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1 Experimental & Theoretical Setup

The most general theoretical framework for multi-agent motor interactions is dynamic game theory

[1] in case of competing players and optimal control theory [4] in case of cooperating players. In

our experiments the condition of cooperation and competition was translated into a one-player

versus a two-player condition. In the one-player condition the two robot handles were controlled

by the two arms of one person. In the two-player condition the two robot handles were controlled

by two different players. In the one-player condition bimanual coordination can be understood by

a player minimizing a cost functions that takes into account both task requirements and energy

consumption (see [3] for reference). In the two-player condition both players try to minimize their

cost respective functions but the global minimum must not be a stable solution. Dynamic game

theory allows predicting the stable Nash solution in which players minimize their maximum loss.

In both optimal control theory and dynamic game theory analytic solutions to multi-agent

control problems can be found if the problems can be formulated as linear dynamical systems. As

described in the main text we conducted two experiments:

• The prisoner’s dilemma motor game. Our version of the prisoner’s dilemma defines a nonlinear

dynamical system, because the force that is experienced by a player, depends on terms that are

bilinear in the arm position of that player. This can be seen as follows: The force f depends

both on the spring constant K and the y-position, such that f = Ky. The spring constant,

however, depends on the x-positions of the two players such that K(x1, x2) = αx1+βx2. Thus,

the force depends on terms bilinear in yx1 and yx2. To analyze the result of this experiment

we therefore discretized the x1x2-space and performed a traditional discrete matrix game

analysis (see [1] for reference).

• The rope-pulling game. This game can be expressed as a linear dynamical system. Each one

of two players controls a robot handle, with position xH1
t and xH2

t in the horizontal plane

respectively, which together control a virtual mass point such that

xC
t = αDφ1x

H1
t + αDφ2x

H2
t (1)

where xC
t is the mass point position at time t and Dφ1 and Dφ2 are visuomotor rotation

matrices and α is a scaling parameter. The scaling parameter was set to α = 2 throughout

our experiment to confine arm movements to a small space in order to avoid collision of

the robot handles. Additionally, an isotropic spring was simulated on each robot handle

to provide proprioceptive feedback of the distance moved. Since the spring was isotropic

we do not need to model it explicitly and can use the moved distance as a proxy. In the

experiment the visuomotor rotation matrices Dφi
were drawn randomly every 80 trials from

the set {−135◦,−90◦,−45◦, 0◦, +45◦}, but in the model we assume that the rotations are

known to the player, which corresponds to a situation after learning has taken place.

In the following we present the analytical solution to the rope-pulling game.



2 The Bimanual Task

The optimal solution for the bimanual condition can be computed based on optimal feedback control

for Linear-Quadratic-Gaussian (LQG) systems [4]. LQG models deal with linear dynamic systems,

quadratic cost functions as performance criteria, and Gaussian random variables as noise. Here we

consider the following model

xt+1 = F xt + Gut + ξt (2)

with the variables
dynamic state xt ∈ <n

control signal ut ∈ <m

noise ξt ∈ <n

The random variable ξt ∈ <n is a realization of an independent, zero-mean, Gaussian noise process

with covariance matrix E[ξt1ξ
T
t2
] = Ωξ δt1t2 . The system matrices F and G define the dynamics of

the system. To simplify the analysis we consider an infinite horizon cost function

J =
1

2
E

[ ∞∑
t=0

{
xT

t Qxt + uT
t Rut

}]
(3)

with
expected cumulative cost J ∈ <∗+
state cost matrix Q = QT ≥ 0

control cost matrix R = RT > 0

Time is discretized in bins of 10ms. The model predictions can be seen in Figure S1.

Arm Model. Following previous studies [5, 6] the hands are modeled as point masses m with

two-dimensional positions pHi(t) and velocities vHi(t) = ṗHi(t) with i = 1, 2. The two hands

are designated by H1 and H2 respectively. The combined action of all muscles on the hands is

represented by the force vectors fHi(t). The neural control signals uHi(t) are transformed to these

forces through second-order muscle-like low-pass filters with time constants τ1 and τ2. In every

instant of time, the two hand motions are mapped to the virtual cursor motion by equation (1).

Thus, the virtual cursor position p(t) is related to the hand positions by p(t) = Dφ1 pH1(t) +

Dφ2 pH2(t). Put together, this yields the following system equations

p̈(t) =
1

m

2∑
i=1

Dφi
fHi(t) (4)

τ1 τ2 f̈Hi(t) + (τ1 + τ2)ḟ
Hi(t) + fHi(t) = uHi(t) (5)

Equation (5) can be written equivalently as a pair of coupled first-order filters with outputs g and

f . This allows to formulate the state space vector x(t) ∈ <16 as

x(t) =

[
px(t) vx,H1(t) fx,H1(t) gx,H1(t) vx,H2(t) fx,H2(t) gx,H2(t) ptarget,x · · ·
· · · py(t) vy,H1(t) f y,H1(t) gy,H1(t) vy,H2(t) f y,H2(t) gy,H2(t) ptarget,y

]T



where the target location is absorbed in the state vector. When discretizing the above equations
with time bin ∆ the following system matrices are obtained

F =




1 ∆ cos(φ1) 0 0 ∆ cos(φ2) 0 0 0 0 −∆ sin(φ1) 0 0 −∆ sin(φ2) 0 0 0

0 1 ∆
m

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1− ∆
τ2

∆
τ2

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1− ∆
τ1

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 ∆
m

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1− ∆
τ2

∆
τ2

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1− ∆
τ1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 ∆ sin(φ1) 0 0 ∆ sin(φ2) 0 0 0 1 ∆ cos(φ1) 0 0 ∆ cos(φ2) 0 0 0

0 0 0 0 0 0 0 0 0 1 ∆
m

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1− ∆
τ2

∆
τ2

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1− ∆
τ1

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 ∆
m

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1− ∆
τ2

∆
τ2

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1− ∆
τ1

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




G =




0 0 0 0

0 0 0 0

0 0 0 0
∆
τ1

0 0 0

0 0 0 0

0 0 0 0

0 0 ∆
τ1

0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 ∆
τ1

0 0

0 0 0 0

0 0 0 0

0 0 0 ∆
τ1

0 0 0 0




In our simulations we set m = 1kg and τ1 = τ2 = 0.04s.

Cost Matrices. The cost matrices Q and R are defined as follows:

Q =




wp 0 0 0 0 0 0 −wp 0 0 0 0 0 0 0 0

0 wv 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 wv 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−wp 0 0 0 0 0 0 wp 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 wp 0 0 0 0 0 0 −wp

0 0 0 0 0 0 0 0 0 wv 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 wv 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −wp 0 0 0 0 0 0 wp




R = we




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




Importantly, the Q-matrix punishes deviations from the x- and y-components of the virtual tar-

get equally, i.e. both components must be optimized as required for global optimality. In our

simulations we set wp = 1, wv = 0.02 and we = 10−5.

Optimal Policy. The optimal control policy is given by

ut = −Lxt (6)



with

L =
(
R + GT S G

)−1
GT S F (7)

The matrix S can be easily computed by solving the algebraic Riccati equation

S = Q + F T S F − F T S G
(
R + GT S G)−1 GT S F (8)

The optimal policy ut is 4-dimensional and comprises the optimal control policies for both hands

ut = [uH1
t ;uH2

t ].

3 The Two-Player Condition

Nash strategies can be defined for linear quadratic games [1]. A linear quadratic game is charac-

terized by linear system equations and quadratic cost functions for all players. In the following we

assume

xt+1 = F xt + G1 uP1
t + G2 uP2

t (9)

with the variables
dynamic state xt ∈ <n

control signal player 1 uP1
t ∈ <m

control signal player 2 uP2
t ∈ <m

The system matrices F , G1 and G2 define the dynamics of the system. In this two-player game

there are two cost functions to consider

J1 =
1

2
E

[ ∞∑
t=0

{
xT

t Q1 xt +
(
uP1

t

)T
R1 uP1

t

}]
(10)

J2 =
1

2
E

[ ∞∑
t=0

{
xT

t Q2 xt +
(
uP2

t

)T
R2 uP2

t

}]
(11)

with
expected cumulative cost player 1 J1 ∈ <∗+
expected cumulative cost player 2 J2 ∈ <∗+
state cost matrix player 1 Q1 = QT

1 ≥ 0

state cost matrix player 2 Q2 = QT
2 ≥ 0

control cost matrix player 1 R1 = RT
1 > 0

control cost matrix player 2 R2 = RT
2 > 0

In the following we assume R1 = R2, i.e. no differences in the penalization of efforts between the

two players. The model predictions can be seen in Figure S2.

Arm Model. The system dynamics are identical to the system dynamics in the bimanual con-

dition. Note the equivalence between G = [G1 G2].



Cost Matrices. The cost matrices for the two players are:

Q1 =




wp 0 0 0 0 0 0 −wp 0 0 0 0 0 0 0 0

0 wv 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 wv 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−wp 0 0 0 0 0 0 wp 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




Q2 =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 wp 0 0 0 0 0 0 −wp

0 0 0 0 0 0 0 0 0 wv 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 wv 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −wp 0 0 0 0 0 0 wp




R1 = R2 = we

(
1 0

0 1

)

Importantly, in the game each player only optimizes his component of the projected virtual cursor

independently. This is reflected in the Q-matrices. Note that there is a relation between the Q-

matrix in the bimanual condition and the Qi-matrices in the game condition, namely Q = Q1 +Q2.

The parameters wp, wv and we were set equally in both conditions.

Nash Policy. The Nash equilibrium policies can be computed to be

uP1
t = −L1 xt (12)

uP2
t = −L2 xt (13)

with

Li =
(
R + GT

i Si Gi

)−1
GT

i Si F (14)

The matrices Si can be computed by solving the coupled algebraic Riccati equations

S1 = Q1 + F
T

S1F − F
T

S1G1

(
R1 + G

T
1 S1G1

)
G

T
1 S1F − F

T
S1G2

(
R2 + G

T
2 S2G2

)
G

T
2 S2F − F

T
S2G2

(
R2 + G

T
2 S2G2

)
G

T
2 S1F (15)

S2 = Q2 + F
T

S2F − F
T

S2G2

(
R2 + G

T
2 S2G2

)
G

T
2 S2F − F

T
S2G1

(
R1 + G

T
1 S1G1

)
G

T
1 S1F − F

T
S1G1

(
R1 + G

T
1 S1G1

)
G

T
1 S2F (16)

The Nash policies uP1
t and uP2

t give the optimal control policies for both players in equilibrium.
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Figure S1. Predictions for cursor and hand trajectories in our version of the rope pulling game

for cooperating players. In this example the rotation matrices for each hand have been set to the

identity matrix, the gain has been set to α = 2. The hand trajectories are shown slightly displaced

to allow visibility. The optimal feedback control model allows predicting the direction of the hand

movements for arbitrary settings of the rotation matrices.

0 5 10

0

5

10

x (cm)

y 
(c

m
)

Cursor Movement

0 2 4 6

0

2

4

6

x (cm)

y 
(c

m
)

Hand Movement

 

 

Player 1
Player 2

Figure S2. Predictions for cursor and hand trajectories in our version of the rope pulling game

for competitive players. In this example the rotation matrices for each player have been set to the

identity matrix, the gain has been set to α = 2. The dynamic game control model allows predicting

the direction of the hand movements of each player for arbitrary settings of the rotation matrices.
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