Supporting Information:

Copper-Hydroperoxo Mediated N-Debenzylation Chemistry Mimicking Aspects of Copper Monoxygenases

Debabrata Maiti, Amy A. Narducci Sarjeant and Kenneth D. Karlin *

Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218.

*Corresponding Author: karlin@jhu.edu

alkylamino nitrogen (N2) and pyridyl groups not substituted in the 6-position (N1 and N3) comprise the basal plane in the five-coordinate complex. Five-coordinated copper(II) ion has a slightly distorted square pyramidal geometry ($\tau = 0.197$), with weak axial Cu^{II}-Npy' interaction (Cu-N4 = 2.412(2)). Selected bond distances and angles are listed in Table S1.

X-ray Crystal Structure of $[(L^{NH(CH2Ph)})Cu^{II}(Cl)]ClO_4(10)$. The chloride (Cl1),

Bond Lengths (Å)		Bond Angles (deg)	
Cu(1)-N(1)	1.9880(18)	N(1)-Cu(1)-N(3)	163.34(8)
Cu(1)-N(3)	1.9993(18)	N(1)-Cu(1)-N(2)	82.05(7)
Cu(1)-N(2)	2.0503(18)	N(3)-Cu(1)-N(2)	83.47(7)
Cu(1)-Cl(1)	2.2311(8)	N(1)-Cu(1)-Cl(1)	96.36(6)
Cu(1)-N(4)	2.412(2)	N(3)-Cu(1)-Cl(1)	97.40(6)
N(1)-C(5)	1.349(3)	N(2)-Cu(1)-Cl(1)	175.17(5)

Table S1. Selected Distances and Angles for $[(L^{NH(CH_2Ph)})Cu^{II}(Cl)]^+$ (10).

Table S2. Selected Distances and Angles for $[(\mathbf{L}^{N(CH_2Ph)_2})Cu^{II}(H_2O)(ClO_4)]^+$ (1).

<u>Bond Lengths (Å)</u>		Bond Angles (deg)	
Cu(1)-O(1)	1.9723(11)	O(1)-Cu(1)-N(1)	94.34(5)
Cu(1)-N(1)	1.9885(12)	O(1)-Cu(1)-N(3)	99.06(5)
Cu(1)-N(3)	1.9965(12)	N(1)-Cu(1)-N(3)	166.31(5)
Cu(1)-N(2)	2.0104(12)	O(1)-Cu(1)-N(2)	175.69(5)
Cu(1)-O(2)	2.3515(11)	N(1)-Cu(1)-N(2)	83.57(5)
O(1)-H(1B)	0.78(2)	N(3)-Cu(1)-N(2)	83.24(5)
O(1)-H(1O)	0.77(3)	O(1)-Cu(1)-O(2)	86.88(5)
N(1)-C(5)	1.3429(19)	N(1)-Cu(1)-O(2)	94.29(4)

N(1)-C(1)	1.3459(19)	N(3)-Cu(1)-O(2)	83.72(5)
N(2)-C(7)	1.4844(18)	N(2)-Cu(1)-O(2)	97.03(5)
N(2)-C(6)	1.4929(18)	Cu(1)-O(1)-H(1B)	120.4(16)

Table S3.Selected Distances and Angles for $[(\mathbf{L}^{N(CH_3)_2})Cu^{II}(HCOO^-)(ClO_4)Cu^{II}(\mathbf{L}^{NH(CH_3)})]$

<u>Bond Lengths (Å)</u>		Bond Angles (deg)	
Cu(1)-O(2)	1.942(2)	O(2)-Cu(1)-N(3)	96.00(11)
Cu(1)-N(3)	2.020(3)	O(2)-Cu(1)-N(2)	175.51(13)
Cu(1)-N(2)	2.022(3)	N(3)-Cu(1)-N(2)	82.15(12)
Cu(1)-N(1)	2.023(3)	O(2)-Cu(1)-N(1)	99.39(11)
Cu(1)-N(4)	2.181(3)	N(3)-Cu(1)-N(1)	139.38(12)
Cu(2)-O(1)	1.953(2)	N(2)-Cu(1)-N(1)	84.59(13)
Cu(2)-N(8)	1.980(4)	O(2)-Cu(1)-N(4)	95.93(12)
Cu(2)-N(6)	1.981(4)	N(3)-Cu(1)-N(4)	116.10(12)
Cu(2)-N(7)	2.020(3)	N(2)-Cu(1)-N(4)	81.29(15)
O(1)-C(40)	1.249(5)	N(1)-Cu(1)-N(4)	99.44(11)
O(2)-C(40)	1.261(4)	O(1)-Cu(2)-N(8)	92.25(13)
N(1)-C(1)	1.338(5)	O(1)-Cu(2)-N(6)	101.17(12)
N(1)-C(5)	1.344(4)	N(8)-Cu(2)-N(6)	165.50(14)
N(2)-C(13)	1.471(6)	O(1)-Cu(2)-N(7)	168.96(12)
N(2)-C(7)	1.483(6)	N(8)-Cu(2)-N(7)	83.25(17)
N(2)-C(6)	1.497(5)	N(6)-Cu(2)-N(7)	82.57(16)
N(3)-C(8)	1.343(5)	C(40)-O(1)-Cu(2)	124.3(2)
N(3)-C(12)	1.343(4)	C(40)-O(2)-Cu(1)	126.3(2)

Figure S1. ESI-MS spectrum of $\mathbf{L}^{N(CH_2Ph)_2}$; $[\mathbf{L}^{N(CH_2Ph)_2} + H]^+$ and $[\mathbf{L}^{N(CH_2Ph)_2} + Na]^+$.

Figure S2. ESI-MS spectrum of $[(\mathbf{L}^{N(CH_2Ph)(PhCHO^-)}Cu^{II}]^+$ (4) in acetone obtained from the decomposition of $[(\mathbf{L}^{N(CH_2Ph)_2})Cu^{II}(^-OOH)]^+$ (2).

Figure S3. ESI-MS spectrum of $[(\mathbf{L}^{N(CH_2Ph)(PhCH(18)O^{-})}Cu^{II}]^+$ in acetone obtained from the decomposition of $[(\mathbf{L}^{N(CH_2Ph)_2})Cu^{II}(^{-18}O^{18}OH)]^+$.

Figure S4. EPR spectrum of the decomposition products from $[(\mathbf{L}^{N(CH_2Ph)_2})Cu^{II}(-OOH)]^+(\mathbf{2})$ in acetone at 77 K.

Figure S5. ESI-MS spectrum of the decomposition products from $[(L^{N(CH_2Ph)_2})Cu^{II}(-OOH)]^+(2)$ in acetone.

Figure S6. ESI-MS spectrum of the decomposition products from $[(\mathbf{L}^{N(CH_2Ph)_2})Cu^{II}(^{-18}O^{18}OH)]^+(\mathbf{2})$ in acetone.

Figure S7. ESI-MS spectrum of the extracted organics from the decomposition of $[(L^{N(CH_2Ph)_2})Cu^{II}(-OOH)]^+(2)$ in acetone.

Figure S8. GC-MS spectrum of PhCH¹⁸O from the decomposition of $[(\mathbf{L}^{N(CH_2Ph)_2})Cu^{II}(^{-18}O^{18}OH)]^+$.

Figure S9. ESI-MS spectrum of $L^{NH(CH_2Ph)}$; $[L^{NH(CH_2Ph)} + H]^+$ and $[L^{NH(CH_2Ph)} + Na]^+$.

Figure S10. ESI-MS spectrum $L^{N(CH_2Ph)(COPh)}$ and $L^{N(COPh)_2}$; $[L^{N(CH_2Ph)(COPh)} + Na]^+$ and $[L^{N(COPh)_2} + Na]^+$.

Figure S11. ESI-MS spectrum $L^{NH(COPh)}$; $[L^{NH(COPh)} + H]^+$ and $[L^{NH(COPh)} + Na]^+$.

Figure S12. ESI-MS spectrum of Unreacted $\mathbf{L}^{N(CH_3)(CD_3)}$ showing scrambling of deuterium labeling in $\mathbf{L}^{N(CH_3)(CD_3)}$ to $\mathbf{L}^{N(CH_3)(CD_2H)}$ (m/z = 336, M+H), $\mathbf{L}^{N(CH_3)(CDH_2)}$ (m/z = 335, M+H) and $\mathbf{L}^{N(CH_3)_2}$ (m/z = 334, M+H).

Figure S13. EPR spectrum of $[(\mathbf{L}^{N(CH_3)_2})Cu^{II}(HCOO^-)(ClO_4)Cu^{II}(\mathbf{L}^{NH(CH_3)})]$ (ClO₄)₂ in acetone at 77 K.

Figure S14. ESI-MS spectrum of the crystalline material from the decomposition of $[(L^{N(CH_3)_2})Cu^{II}(-OOH)]^+(3)$ in acetone.

Figure S15. ESI-MS spectrum (with dominant peak at m/z = 563.01) of $[(\mathbf{L}^{N(CH_2Ph)(PhCHO-)}Cu^{II}]^+$ (4) in acetonitrile obtained from the PhIO reaction with $[(\mathbf{L}^{N(CH_2Ph)_2})Cu^{I}]^+$ (6).

Figure S16. ESI-MS spectrum (with strong peak at m/z = 565.34) of $[(\mathbf{L}^{N(CH_2Ph)(PhCH(18)O-)}Cu^{II}]^+$ (4) in acetonitrile obtained from the PhIO plus $H_2^{18}O$ reaction with $[(\mathbf{L}^{N(CH_2Ph)2})Cu^{I}]^+$ (6).

Figure S17. ESI-MS spectra from the reaction of $[(\mathbf{L}^{N(CH_2Ph)_2})Cu^I]^+(\mathbf{6})$ with PhIO (after ~1.6 min) suggesting the transient formation of the cupryl complex $[(\mathbf{L}^{N(CH_2Ph)_2})Cu^{II}-O^{\bullet}]^+(\mathbf{8})$ at m/z = 564.23 (~60% formation) and $[(\mathbf{L}^{N(CH_2Ph)(PhCHO^{\bullet})})Cu^{II}]^+(\mathbf{4})$ at m/z = 563.27 (~40% formation). Insets showing the expected pattern for 60% formation of **8** plus 40% formation of **4**. See text for further discussion.

Figure S18. ESI-MS spectra from the reaction of $[(\mathbf{L}^{N(CH_2Ph)_2})Cu^I]^+(\mathbf{6})$ with PhIO (after ~1.8 min) suggesting the transient formation of the cupryl complex $[(\mathbf{L}^{N(CH_2Ph)_2})Cu^{II}-O^{\bullet}]^+(\mathbf{8})$ at m/z = 564.33 (~50% formation) and $[(\mathbf{L}^{N(CH_2Ph)(PhCHO^{\bullet})})Cu^{II}]^+(\mathbf{4})$ at m/z = 563.32 (~50% formation). Insets showing the expected pattern for 50% formation of **8** plus 50% formation of **4**. See text for further discussion.

Figure S19. ESI-MS spectra from the reaction of $[(\mathbf{L}^{N(CH_2Ph)_2})Cu^I]^+(\mathbf{6})$ with PhIO (after ~2.1 min) suggesting the transient formation of the cupryl complex $[(\mathbf{L}^{N(CH_2Ph)_2})Cu^{II}-O^{\bullet}]^+(\mathbf{8})$ at m/z = 564.30 (~40% formation) and $[(\mathbf{L}^{N(CH_2Ph)(PhCHO^{\bullet})})Cu^{II}]^+(\mathbf{4})$ at m/z = 563.21 (~60% formation). Insets showing the expected pattern for 40% formation of **8** plus 60% formation of **4**. See text for further discussion.

Figure S20. ESI-MS spectra from the reaction of $[(\mathbf{L}^{N(CH_2Ph)_2})Cu^I]^+(\mathbf{6})$ with PhIO (after ~2.4 min) suggesting the transient formation of the cupryl complex $[(\mathbf{L}^{N(CH_2Ph)_2})Cu^{II}-O^{\bullet}]^+(\mathbf{8})$ at m/z = 564.25 (~30% formation) and $[(\mathbf{L}^{N(CH_2Ph)(PhCHO^{\bullet})})Cu^{II}]^+(\mathbf{4})$ at m/z = 563.10 (~70% formation). Insets showing the expected pattern for 30% formation of **8** plus 70% formation of **4**. See text for further discussion.

Figure S21. ESI-MS spectrum (with dominant peak at m/z = 411.18) of $[(\mathbf{L}^{N(CH_3)(CH_2O-})Cu^I]^+$ (5) in acetonitrile obtained from the PhIO reaction with $[(\mathbf{L}^{N(CH_3)2})Cu^I]^+$ (7).