the
CSP filter and the spatial distribution of the recovered source.

In general, the CSP analysis solves the task of finding a linear subspace, i.e., a
linear combination of channels, for which the variance of the signal is maximized
for one condition while the variance of another condition is minimized. This
concept can be efficiently used to recover neural sources that exhibit ERD and
ERS effects [5]. To this end we defined two virtual conditions based on the
observed averaged ERD from an arbitrary sensor over the left somatosensory
cortex. The first condition was defined as the ERD period, while the opposing
condition is set to the ERS period (cf. left panel in Fig. 1). Applying the CSP
algorithm to the bandpass (10 Hz) filtered signal determines an optimal spatial
filter that maximizes the variance (the power) during the ERS period while it
is minimized for the ERD phase. Intuitively, the derived spatial filter reflects
the best linear spatial projection onto the modulated rhythmic µ-activity. The
estimated spatial filter along with the corresponding scalp distribution of the
recovered source are depicted in Fig. 1.

Occipital α-activity was extracted by means of an ICA algorithm that was
applied to the broadband signals. For the present application we used the Tem-
poral Decorrelation SEParation (TDSEP) algorithm [6], which exclusively relies
on second-order statistics in the form of temporally delayed covariance matrices.
Fig. 2 depicts the estimated spatial filter along with the scalp distribution of
the extracted occipital α-source.

Time-Frequency Representation. Elaborated analyses of the temporal
evolution of evoked spectral perturbations require a high-resolution representa-
tion of the data in the time-frequency domain. We used Morlet wavelets, which
are known to achieve the best ratio between the resolution in the time and in
the frequency domain. Moreover, Morlet wavelets are complex valued filters,
which give rise to analytic signals and thereby enable access to the instanta-
neous phase and the instantaneous amplitude of rhythmic activity. For an easy
introduction to wavelet decomposition, with a particular emphasis on Morlet
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Figure 2: Left: The ICA-filter and the corresponding scalp distribution of the
recovered occipital α source. The right panel shows the corresponding power
spectrum with a distinct peak at 11 Hz.

wavelets we refer to [7]. In order to bandpass filter the EEG signals, we first
determined the individual spectral peak in the 8–13 Hz domain at sensors cover-
ing the somatosensory and the occipital region congruently at 11 Hz. Secondly,
we applied a Morlet wavelet centered at the individual spectral peaks.

Referring to the obtained spatial and spectral filters intuitively as wcsp, wica

and b11Hz, respectively, we obtained the instantaneous power of contralateral
µ-rhythm and occipital α-rhythm as:

P :=
∣∣w>csp ·X ∗ b11Hz

∣∣2 and O :=
∣∣w>ica ·X ∗ b11Hz

∣∣2 , (10)

where X represents the multi-channel single trial EEG.
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