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Summary

A method of evaluation of ordered categorical responses is presented. The probability of re-
sponse in a given category follows a normal integral with an argument dependent on fixed thresholds
and random variables sampled from a conceptual distribution with known first and second moments, a
priori. The prior distribution and the likelihood function are combined to yield the posterior density
from which inferences are made. The mode of the posterior distribution is taken as an estimator of
location. Finding this mode entails solving a non-linear system ; estimation equations are presented.
Relationships of the procedure to "generalized linear models" and "normal scores are discussed. A
numerical example involving sire evaluation for calving ease is used to illustrate the method.
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Résumé

Evaluation des reproducteurs sur un caractère discret ordonné,
sous l’hypothèse d’un déterminisme continu sous-jacent à seuils

Cet article présente une méthode d’évaluation des reproducteurs sur un caractère à expression
discrète et ordonnée. La probabilité de réponse dans une catégorie donnée est exprimée comme l’inté-
grale d’une loi normale dont les bornes dépendent de seuils fixés et de variables aléatoires de premiers
et deuxièmes moments connus. La distribution a priori des paramètres et la fonction de vraisemblance
sont combinées en vue de l’obtention de la densité a posteriori qui sert de base à l’inférence statistique.
Les paramètres sont estimés par les modes a posteriori, ce qui conduit à la résolution d’un système
d’équations non linéaires. Les relations qui apparaissent entre cette méthode et celles du modèle
linéaire généralisé d’une part, et des scores normaux d’autre part, sont discutées. Enfin, l’article pré-
sente une illustration numérique de cette méthode qui a trait à l’évaluation de taureaux sur les difficul-
tés de naissance de leurs produits.

Mots clés : évaluation des reprodactears, données discrètes, caractères à seuil, méthode Bayesienne.



I. Introduction

Animal breeding data are often categorical in expression, i.e., the response variable
being measured is an assignment into one of several mutually exclusive and exhaustive
response categories. For example, litter size in sheep is scored as 0, 1, 2, 3 or more lambs
born per ewe exposed to the ram or to artificial insemination in a given breeding season.
The analysis may be directed to examine relationships between the categorical variate in
question and a set of explanatory variables, to estimate functions and test hypotheses
about parameters, to assess the relative importance of different sources of variation, or to
rank a set of candidates for selection, i.e., sire or dam evaluation.

If the variable to be predicted, e.g., sire’s genetic merit, and the data follow a multi-
variate normal distribution, best linear unbiased prediction (HENDERSON, 1973) is the
method of choice ; a sire evaluation would be in this instance the maximum likelihood
estimate of the best predictor. Categorical variates, however, are not normally distributed
and linear methodology is difficult to justify as most of the assumptions required are
clearly violated (THOMPSON, 1979 ; GIANOLA, 1982).

If the response variable is polychotomous, i.e., the number of response categories is
larger than 2, it is essential to distinguish whether the categories are ordered or unordered.
Perhaps with the exception of some dairy cattle type scoring systems, most polychoto-
mous categorical variables of interest in animal breeding are ordered. In the case of litter
size in sheep, for example, the response categories can be ordered along a fecundity
gradient, i.e., from least prolific to most prolific. Quantitative geneticists have used the
threshold model to relate a hypothetical, underlying continuous scale to the outward cate-
gorical responses (DEMPSTER and LERNER, 1950 ; FALCONER, 1965, 1967). With this
model, it would be possible to score or scale response categories so as to conform with
intervals of the normal distribution (KENDALL and STUART, 1961 ; SNELL, 1964 ;
GIANOLA and NORTON, 1981) and then applying linear methods on the scaled data. One
possible set of scores would be simple integers (HARVEY, 1982) although in most instances
scores other than integers may be preferable (SNELL, 1964).

Additional complications arise in scaling categorical data in animal breeding. The
error and the expectation structures of routinely used models are complex, and the
methods of scaling described in the literature are not suitable under these conditions. For
example, applications of Snell’s scaling procedure to cattle data (TONG et al. , 1977 ; FER-
NANDO et al., 1983) required &dquo;sires&dquo; to be regarded as a fixed set, as opposed to random
samples from a conceptual population. Further, scaling alters the distribution of errors
and changes in the variance-covariance structure need to be considered in the second

stage of the analysis. Unfortunately, the literature does not offer guidance on how to
proceed in this respect.

This paper presents a method of analyzing ordered categorical responses stemming
from an underlying continuous scale where gene substitutions are made. The emphasis is
on prediction of genetic merit in the underlying scale based on prior information about the
population from which the candidates for selection are sampled. Relationships of the
procedure with the extension of &dquo;generalized linear models&dquo; presented by THOMPSON
(1979) and with the method of &dquo;normal scores&dquo; (KENDALL and STUART, 1961), are
discussed. A small example with calving difficulty data is used to illustrate computational
aspects.



II. Methodology

Data. The data are organized into an s x m contingency table, where the s rows
represent individuals or combinations of levels of explanatory variables, and the m
columns indicate mutually exclusive and exhaustive ordered categories of response. The
form of this array is presented in Table 1, where n!k is the number of experimental units
responding in the kth category under the conditions of the jlh row. Row totals,
nj. (j=1,...,s), are assumed fixed, the only restriction being nj. ! 0 for all values of j.
If the s rows represent individuals in which a polychotomous response is evaluated,
then n!. = 1, for j=1,...,s. In fact, the requirement of non-null row totals can be
relaxed since, as shown later, prior information can be used to predict the genetic
merit of an individual &dquo;without data&dquo; in the contingency table from related individuals
&dquo;with data&dquo;. The random variables of interest are n!,, nj2’&dquo;’’ njb for j=1,...,s. Since
the marginal totals are fixed, the table can be exactly described by a model with s (m-1)
parameters. However, a parsimonious model is desired.

The data in the contingency table can be represented symbolically by the m x s matrix



where Yj is an m x 1 vector

and Yjr is an m .x 1 vector having a 1 in the row corresponding to the category of response
of the jr!&dquo; experimental unit and zeroes elsewhere.

Inferences. The data Y are jointly distributed with a parameter vector 8, the joint
density being f(Y,8). Inferences are based using Bayes theorem (LINDLEY, 1965).

where t(Y) is the marginal density of Y;p(9) is the a priori density of 0, which reflects the
relative uncertainty about 0 before the data Y become available ; g(Y!9) is the likelihood
function, and f(6!Y) is the a posteriori density. Since t(Y) does not vary with 0, the
posterior density can be written as

As Box and TIAO (1973) have pointed out, all the information about 0, after the data
have been collected, is contained in f(6!Y). If one could derive the posterior density,
probability statements about 0 could be made, a posteriori, from f(8!Y). However, if
&dquo; realistic functional forms are considered for p(O) or g(YIO), one cannot always obtain a
mathematically tractable, integrable, expression for f(01Y) .

In this paper, we characterize the posterior density with a point estimator, its mode.
The mode is the function of the data which minimizes the expected posterior loss when the
loss function is

where E is a positive but arbitrarily small number (PRATT, RAIFFA and SCHLAIFER, 1965).
The mean and the median are the functions of the data which minimize expected posterior
quadratic error loss and absolute error loss, respectively (FERGUSON, 1967). However,
E(6!Y) and the posterior median are generally more difficult to compute than the
posterior mode.

Threshold model. It is assumed that the response process is related to an underlying
continuous variable, f, and to a set of fixed thresholds

with 6,, = -00, and 8m=x. The distribution of !, in the context of the multifactorial model of
quantitative genetics, can be assumed normal (DEMPSTER and LERNER, 1950 ; CuRtvow
and SMITH, 1975 ; BULMER, 1980 ; GIANOLA, 1982) as this variate is regarded as the result
of a linear combination of small effects stemming from alleles at a large number of loci,
plus random environmental components. Associated with each row in the table, there is a
location parameter Tij, so that the underlying variate for the qlh experimental unit in the jth
row can be written as



j = 1,...,s and q= 1,...,nj , and £jq-IID N(O,a2), where IID stands for &dquo;independent and
identically distributed&dquo;. Further, the parameter qj is given a linear structure

where q! and z’ are known row vectors, and v and u are unknown vectors corresponding to
fixed and random effects, respectively, in linear model analyses (e.g., SEARLE, 1971 ;
HENDERSON, 1975). All location parameters in the contingency table can be written as

where iq is of order s x 1, and Q and Z are matrices of appropriate order, with v defined
such that Q has full column rank r.

Given , , the probability of response in the kth category under the conditions of the jth
row is

where 4$ (.) is the standard normal distribution function. Since (T is not identifiable, it is
taken as the unit of measurement, i.e., Q=1. Write Q = [1 X] such that rank (X) = r-1
with 1 being a vector of ones. Then

where (3 is a vector of r-I elements, and

with p. = X(3 + Zu. Hence, the probabilities in (9) can be written as

Several authors (e.g., ASHTON, 1972 ; BoCK, 1975 ; GIANOLA and FOULLEY, 1982)
have approximated the normal integral with a logistic function. Letting

we have

It follows that

For -5<tk-!Lj<5, the difference between (12) and 4$(tk->j) does not exceed .022

(JoHrrsoN and KOTZ, 1970). In this paper, formulae appropriate for both the normal and
the logistic distributions are presented.

Irrespective of the functional form used to compute Pik, it is clear from (10) or (13),
that the distribution of response probabilities by category is a function of the distance



between Rj and the thresholds. For example, suppose we have two rows, with parameters
w, and R2, and two categories with threshold tl. Then, using (10)

If 1L¡<t¡<lLz, it follows that Pi i >P21 and, automatically, P12<PZZ’

Parameter vector and prior distribution. The vector of variables to be estimated is

A priori, t, 13 and u are assumed to be independent, each sub-vector following a
multivariate normal distribution. Hence

where p¡(t), p2((3) and P3(u) are the a priori densities of t, P and u, respectively. Explicitly

where SZ and T are diagonal covariance matrices, and G is a non-singular covariance
matrix. In genetic applications, u is generally a vector of additive genetic values or sire
effects, so G is a function of additive relationships and of the coefficient of heritability.

Equation (15) can be written as

It will be assumed that prior knowledge about t and [3 is vague, that is, n = =o, and r = JJ.
This implies that p, (t) and P2 ([3) are locally uniform and that the posterior density does
not depend upon T and a. The equation (16) becomes

Likelihood function and posterior density. Given 0, it is assumed that the indicator
variables in Y are conditionally independent, following a multinomial distribution with
probabilities Pit,---,Pjk,---,Pjm; j=1,...,s. The log-likelihood is then

From (4), the log of the posterior density is equal to the sum of (17), (18) and an
additive constant C



III. Implementat’ron

As pointed out previously, we take as estimator of 0 the value which maximizes L(9),
i.e., the mode of the log-posterior density. This requires differentiating (19) with respect
to 0, setting the vector of-first derivatives equal to zero and solving for 6. However,

is not linear in 0 so an iterative solution is required. The method of Newfon-Raphson
(DAHLQUIST and BJORCK, 1974) consists of iterating with

A

where 0fil a is an approximation to the value of 0, with the suffix in brackets indicating the
iterate number. Starting with a trial value 0 A [01 the process yields a sequence of approxi-
mations O[1J, 0 Al,,,...,A olil and, under certain second order conditions,

, , , 
A A

In practice, iteration stops when å[i] = 01’l - 01’-’1 < E, the latter being a vector of
arbitrarily small numbers. In this paper, we work with

First derivatives. The normal case is considered first. Some useful results are the following

with Zj replacing Xj in the derivative of P!k with respect to u. Then



Letting

and v’ = [vl,...,vj,...,v,], (25) and (26) can be written as

If the logistic function is used to approximate the normal

and the equivalents of (24), (27) and (28) are

where v* is a s x 1 vector with typical element

Note that cjk(l-cjk) in the logistic case replaces <!>(tk-I-lj) which appears when the normal
distribution is used.

Second derivatives. The following derivatives need to be considered : a) threshold : thres-
hold ; b) threshold : 0 ; c) threshold : u ; d) [3 : (3’ ; e) !3 : u’, and f) u : u’.

a) In the threshold : threshold derivatives, we start by writing



which holds both in the normal and logistic case (see equations 23b, 24 and 29a and 30).
After algebra

Considerable simplification is obtained by replacing n!k by E(n!kl9) = nj-Pjk. Equation (34)
becomes

When g = k, (35) becomes

In the normal case,

and when the logistic function is used

When g=k+1, equation (35) in the normal case becomes

and in the logistic approximation

Elsewhere, when ig-kl>l 1



b) To obtain the threshold : (3 derivatives, first write for the normal case

After algebra, and replacing njk by nj-Pjk, one obtains

Now, letting

equation (43) can be written as

where i (k) is as x 1 vector with typical element i (k,j). In the logistic case, we use (* (k)
and t *(k,j), with C!k(l!!k) instead of <!>(tk-J..I.j)’

c) The threshold : u expected second derivatives are

with *(k) replacing $(k) in the logistic case.

d) To obtain the second partial derivatives with respect to p, write

which, after algebra, becomes

Replacing nik by n!.P!k, allows us to sum the first term of (47) over the index k. However,



so (47) can be written as

where W is a diagonal matrix with typical element

When the logistic distribution is used, C!k(1-c!k) replaces (!(tk-Vj) in (49), and the matrix of
weights becomes W*..

e) The J3 : u’ derivatives are

f) Similarly, the u : u’ derivatives are

Estimation equations. The first and second derivatives of the previous sections are then
used in (22). The algorithm becomes a &dquo;scoring&dquo; procedure as expected second derivati-
ves are utilized, and (22) can be written as :

where :

i) T!!-!1 is an (m-1) x (m-1) banded matrix with elements equal to the negatives of (37)
or (38) in the diagonal ; (39) and (40) with negative signs in k, k+1 or k+1, k off-diagonals
(k=1,...,m-1), and zeroes elsewhere. For example, if the number of response categories
is 3, in the normal case we have, neglecting suffixes :

with (k) as in (44), or P*(k) in the logistic case, and

is an (m-1) x 1 vector.



Computations proceed by iteration with (52) starting with trial values t1°1 , 0101 and uf!l
and stopping when certain rule is satisfied. Some possible trial values are discussed in the
numerical example.

IV. Posterior inference

The exact functional form of the posterior density, f(6!Y) (equation 19), is not

known, and we have chosen to use the mode of this density as an estimator of 0. For
breeding purposes, one might be interested in functions of 0 rather than in 0 itself. For
example, we may wish to estimate a linear combination of response probabilities asso-
ciated with a particular set of conditions in the contingency table :

where ak is an arbitrary weight. One possible estimator of f(9) would be

A A’

with t, (3 and u estimated from (52), and tlj calculated from [3 and Û. While 0 is the mode of
the posterior density of 0, it does not follow that f(9) is the mode of the posterior of f(9).
Only the median of the posterior is known to have this desirable invariance property
(DE GROOT, 1982). However, if the posterior is symmetric and unimodal, the median,
the mode and the mean of this density will be the same.

Cox and HINKLEY (1974) have shown that the posterior density is asymptotically
normal, and LEONARD (1972) has pointed out, in the case of binary responses, that a
normal density approximation to the posterior can be justified when none of the njk values
are small. Hence, asymptotically

A

where k’ is a vector of arbitrary constants, 6 is the mode of the posterior density, and C
is the inverse of the coefficient matrix in (52). Specifically,

A

which can be evaluated at 0 = 0. Note that (55) permits probability statements, a poste-
riori and asymptotically, about linear combinations of 0.

Since the median, the mode and the mean are asymptotically the same, f(k’0) can be



justified by the invariance property of the median, as an estimator of f(k’6) under
absolute error loss. The posterior dispersion of f(k’O) can then be approximated as

V. Evaluation of individuals
without data in the contingency table

As pointed out by HENDERSON (1977), a common problem arising in animal

breeding is the one where it is wished to evaluate the genetic merit of individuals without
records from data contributed by related candidates. In the context of this paper, this
is tantamount for obtaining an evaluation of individuals without entries in the s x m
contingency table (Table 1).

Let u’ = [u’,,u’z] represent a vector of additive genetic values in the underlying
scale. The individuals in u, contribute data to the contingency table while those in u2 do

not. Assume, a priori, that

where Gij is the matrix of additive relationships between ui and Uj, and k is a known

scalar, the additive genetic variance in the underlying scale. Since the residual variance
is assumed to be equal to one, k = h2 / (1-h2), where h2 is heritability in the narrow sense.

As in (19), the log-posterior density is

The mode of the posterior density can then be obtained by iteration with



VI. Relationship to &dquo;generalized&dquo; linear models

In a discussion of sire evaluation methods, THOMPSON (1979) pointed out some
theoretical limitations of linear models for &dquo;all or none&dquo; variables. He suggested as an
alternative to regard the data as binomially distributed with mean value <t>(XI3+Zu). In
this setting, maximum likelihood estimates of 13 and u could be obtained iteratively from a
set of equations similar to weighted least-squares, with the data vector y replaced by
XI3+Zu+W [Y --O(XJ3+Zu)], where W is diagonal, and with an also diagonal matrix of
weights replacing the residual covariance matrix. This was interpreted by THOMPSON as a

&dquo;generalized&dquo; linear model, in the sense Of NELDER and WEDDERBURN (1972), in which 13
and u are regarded as constants. If u is a vector of realized values of random variables
instead of constants, THOMPSON said that it would be intuitively appealing to modify these
&dquo;generalized&dquo; linear model equations in the same way as weighted least-squares
equations are amended to obtain &dquo;mixed model&dquo; equations (>=IErr!Easotv, 1973). It turns
out that the methodology developed in the present paper and in GIANOLA and FOULLEY

(1982), yields the equations anticipated by THOMPSON.

Consider the binary case, i.e., m=2 so there is one threshold, t. As the value of the
threshold by itself is of no interest, one can write the probability of response in the first
category for the jth row as

and then structure

where, a priori, h - N(O,G). In this case, as shown by GIANOLA and FOULLEY (1982),
equations (52) become

Now, adding the coefficient matrix in (61) postmultiplied by [X’l’-’ ’h’l’-’ 11 ’ to both sides of
the equation, and rearranging, one obtains

This parallels a set of &dquo;mixed model &dquo; equations with residual covariance matrix
replaced by the inverse of W!!-!1, and where the data are replaced by a &dquo;working variate 

&dquo;

which has a linear structure plus a residual (W!!-’1)-’v!!-’!.

VII. Relationship to &dquo;normal scores&dquo;

Ordered categorical data are often analyzed by imposing a metric on the categories of
the table. However, it is not always clear how scores should be assigned or computed. If
the response process is assumed to be related to an underlying continuous variate, the



simplest scoring system would be the set of natural numbers {1,2,...,m}. HARVEY (1982),
suggested using this system and analyzing the scaled data with linear least-squares.
However, it is difficult to justify linear models for categorical data (THOMPSON, 1979 ;
GIANOLA, 1982). To illustrate this difficulty, suppose that a polychotomous response is
examined, and that the response process is related to an underlying normal distribution.
With m categories of response, the random variable of interest for the rth experimental
unit in the th condition is an mxl vector, v!!, containing a 1 in the category of response, and
zeroes elsewhere. If a’ = f1,2,...,m) is the set of the first m natural numbers and the

response is in the kth category, then

where [L, = x¡J3 + z’u. However,

so a model linear in Rj cannot be justified as the effect of changes in the explanatory
variables is not constant throughout the range of ILj’ In addition,

is not constant as the variance depends on !.!.

KENDALL and STUART (1961) discuss &dquo;normal scores&dquo;, a method in which the scores
of m ordered response categories are developed in connection with an hypothetical,
normally distributed variable y with mean Rj and variance 1. The model for the underlying
variate would then be

where Ejr -N(0,1). Now, if the response is in the kth category, using the notation of this
paper :

Since KENDALL and STUART have considered a single population, i.e., only one 1-’-, their
&dquo;normal score&dquo; is the residue in (66). Further



However

Using (68) in (67)

Completing the integration, (69) becomes

The meaning of (66) and (70) in relation to the method discussed in this paper
becomes clear when a binary response is considered. Using the notation of the previous
section

where !(y) is a standard normal density. Then, using (66)

Similarly, using (70)

In the binary case, Vj of (27) can be written as

so iii is the sum of &dquo;normal scores&dquo; for the jlh row of the contingency table. Likewise, Wjj of

(49) can be written as



which is the sum of variances of &dquo;normal scores&dquo; for the individuals in the jth row. This is so
because the mean &dquo;normal score&dquo; is Pjl i!, + Pj2 i!Z = 0.

Hence, equations (61) and (62) can be viewed as an algorithm to estimate, iteratively, the
parameters of the model

in which the v’s are &dquo;normalized&dquo; residuals,

VIII. Numerical example

An hypothetical data set used by SHAEFFER and WILTON (1976) in a discussion of sire
evaluation for calving ease was employed to illustrate the procedures described in the
present paper. The data consisted of calving ease scores from 28 male and female calves
born in 2 herd-years from heifers and cows mated to 4 sires. Calving ease was scored as a
response in one of 3 ordered categories (1 : normal birth ; 2 : slight difficulty, and 3 :
extreme difficulty). The data, arranged into a 20 x 3 contingency table are presented in
Table 2. It should be emphasized that the records could have been arranged as a 28 x 3
contingency table without changing the final results. As indicated in Table 3, about 68 %
of the records were classified as easy calvings, 18 % as slightly difficult and about 14 % as
decidedly difficult calvings. The four sires differed considerably in the distribution of
calving ease scores. For example, while sires 1 and 4 had about the same proportion of
easy calvings, they were markedly dissimilar with respect to the distribution of records in
categories 2 and 3. However, and aside from sample size, the distribution of records by
herd-years, cow age and sex were also different for these two sires illustrating the
difficulties and pitfalls involved in ranking sires on the basis of raw frequencies.

Model. The model for the parameter Tlj in (7), with j=1,...,20 indicating the jth row of
Table 3 was

where Hk is the effect of the kth herd-year (k= 1,2), Ae is the effect of the elh age of dam

(t°=1,2 for heifers and cows, respectively), Sm is the effect of the mth sex (m= 1,2 for males
and females, respectively) and u. is the effect of the nth sire of calf (n=1,...,4). Then take

from which Q of order 20 x 4 is easily obtained. It follows that

from which X of order 20 x 3 is easily deduced. The &dquo;working&dquo; variables to be estimated
are then t, = bl-V, t2 = 82-v, (3, and u’ = [UJ,UZ,U3,U4]’



Prior information. Prior information about t,, t2 and p was assumed to be vague. The prior
distribution for sire effects was taken as

The scalar 1/19 corresponds to an heritability of .20 in the underlying scale and to a residual
variance equal to 1, i.e., (J’!/(J’2s = (4-h2)/h2 = 19.

Iteration. Equations (52) were used for iteration. Differents sets of starting values were
employed and two such sets were :

where ni is the total number of responses in category i and N is the total number of
observations ; @1°1 = 0, and tl<«1 = 0 ;

II) Same as above but with u[Ol being a 4 x 1 vector of random numbers generated as
N(0,1/19).



Iteration stopped when the average sum of squares of corrections was less than 10-12,
i.e., when A’ W9<1(}-12. In each of these two instances, convergence to the same solution
occurred at the seventh round of iteration. The results of iteration beginning with Set I of
starting values are presented in Table 4. From a practical point of view, iteration could
have stopped at the fourth round if not earlier. Different sets of starting values for the
thresholds were also examined. For example, 8 iterations were required for the sets
tt[Ol = !’(0.85), t!01 = <&-’(0.95)} and (tiol = !’(0.20), f!!1 = !-!(0.90)}. It appears
that the algorithm approaches the maximum rapidly from almost everywhere.

Results. Estimates of the parameters in the underlying scale and the square root of their
posterior dispersion were :



In particular, it should be noted that the contrasts Az-Al (cows-heifers) and S2--Sl
(females-males) were estimated as negative, i.e., the probability of difficult calving for
male calves and heifer calvings would be higher than for female calves and cows, respecti-
vely. This is in agreement with what one would expect from previous knowledge on the
subject.

In animal breeding practice, the interest centers on estimation of response probabili-
ties associated with specific linear combinations of parameters. For example, one may
wish to calculate the probability of the event that a male calf out of the mating of the ith bull
to a heifer in herd I, will experience a difficult birth (category 3). This is calculated as

When this was applied to the four sires, the probability distribution by category of
response was :

Under artificial insemination, it is of interest to evaluate sires under more general
conditions. For example, one may consider to estimate, for each sire, the probability
distribution for heifer calvings across herds and sexes. For the first category, the four
elementary probabilities would be



Then we can weigh these probabilities as

such that S S akm = all+alZ+aZl+a22 = 1. In the example and taking a, I=al2=a2l=a22=
k m

1/4, this yields for the three categories.

These estimates of probability are very different to the ones obtained on the basis of
raw frequencies (Table 3) as they take into account the distribution of records across herd-
years and sex of calf. Note that estimates are pulled towards the overall relative
frequencies.

IX. Conclusions

This paper describes a general non-linear procedure to analyze ordered categorical
variates in the context of the data sets usually encountered in animal breeding pratice. The
model assumes an underlying continuous variable which is described as a linear
combination of variables sampled from conceptual distributions. In contrast to other
methods suggested for the analysis of categorical data, the procedure takes into account
the assumption that candidates for selection are sampled from a distribution with known
first and second moments, a priori. Theoretical problems arising when linear models are
applied to categorical data (GIANOLA, 1982) are eliminated as the procedure adjusts auto-
matically for differences in incidence among subpopulations considered in the

analysis. In addition, the method can be further generalized to take into account the effect
of concomitant variables, e.g., birth weight, on response probabilities. This will be
reported in a future communication.

The estimation equations derived in this paper from a Bayesian viewpoint are
equivalent to the extension of &dquo;generalized&dquo; linear models for all or none variables sugges-
ted by THOMPSON (1979), and to the approach presented by HnRVmLE and MEE (1982) in a
!maximum probability&dquo; estimation setting. Further, the method can be regarded as an
algorithm to calculate &dquo;normal scores&dquo; as these appear naturally in the estimation
equations.

In view of the computational requirements of the method, it is pertinent to address
the question of how much better this non-linear predictor would be than standard linear
model techniques (BERGER and FREEMAN, 1978). This is currently being examined via
Monte-Carlo methods. However, the work of PORTNOY (1982) suggests that when predic-
tands are intrinsically non-linear, predictors based on linear functions of the data may be
poor for ranking purposes. Computational requirements could be decreased by speeding



up convergence by relaxation techniques, or by using other algorithms such as iterative
proportional fitting in the binary case. HARVILLE and MEE (1982), in order to simplify
computing, have suggested to change the coefficient matrix only after several rounds of
iteration as opposed to every iterate.

The implementation of the procedure rests on the assumption that the variance-cova-
riance matrix of the variables to be predicted is known. This assumption may be
justified for some quantitative traits in animal breeding (e.g., milk yield) but not so for
most categorical traits of economic importance as the methodology that has been used is
questionable. It is theoretically possible to render the method completely Bayesian by
taking a prior distribution for a covariance matrix (DE GROOT, 1970). This is a potentially
interesting area for further work.

Although we have emphasized the normal distribution as a possible model for the
underlying scale, the principles outlined in this paper permit working with alternative
functional forms. For example, the probability of difficult calving could be expressed as

where x is a liability variable, a and b are functions of experimental conditions (age of
dam, say), and k is a constant.
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