Diastereoselective Pyrrolidine Synthesis *via* Copper Promoted Intramolecular Aminooxygenation of Alkenes; Formal Synthesis of (+)-Monomorine

Monissa C. Paderes and Sherry R. Chemler*

Department of Chemistry, 618 Natural Sciences Complex, University at Buffalo, State University of New York, Buffalo, NY 14260 <u>schemler@buffalo.edu</u>

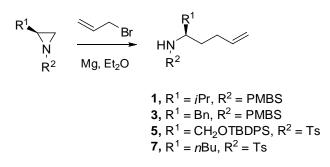

Supporting Information 1

Table of Contents

General Experimental Information	S2
Synthesis of Substrates	S2
Procedure for Catalytic Diastereoselective Aminooxygenation	S8
Procedure for Stoichiometric Diastereoselective Aminooxygenation	
Oxidation of TEMPO adduct/Formal Synthesis of (+)-Monomorine	S17
Crystallographic Data for Compounds 2, 17, 20 and 31	S17
References	S21

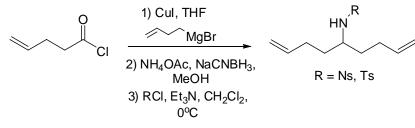
General Experimental Information: All reagents were used out of the bottle as purchased from the supplier without further purification unless otherwise specified. Solvents were purified using a commercial solvent filtration system. ¹H NMR spectra were recorded in CDCl₃ or C₆D₆ at 400 or 500 MHz. ¹³C NMR spectra were recorded in CDCl₃ or C₆D₆ at 75 or 125.7 MHz. Spectra are reported in ppm relative to residual chloroform (7.26 ppm for ¹H NMRs and 77.0 ppm for ¹³C NMRs) or benzene (7.16 ppm for ¹H NMRs and 128.0 ppm for ¹³C NMRs). IR spectra were obtained neat using a Nicolet-Impact 420 FTIR. High resolution mass spectra were obtained at SUNY, Buffalo's mass spec. facility on a ThermoFinnigan MAT XL spectrometer. Optical rotations were obtained using a Rudolph Autopol 1 fitted with a micro cell with a 100 mm path length. Melting points are reported as uncorrected.

Procedure for the Synthesis of Substrates (1), (3), (5) and (7)

Representative Procedure: (R)-4-Methoxy-N-(2-methylhept-6-en-3-yl)benzenesulfonamide (1)

Following the procedure that was previously reported,¹ magnesium metal (0.76 g, 31.2 mmol, 5 equiv) was stirred in dry Et₂O (10 mL) under Ar(g) in a 25 mL 2-neck flask equipped with a reflux condenser and magnetic stir bar. Freshly distilled allyl bromide (3.78 g, 31.2 mmol, 5 equiv) was added dropwise at r.t. After stirring the mixture for 2 h, a solution of the aziridine² (1.6 g, 6.25 mmol, 1 equiv) in Et₂O (5 mL) was added dropwise. The reaction mixture was stirred for an additional 16 h. The reaction was quenched with saturated NH₄Cl(aq) (15 mL) and extracted with ethyl acetate (3 x10 mL). The organic layers were separated, combined and washed with brine solution and dried over anhydrous Na₂SO₄. Evaporation of the organic layer *in vacuo* afforded 1.8 g of sulfonamide **1** (96% yield). The obtained sulfonamide **1** matched the reported ¹H NMR and ¹³C NMR data:¹ ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, J = 11 Hz, 2 H), 6.96 (d, J = 11 Hz, 2 H), 5.68 (m, 1 H), 4.92-4.87 (m, 2 H), 4.40 (d, J = 11 Hz, 1 H), 3.86 (s, 3 H), 3.11 (m, 1 H), 1.99 (m, 2 H), 1.84 (m, 1 H), 1.45 (m, 1 H), 1.36 (m, 1 H), 0.78 (d, J = 8.5 Hz, 3 H), 0.78 (d, J = 8.0, 3 H); ¹³C NMR (75 MHz, CDCl₃) δ 162.6, 137.7, 133.2, 129.1, 115.0, 114.0, 58.7, 55.5, 31.0, 30.9, 29.8, 18.2, 17.6.

(R)-4-Methoxy-N-(1-phenylhex-5-en-2-yl)benzenesulfonamide (3)


The sulfonamide **3** was obtained as colorless oil in 96% yield. Data: $[\alpha]^{23}{}_{D} = -6.89^{\circ}$ (c = 1.18, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, J = 7.0 Hz, 2H), 7.23 (m, 3H), 7.01 (d, J = 8.0 Hz, 2H), 6.90 (d, J = 5.5 Hz, 2H), 5.70 (m, 1H), 4.89-4.92 (m, 2H), 4.36 (d, J = 8.0 Hz, 1H), 3.86 (s, 3H), 3.44 (m, 1H), 2.70 (m, 2H), 2.63 (m, 1H), 2.01 (m, 1H), 1.56

(m, 1H), 1.45 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 162.7, 137.5, 137.0, 132.4, 129.4, 129.0, 128.5, 126.6, 115.1, 114.1, 55.5, 54.4, 41.1, 33.6, 29.6; IR (neat, thin film) υ 3282, 3064, 3023, 2941, 2841, 2360, 2341, 1640, 1597, 1579, 1498, 1454, 1441, 1417, 1322, 1300, 1260, 1178, 1153, 1095, 1028, 972, 910, 833, 802, 746, 701, 668, 582, 559 cm⁻¹; HRMS (ESI) calcd for [M+Na]⁺C₁₉H₂₃O₃N₁NaS: 368.1291, found: 368.1292.

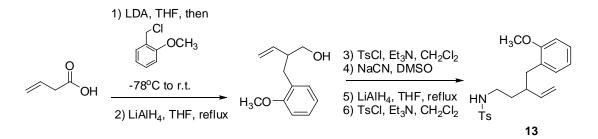
(R)-N-(1-(tert-Butyldiphenylsilyloxy)hex-5-en-2-yl)-4-methylbenzenesulfonamide (5) The sulfonamide **5** was obtained as colorless oil in 98% yield. Data: $[\alpha]^{23}{}_{D}$ = -3.09 ° (c = 0.59, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.68 (d, J = 8.5 Hz, 2H), 7.54 (d, J = 7.0 Hz, 2H), 7.49 (d, J = 6.5 Hz, 2H), 7.43 (d, J = 5.5 Hz, 2H), 7.37 (dd, J = 5 Hz, 4.5 Hz, 4H), 7.22 (d, J = 8.0 Hz, 2H), 5.70 (m, 1H), 4.92 (d, J = 7.0 Hz, 1H), 4.90 (d, J = 14 Hz, 1H), 4.80 (d, J = 8.5 Hz, 1H), 3.44 (dd, J = 14 Hz, 3.5, 2H), 3.24 (m, 1H), 2.40 (s, 3H), 1.98 (m, 2H), 1.67 (m, 2H), 1.01 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 143.1, 138.1, 137.6, 135.5, 135.4, 132.8, 132.7, 129.8 (2C), 129.7, 129.6, 127.8, 127.7 (2C), 126.9, 115.1, 64.7, 54.5, 31.4, 29.6, 26.8, 21.4, 19.2; IR (neat, thin film) v 3260, 3067, 2954, 2931, 2859, 2361, 1472, 1427, 1329, 1163, 1113, 1093, 997, 908, 814, 740, 702, 668, 551 cm⁻¹; HRMS (ESI) calcd for [M+Na]⁺C₂₉H₃₇O₃N₁NaSSi: 530.2156, found: 530.2155.

(R)-4-Methyl-N-(non-1-en-5-yl)benzenesulfonamide (7)

The sulfonamide 7 was obtained as colorless oil in 97% yield. Data: $[\alpha]^{23}_{D} = +8.87$ ° (c = 1.34, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.76 (d, J = 8.5 Hz, 2H), 7.29 (d, J = 8 Hz, 2H), 5.69 (m, 1H), 4.92 (dd, J = 12 Hz, 1.5 Hz, 1H), 4.42 (d, J = 8.5 Hz, 1H), 3.24 (m, 1H), 2.41 (s, 3H), 2.00 (m, 2H), 1.51 (m, 1H), 1.41 (m, 2H), 1.28 (m, 1H), 1.14 (m, 2H), 1.07 (m, 2H), 0.76 (t, J = 7 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 143.1, 138.4, 137.7, 129.5, 127.0, 114.9, 53.6, 34.6, 34.2, 29.4, 27.3, 22.3, 21.4, 13.8; IR (neat, thin film) v 3274, 3061, 2954, 2932, 2860, 2364, 1641, 1599, 1424, 1379, 1324, 1305, 1288, 1160, 1094, 1043, 909, 814, 666, 579, 551 cm⁻¹; HRMS (ESI) calcd for [M+Na]⁺ C₁₆H₂₅O₂NNaS₁: 318.1498, found: 318.1505.

4-methyl-N-(nona-1,8-dien-5-yl)benzenesulfonamide (9)

The tosyl substrate **9** was synthesized according to the procedure reported by Hultzsch and co-workers.⁴ Freshly distilled 4-bromo-1-butene (2.28 g, 16.9 mmol, 1 equiv) was added to magnesium filings (0.42 g, 17.2 mmol, 1.02 equiv) in 25 mL dry THF in an oven dried round bottom flask. The mixture was stirred for 2 h at r.t. after which it was taken up in a syringe and added dropwise to a solution of 4-pentenoyl chloride (2.0 g, 16.9 mmol, 1 equiv) and copper(I) iodide (0.16 g, 0.845 mmol, 0.05 equiv) in 20 mL dry THF cooled in an ice water bath. This mixture was stirred for 1 h and the solvent was removed. The resulting crude oil was diluted with CH_2Cl_2 (50 mL) and washed with 1N HCl (20 mL). The organic layer was separated, filtered, washed with saturated aqueous $NaHCO_3$ and dried over anhydrous Na_2SO_4 . The solvent was concentrated *in vacuo* to afford 1,8-nonadien-5-one (2.0 g, 85% yield) which was then used without further purification.


1,8-Nonadien-5-one (1.8 g, 13.0 mmol, 1 equiv) and ammonium acetate (10 g, 130.0 mmol, 10 equiv) were dissolved in 43 mL MeOH. Sodium cyanoborohydride (0.57 g, 9 mmol, 0.7 equiv) was added at r.t. and was allowed to stir overnight. The solution was then brought to pH = 2 with conc. HCl. The solvent was removed *in vacuo*, and the residue was dissolved in H₂O and washed with ether. The aqueous layer was then made basic with solid KOH and was extracted with ether (3 x 50 mL). The organic layers were combined, dried over anhydrous Na₂SO₄ and concentrated *in vacuo* which gave 0.70 g of 1,8-nonadien-5-amine (40% yield).

Triethylamine (1.75 g, 12.6 mmol, 2.5 equiv) and tosyl chloride (1.14 g, 6.0 mmol, 1.2 equiv) were added to a solution of 1,8-nonadien-5-amine (0.70 g, 5.0 mmol, 1 equiv) in 17 mL dry CH₂Cl₂. The mixture was allowed to stir at r.t. overnight. The mixture was then washed with 20 mL distilled H₂O. The organic layer was washed with brine solution and dried over Na₂SO₄. The solvent was then removed *in vacuo* and the crude oil was chromatographed on SiO₂ (10% EtOAc/hexanes) giving sulfonamide **9** as colorless oil (0.95 g, 65% yield). Data for **9**: ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, J = 8.5 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 5.61 (m, 2H), 5.05 (d, J = 8.5 Hz, 2H), 4.91 (dd, J = 11.5 Hz, 1.5 Hz, 4H), 3.28 (m, 1H), 2.42 (s, 3H), 2.01 (m, 4H), 1.54 (m, 2H), 1.43 (m, 2H); ¹³C NMR (reat, thin film) v 3076, 2927, 2858, 1918, 1823, 1641, 1598, 1495, 1428, 1324, 1157, 1094, 993, 912, 815, 707, 666 cm⁻¹; HRMS (ESI) calcd for [M]⁺ C₁₆H₂₃O₂N₁S₁: 293.1444, found: 293.1431.

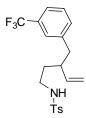
4-Nitro-N-(nona-1,8-dien-5-yl)benzenesulfonamide (11)

The nosyl substrate **11** was obtained as colorless oil. Data: ¹H NMR (500 MHz, CDCl₃) δ 8.36 (d, J = 9.0 Hz, 2H), 8.06 (d, J = 8.5 Hz, 2H), 5.69 (m, 2H), 4.94 (d, J = 5.0 Hz, 2H), 4.93 (dd, J = 13.5 Hz, 1.5 Hz, 2H), 4.68 (d, J = 8.5 Hz, 1H), 3.39 (m, 1H), 1.99 (m, 4H), 1.57 (m, 2H), 1.43 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 149.9, 147.2, 137.0, 128.1, 124.2, 115.4, 53.8, 34.0, 29.3; IR (neat, thin film) υ 3287, 3101, 3078, 2976, 2925, 2854, 2361, 1641, 1606, 1532, 1428, 1353, 1308, 116, 1093, 994, 913, 854, 762, 747, 736, 686, 617, 566 cm⁻¹; HRMS (ESI) calcd for [M]⁺C₁₅H₂₀O₄N₂S₁: 324.1138, found: 324.1138.

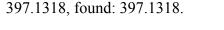
Synthesis of Substrates (13) and (16)

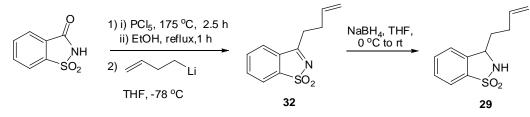
Representative Procedure: N-(3-(2-Methoxybenzyl)pent-4-enyl)-4methylbenzenesulfonamide (13)

Using a modified procedure,³ diisopropyl amine (4.80 g, 47.0 mmol, 2.02 equiv) was stirred in 20 mL of dry THF in a single-neck round bottom flask equipped with a magnetic stir bar under Ar(g) conditions. The solution was cooled to -78° C and *n*-butyl lithium (1.6 M in hexanes, 3.01 g, 47.0 mmol, 2.02 equiv) was added dropwise via syringe. After stirring the solution for 45 min, vinyl acetic acid (2.02 g, 23.0 mmol, 1 equiv) dissolved in 5 mL THF was added dropwise. The resulting solution was stirred for an additional 1 h. *O*-methoxybenzyl chloride (3.67 g, 23.0 mmol, 1.02 equiv) dissolved in 5 mL THF was added dropwise to the solution then the mixture was stirred at -78 to 0°C for 1 h. The mixture was then cooled to r.t., quenched with 5% NaHCO₃ and washed with EtOAc (15 mL). The basic aqueous layer was acidified with 4 N HCl to a pH of 2.5 and extracted with EtOAc (3 x 50 mL). The combined organic layers were washed with brine solution, dried over anhydrous Na₂SO₄ and the solvent was removed *in vacuo*. Purification of the crude product by column chromatography on silica gel (10% EtOAc in hexanes) afforded 1.07 g of colorless oil (23% yield).


To a suspension of LiAlH₄ (0.55 g, 14.5 mmol, 3 equiv) in 20 mL dry THF was added dropwise a solution of the crude material obtained above (1.0 g, 4.85 mmol, 1 equiv) in 5 mL THF under Ar(g) at 0 °C. The mixture was heated under reflux for 1 h. Distilled H₂O (1.05 mL) was added upon cooling to r.t., followed by 1 N NaOH (1.05 mL) and of distilled H₂O (3.15 mL). The resulting mixture was filtered through celite and washed with EtOAc. The filtrate was concentrated *in vacuo* to afford 0.88 g of crude alcohol.

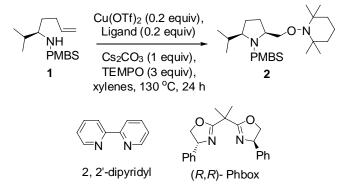
Under Ar(g) conditions, the crude alcohol (0.88 g, 4.58 mmol, 1 equiv) was dissolved in 9 mL dry CH_2Cl_2 at r.t. Triethylamine (0.56 g, 5.5 mmol, 1.2 equiv) was added followed by tosyl chloride (0.96 g, 5.04 mmol, 1.1 equiv). The mixture was allowed to stir for 24 h at r.t. which was then washed with distilled H_2O (10 mL). The aqueous layer was extracted with CH_2Cl_2 (2 x10 mL) and the combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. The solution was concentrated *in vacuo* and the resulting crude product was used without further purification.


The crude product (1.6 g, 4.6 mmol, 1 equiv) was then dissolved in 23 mL DMSO. Sodium cyanide (0.45 g, 9.2 mmol, 2.0 equiv) was added at r.t. and the mixture was heated to 60° C for 16 h. The mixture was then cooled to r.t, diluted with 30 mL of distilled H₂O and extracted with EtOAc (3 x 20 mL). The combined organic extracts were washed with brine solution and dried over anhydrous Na₂SO₄. The solvent was removed *in vacuo* to afford the crude nitrile.


A solution of the crude nitrile (0.89 g, 4.4 mmol, 1 equiv) in 10 mL dry THF was added dropwise to a suspension of LiAlH₄ (0.34 g, 9.3 mmol, 2.1 equiv) in 25 mL dry THF under Ar(g) at 0 °C. The mixture was heated under reflux for 1 h. The reaction mixture was cooled to r.t and H₂O (0.67 mL) was then added, followed by 1N NaOH(0.67 mL) and H₂O (2.02 mL). The mixture was filtered through celite and the solvent was removed *in vacuo* to afford the crude amine.

The crude amine (0.4 g, 2.0 mmol, 1 equiv) was dissolved in 7 mL CH₂Cl₂ under Ar(g). Triethylamine (0.42 g, 4.2 mmol, 2.1 equiv) was added to the solution followed by tosyl chloride (0.46 g, 2.4 mmol, 1.2 equiv). The mixture was stirred at r.t. for 16 h which was then washed with distilled H_2O (10 mL). The organic layer was washed with brine solution and dried over anhydrous Na₂SO₄. Purification by column chromatography on silica (10 % EtOAc in hexanes) afforded the sulfonamide 13 as colorless oil (0.65 g, 41%vield over 4 steps). Data: ¹H NMR (500 MHz, CDCl₃) δ 7.73 (d, J = 8 Hz, 2H), 7.31 (d, J = 8.5 Hz, 2H, 7.19 (t, J = 7.5 Hz, 1H), 7.01 (d, J = 7.0 Hz, 1H), 6.89 (t, J = 7.5 Hz, 1H),6.86 (d, J = 8.0 Hz, 1H), 5.59 (m, 1H), 4.92 (d, J = 10.0 Hz, 1H), 4.82 (d, J = 17.5 Hz, 1H), 4.49 (br.s., 1H), 3.83 (s, 3H), 3.03 (m, 2H), 2.66 (dd, J = 7.0 Hz, 6.5 Hz, 1H), 2.53 $(dd, J = 7.5 Hz, 5.5 Hz, 1H), 2.44 (s, 3H), 2.33 (m, 1H), 1.53 (m, 1H), 1.44 (m, 1H); {}^{13}C$ NMR (75 MHz, CDCl₃) δ157.4, 143.2, 141.4, 137.0, 130.9, 129.6, 128.1, 127.3, 127.0, 120.1, 115.2, 110.3, 55.2, 41.6, 41.3, 35.5, 33.5, 21.4; IR (neat, thin film) v 3292, 3064, 2922, 2857, 2363, 2343, 1599, 1558, 1494, 1464, 1326, 1243, 1159, 1094, 1049, 1029, 917, 814, 754, 668, 551 cm⁻¹; HRMS (ESI) calcd for $[M+Na]^+$ C₂₀H₂₅O₃N₁NaS₁: 382.1447, found: 382.1432.

4-Methyl-N-(3-(3-(trifluoromethyl)benzyl)pent-4-enyl)benzenesulfonamide (16) The sulfonamide **16** was obtained as colorless oil. Data: ¹H NMR (500 MHz, CDCl₃) δ 7.76 (d, J = 7.5 Hz, 2H), 7.45 (d, J = 7.5 Hz, 1H), 7.37 (m, 5H), 5.50 (m, 1H), 4.95 (d, J = 9.0 Hz, 1H), 4.84 (d, J = 17.5 Hz, 1H), 3.02 (m, 1H), 2.98 (m, 1H), 2.68 (m, 2H), 2.43 (s, 3H), 2.36 (m, 1H), 1.64 (m, 1H), 1.46 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 143.3, 140.5, 140.0, 136.8, 132.5, 129.6, 128.4, 127.0, 125.7 (q, J_{C-F} = 3.37 Hz), 122.8 (q, J_{C-F} = 3.97 Hz), 116.5, 42.9, 41.3, 41.1, 33.8, 21.3; IR (neat, thin film) v 3073, 2928, 2860, 1641, 1598, 1494, 1450, 1421, 1329, 1202, 1160, 1124, 1094, 1074, 1019, 1001, 919, 815, 750, 704, 661, 571, 551 cm⁻¹; HRMS (ESI) calcd for [M]⁺ C₂₀H₂₂O₂N₁F₃S₁:

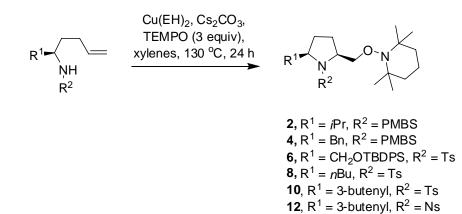

3-(3-Butenyl)-1,2-benzisothiazoline 1,1-dioxide (29)

Modifying the procedures reported by Engberts⁵ and Gosciniak,⁶ saccharin (5 g, 27.3 mmol, 1 equiv) and PCl₅ (8.5 g, 40.9 mmol, 1.5 equiv) were placed in an oven-dried 500

mL round-bottom flask equipped with magnetic stir bar and air condenser. The reaction mixture was gently heated until the reaction had subsided, after which the temperature was raised to $175 \,^{\circ}$ C for an additional 1.5 h. The POC1₃ was removed by suction, which was treated with 400 mL of absolute ethanol. The reaction mixture was then heated under reflux for 1 h. After cooling the solution to r.t., the solution was filtered. Cooling the filtrate in an ice bath afforded the white crystals (1.5 g, 26% yield), pseudosaccharin chloride which was collected by filtration and were used for the next step.

3-Butenyl lithium was synthesized following the reported procedure.⁷ Tert-butyllithium (1.7 M in pentane, 12.2 mL, 40.0 mmol, 2.1 equiv) was added to a solution of 4-iodo-1butene⁸ (1.79 g, 9.84 mmol, 1 equiv) in Et₂O (42 mL) upon cooling in a dry ice-acetone bath. The solution was stirred for 1 h at -78 °C, then warmed to r.t. and was added to a stirred solution of psuedosaccharin chloride (6.2 mmol, 1 equiv) in 100 mL dry THF via syringe. The reaction mixture was cooled to -78 °C in a dry ice-acetone bath and was stirred for 4 h. After the reaction mixture was warmed to r.t., it was then guenched with aqueous saturated NH₄Cl solution and extracted with ethyl ether (3 x 50 mL). The organic solution was washed with brine solution and dried over anhydrous Na₂SO₄. Removal of the solvent under vacuum gave **32** (1.18 g, 86% yield). Data: mp 79-82 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.91 (dd, J = 3.0 Hz, 2.0 Hz, 1H), 7.74 (m, 2H) 7.69 (dd, J = 3.5 Hz, 2.5 Hz, 1H), 5.95 (m, 1H), 5.16 (dd, J = 16.5 Hz, 1 Hz, 1H), 5.09 (d, J = 10.5 Hz) Hz, 1H), 3.06 (t, J = 7.5 Hz, 2H), 2.67 (q, J = 7.0 Hz, 2H); 13 C NMR (75 MHz, CDCl₃) δ 175.4, 139.7, 135.7, 133.8, 133.5, 131.1, 123.8, 122.4, 116.5, 30.4, 29.0; IR (neat, thin film) v 3085, 2998, 2980, 2916, 2358, 2342, 1843, 1640, 1604, 1560, 1451, 1393, 1325, 1310, 1286, 1225, 1180, 1168, 1129, 998, 922, 852, 771, 765, 596, 537 cm⁻¹; HRMS (ESI) calcd for $[M+Na]^+C_{11}H_{11}O_2N_1Na_1S_1$: 244.0403, found: 244.0407.

Sodium borohydride (0.81 g, 21.3 mol, 4 equiv) was added in small portions to a solution of **32** (1.18 g, 5.3 mmol, 1 equiv) in 29 mL dry THF at 0 °C. The reaction mixture was stirred for 24 h at r.t. then water (20 mL) was added under cooling. The solvent was evaporated *in vacuo* and 4 N HCl was added until pH 4. The aqueous layer was extracted with CHCl₃ (3 x 50 mL). The combined organic layers were dried over Na₂SO₄ and the solvent was evaporated. Purification of the crude product by column chromatography on silica (30% EtOAc in hexanes) gave **29** as colorless oil (0.55 g, 47% yield). Data: ¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, J = 7.5 Hz, 1H), 7.62 (t, J = 7.0 Hz, 1H), 7.52 (t, J = 7.5 Hz, 1H), 7.38 (d, J = 8.0 Hz, 1H), 5.84 (m, 1H), 5.12 (d, J = 4.5 Hz, 1H), 5.10 (dd, J = 16.0 Hz, 1.5 Hz, 1H), 5.04 (d, J = 10.0 Hz, 1H), 4.73 (m, 1H), 2.27 (m, 2H), 2.08 (m, 1H), 1.89 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 140.3, 136.8, 135.5, 133.0, 129.2, 124.0, 121.2, 116.1, 116.0, 57.2, 34.9, 29.9; IR (neat, thin film) v 3274, 3074, 2953, 2925, 2847, 2359, 2341, 1640, 1471, 1453, 1388, 1284, 1194, 1167, 1131, 1061, 917, 798, 758, 720, 648, 581, 535 cm⁻¹; HRMS (ESI) calcd for [M+Na]⁺ C₁₁H₁₃O₂N₁Na₁S₁: 246.0559, found: 246.0561.


Procedure for Catalytic Diastereoselective Aminooxygenation Reaction

Representative Procedure: 1-(((2S,5R)-5-Isopropyl-1-(4-

methoxyphenylsulfonyl)pyrrolidin-2-yl)methoxy)-2,2,6,6-tetramethylpiperidine (2) Cu(OTf)₂ (0.020 mmol, 0.2 equiv), (*R*,*R*)-phenylbis-oxazoline (0.020 mmol, 0.2 equiv) and xylenes (1.01 mL) were combined in a 100 mL round bottom flask equipped with a magnetic stir bar. The mixture was stirred at 50 °C for 2 h. The solution was cooled to r.t. and treated with the sulfonamide **1** (0.101 mmol, 1 equiv), TEMPO (0.303 mmol, 3 equiv) and K₂CO₃ (0.101 mmol, 1 equiv). The reaction mixture was heated to 130 °C for 24 h under O₂ (1 atm balloon). Filtration of the cooled solution through a SiO₂ plug and removal of the solvent *in vacuo* afforded the crude product. Purification via flash chromatography on SiO₂ (10-30% EtOAc in hexanes gradient) gave pyrrolidine **2** in 60% yield and 14% of the starting olefin **1**.

Procedure for Stoichiometric Diastereoselective Aminooxygenation Reaction

A. α-Substituted 4-pentenyl sulfonamides

Representative Procedure: 1-(((2S,5R)-5-Isopropyl-1-(4-

methoxyphenylsulfonyl)pyrrolidin-2-yl)methoxy)-2,2,6,6-tetramethylpiperidine (2) The sulfonamide 1 (30.0 mg, 0.101 mmol, 1 equiv), $Cu(EH)_2$ (53.0 mg, 0.151 mmol, 1.5 equiv), Cs_2CO_3 (32.9 mg, 0.101 mmol, 1 equiv), TEMPO (47.3 mg, 0.303 mmol, 3 equiv) and xylenes (1.01 mL) were combined in an oven-dried pressure tube equipped

with magnetic stir bar. The reaction mixture was heated in an oil bath to 130 °C for 24 h. It was then cooled to room temperature, diluted with ether and filtered through a SiO₂ plug. Removal of the solvent *in vacuo* afforded the crude product. Purification by flash chromatography on SiO₂ (10% ethyl acetate in hexanes) gave the disubstituted pyrrolidine **2** in 94% yield (42.8 mg). The *cis* configuration of **2** was determined by X-ray crystallographic analysis (Figure 1).

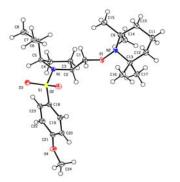
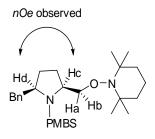
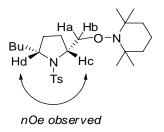



Figure 1. Crystal structure of 2.

Data for **2**: mp 124-129 °C; $[\alpha]^{23}_{D} = -49.3$ ° (c = 0.50, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, J = 9.0 Hz, 2H), 6.98 (d, J = 8.5 Hz, 2H), 3.92 (dd, J = 5.0 Hz, 3.5 Hz, 1H), 3.87 (s, 3H), 3.75 (t, J = 8.5, 1H), 3.69 (m, 1H), 3.42 (m, 1H), 2.10 (m, 1H), 1.88 (m, 1H), 1.67 (m, 1H), 1.54-1.43 (m, 6H), 1.37-1.22 (m, 4H), 1.15 (s, 6H), 1.08 (s, 6H), 0.98 (d, J = 6.5 Hz, 3H), 0.89 (d, J = 6.5, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 162.7, 129.8, 129.7, 114.0, 78.1, 67.1, 59.8 (2C), 59.5, 55.5, 39.5, 33.0, 32.8, 30.9, 27.1, 25.3, 20.2, 20.1, 17.2, 17.0; IR (neat, thin film) v 2969, 2934, 2874, 1597, 1498, 1467, 1413, 1345, 1305, 1261, 1210, 1158, 1096, 1056, 1027, 994, 971, 918, 836, 804, 768, 733, 671, 587, 566, 443, 434 cm⁻¹; HRMS (ESI) calcd for [M+H]⁺C₂₄H₄₁O₄N₂S: 453.2782, found: 453.2794.

1-(((2S,5R)-5-Benzyl-1-(4-methoxyphenylsulfonyl)pyrrolidin-2-yl)methoxy)-2,2,6,6tetramethylpiperidine (4)

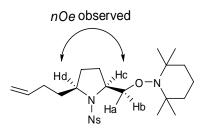

The disubstituted pyrrolidine 4 was obtained as colorless oil in 97% yield. The *cis* stereochemistry of 4 was determined by *nOe* experiment which showed a strong signal between Hc and Hd. Data for 4: $[\alpha]^{23}_{D} = +16.2^{\circ}$ (c = 0.71, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, J = 9.0 Hz, 2H), 7.29 (t, J = 7.5 Hz, 2H), 7.29 (t, J = 9.0 Hz, 1H), 7.22 (d, J = 6.5 Hz, 2H), 6.99 (d, J = 9.0 Hz, 2H), 3.91 (dd, J = 5.5 Hz, 3.0 Hz, 1H), 3.86 (s, 3H), 3.78 (t, J = 7.5 Hz, 2H), 3.72 (m, 1H), 3.36 (dd, J = 10.0 Hz, 3 Hz, 1H), 2.82 (dd, J = 9.0 Hz, 2H), 3.72 (m, 1H), 3.86 (dd, J = 10.0 Hz, 3 Hz, 1H), 2.82 (dd, J = 9.0 Hz, 2H), 3.72 (m, 1H), 3.86 (dd, J = 10.0 Hz, 3 Hz, 1H), 2.82 (dd, J = 9.0 Hz, 2H), 3.72 (m, 1H), 3.86 (dd, J = 10.0 Hz, 3 Hz, 1H), 2.82 (dd, J = 9.0 Hz, 2H), 3.72 (m, 1H), 3.86 (dd, J = 10.0 Hz, 3 Hz, 1H), 2.82 (dd, J = 9.0 Hz, 2H), 3.78 (t, J = 7.5 Hz, 2H), 3.72 (m, 1H), 3.86 (dd, J = 10.0 Hz, 3 Hz, 1H), 2.82 (dd, J = 9.0 Hz, 1H), 3.86 (dd, J = 10.0 Hz, 3 Hz, 1H), 2.82 (dd, J = 9.0 Hz, 2H), 3.78 (t, J = 7.5 Hz, 2H), 3.72 (m, 1H), 3.86 (dd, J = 10.0 Hz, 3 Hz, 1H), 2.82 (dd, J = 9.0 Hz, 2H), 3.78 (t, J = 7.5 Hz, 2H), 3.72 (m, 1H), 3.86 (dd, J = 10.0 Hz, 3 Hz, 1H), 2.82 (dd, J = 9.0 Hz, 2H), 3.78 (t, J = 7.5 Hz, 2H), 3.72 (m, 1H), 3.86 (dd, J = 10.0 Hz, 3 Hz, 1H), 2.82 (dd, J = 9.0 Hz, 2H), 3.78 (t, J = 7.5 Hz, 2H), 3.72 (m, 1H), 3.86 (dd, J = 10.0 Hz, 3 Hz, 1H)

10.0 Hz, 3.0 Hz, 1H), 1.89 (m, 1H), 1.67 (m, 1H), 1.50-1.40 (m, 6H), 1.33 (m, 1H), 1.30 (m, 1H), 1.17 (s, 6H), 1.11 (s, 6H); ¹³C NMR (125 MHz, C_6D_6) δ 162.9, 138.9, 130.5, 130.0(2C), 128.6, 128.2, 126.6, 114.2, 79.1, 63.3, 60.4, 60.1, 59.9, 54.9, 43.1, 40.0, 39.9, 33.4, 33.3, 29.2, 27.5, 20.4, 17.4; IR (neat, thin film) υ 3062, 2972, 2932, 2864, 2833, 2359, 2341, 1596, 1577, 1497, 1470, 1453, 1413, 1373, 1346, 1305, 1260, 1208, 1178, 1157, 1132, 1094, 1029, 988, 971, 910, 874, 834, 803, 761, 742, 701, 669, 629, 612, 595, 562, 510 cm-1; HRMS (ESI) calcd for $[M+H]^+C_{28}H_{41}O_4N_2S$: 501.2782, found:501.2778.

1-(((2S,5R)-5-((tert-Butyldiphenylsilyloxy)methyl)-1-tosylpyrrolidin-2-yl)methoxy)-2,2,6,6-tetramethylpiperidine (6)

The disubstituted pyrrolidine **6** was obtained as colorless oil in 96% yield. The *cis* configuration of **6** was assigned by analogy to **2** and **4**. Data: $[\alpha]^{23}{}_{D} = +3.77$ ° (c = 0.96, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.68 (t, J = 7.0 Hz, 4H), 7.64 (d, J = 8.0 Hz, 2H), 7.42 (t, J = 7.5 Hz, 6H), 7.30 (d, J = 8.0 Hz, 2H), 4.01 (d, J = 5.5 Hz, 1H) 3.92 (dd, J = 6.0 Hz, 3.0 Hz, 1H), 3.80 (t, J = 8.0 Hz, 1H), 3.67 (d, J = 5.5 Hz, 2H), 3.64 (m, 1H), 2.44 (s, 3H), 1.97 (m, 1H), 1.89 (m, 1H), 1.55 (m, 2H), 1.42 (m, 4H), 1.31 (m, 2H), 1.15 (s, 3H), 1.12 (s, 3H), 1.09 (s, 9H), 1.05 (s, 3H), 1.01 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 143.2, 135.5, 134.7, 133.6, 133.5, 129.6, 129.5, 127.6(2C), 78.2, 66.3, 62.0, 60.0, 59.8, 39.6, 33.1, 32.9, 27.3, 27.0, 26.9, 21.4, 20.2, 19.2, 17.0; IR (neat, thin film) υ 2965, 2931, 2882, 2360, 2342, 1428, 1350, 1305, 1207, 1163, 1112, 1051, 997, 962, 817, 739, 701, 665, 618, 588, 555 cm⁻¹; HRMS (ESI) calcd for [M+Na]⁺ C₃₈H₅₄O₄N₂NaSSi: 685.3466, found: 685.3476.

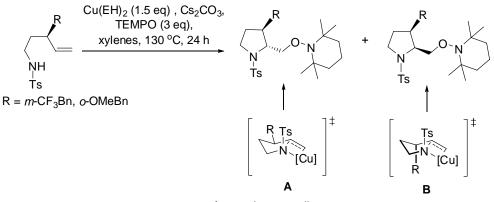
1-(((2R,5R)-5-Butyl-1-tosylpyrrolidin-2-yl)methoxy)-2,2,6,6-tetramethylpiperidine (8)



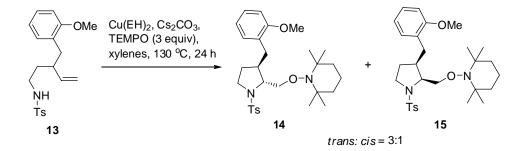
The disubstituted pyrrolidine **8** was obtained as colorless oil in 94% yield. The *cis* stereochemistry of **8** was determined by *nOe* experiment which showed a strong signal between Hc and Hd and no signal between Ha and Hd. Data for **8**: $[\alpha]^{23}_{D} = +22.7 \,^{\circ}$ (c = 0.70, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.73 (d, J = 8.5 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 3.92 (dd, J = 5.0 Hz, 4.0 Hz, 1H), 3.82 (t, J = 7.5 Hz, 1H), 3.72 (m, 1H), 3.57 (m, 1H), 2.42 (s, 3H), 1.92 (m, 2H), 1.48 (m, 8H), 1.33 (m, 6H), 1.18 (s, 3H), 1.15 (s, 3H), 1.08 (s, 6H), 0.90 (t, J = 6.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 143.1, 135.0, 129.5, 127.6, 78.5, 61.8, 59.9, 59.8, 59.6, 39.6, 36.3, 33.0, 32.9, 29.9, 28.4, 27.3, 22.6, 21.4, 20.2, 17.0, 14.0; IR (neat, thin film) v 2963, 2928, 2870, 2360, 1598, 1494, 1456, 1373, 1348, 1261, 1244, 1207, 1183, 1161, 1133, 1093, 1047, 992, 815, 709, 664, 588, 555 cm⁻¹; HRMS (ESI) calcd for [M+H]⁺C₂₅H₄₃O₃N₂S: 451.2989, found: 451.2995.

1-(((28,58)-5-(but-3-enyl)-1-tosylpyrrolidin-2-yl)methoxy)-2,2,6,6tetramethylpiperidine (10)

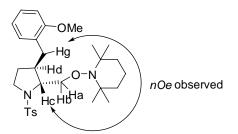
Pyrrolidine **10** was obtained as colorless oil in 97% yield. The *cis* configuration of **10** was assigned by analogy to **12**. Data for **10**: ¹H NMR (500 MHz, CDCl₃) δ 7.72 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 5.86 (m, 1H), 5.06 (dd, J = 16.0, 1.5 Hz, 1H), 4.98 (d, J = 13.5 Hz, 1H), 3.92 (m, 1H), 3.83 (t, J = 7.5 Hz, 1H), 3.71 (m, 1H), 3.60 (m, 1H), 2.42 (s, 3H), 2.13 (m, 3H), 1.91 (m, 1H), 1.43-1.59 (m, 10H), 1.18 (m, 3H), 1.15 (s, 3H), 1.09 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 141.7, 136.6, 133.5, 128.1, 126.1, 113.2, 59.7, 58.3, 38.1, 34.0, 31.5, 28.9, 28.5, 25.8, 20.0, 18.8, 15.5; IR (neat, thin film) v 3074, 2979, 2930, 2371, 2258, 1733, 1638, 1598, 1494, 1470, 1451, 1376, 1348, 1303, 1262, 1207, 1161, 1131, 1093, 1045, 992, 911, 815, 709, 665 cm⁻¹; HRMS (ESI) calcd for [M+H]⁺ C₂₅H₄₁O₃N₂S: 449.2832, found: 449.2842.


(±)-1-(((2S,5S)-5-(But-3-enyl)-1-(4-nitrophenylsulfonyl)pyrrolidin-2-yl)methoxy)-2,2,6,6-tetramethylpiperidine (12)

The disubstituted pyrrolidine **12** was obtained as white solid in 76% yield. The *cis* stereochemistry of **12** was determined by *nOe* experiment which showed a strong signal between Hc and Hd. Data for **12**: mp 115-119 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.37 (d, J = 9.0 Hz, 2H), 8.02 (d, J = 9.0 Hz, 2H), 5.85 (m, 1H), 5.07 (dd, J = 16.0 Hz, J = 1.0 Hz, 1H), 5.01 (d, J = 10.5 Hz, 1H), 3.93 (m, 2H), 3.71 (m, 1H), 3.60 (m, 1H), 2.16-2.05 (m, 3H), 1.99 (m, 1H), 1.65-1.53 (m, 6H), 1.43 (m, 4H), 1.17 (s, 3H), 1.16 (s, 3H), 1.09 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 150.0, 143.8, 137.6, 128.7, 124.2, 115.1, 78.1, 61.7, 60.2, 60.0, 39.6, 35.4, 32.9, 30.3, 30.0, 27.3, 20.3, 17.0; IR (neat, thin film) v 2973, 2932, 2871, 2360, 2340, 1640, 1605, 1531, 1471, 1453, 1400, 1373, 1350, 1307, 1208, 1166, 1133, 1091, 1048, 992, 910, 854, 734, 688, 617, 575 cm⁻¹; HRMS (ESI) calcd for [M]⁺ C₂₄H₃₇O₅N₃S₁: 479.2448, found: 479.2446.

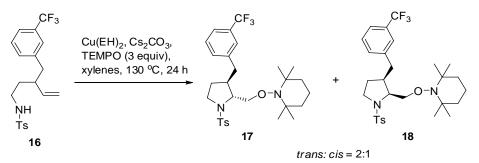

B. γ-Substituted Substrates

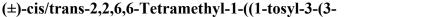
The diastereoselective aminooxygenation reaction of γ -substituted substrates (e.g. substrates 13 and 16) favors the formation of the *trans* pyrrolidine with 3:1 and 2:1 selectivity for 13 and 16 respectively. The proposed major transition state favors the positioning of the R group in the equatorial position (A) over the axial position (B) thereby favoring the formation of the *trans* adduct (Scheme 1).


favors the trans diastereomer

Scheme 1. Diastereoselective aminooxygenation reaction of γ -substituted substrates.

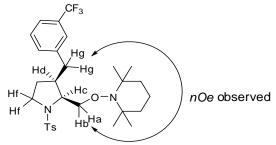
(±)-cis/trans-1-((3-(2-Methoxybenzyl)-1-tosylpyrrolidin-2-yl)methoxy)-2,2,6,6tetramethylpiperidine (14) and (15)

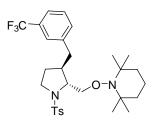

The procedure for the diastereoselective aminooxygenation of 13 was the same as for the conversion of 1 to 2. The 3:1 ratio of 14 and 15 was determined from the analysis of the crude ¹H NMR spectrum. The crude product was purified by column chromatography (10% ethyl acetate: hexanes) which gave a mixture of 14 and 15 in 80% yield. The diastereomers were separated by HPLC (5-20% ethyl acetate in hexanes, gradient). The *trans* stereoisomer in which the relative stereochemistry was assigned by *nOe* experiment eluted first followed by the *cis* stereoisomer.



The *trans* stereochemistry of **14** was determined by *nOe* experiment which showed a strong signal between Hc and Hg. Data for *trans* isomer **14**: ¹H NMR (500 MHz, C₆D₆) δ 7.71 (d, J = 8.5 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 7.17 (t, J = 8.5 Hz, 1H), 7.01 (d, J = 7.5 Hz, 1H), 6.85 (t, J = 7.5 Hz, 1H), 6.80 (d, J = 8.0 Hz, 1H), 4.16 (dd, J = 5.5 Hz, 4.5 Hz, 1H), 4.07 (dd, J = 7.5 Hz, 2.5 Hz, 1H), 3.78 (m, 1H), 3.71 (s, 3H), 3.53 (t, J = 9.5 Hz, 1H), 4.07 (dd, J = 7.5 Hz, 2.5 Hz, 1H), 3.78 (m, 2.5 Hz, 3.78 (m, 2.5 Hz, 3.5 Hz, 3.53 (t, J = 9.5 Hz, 3.55 H

1H), 3.02 (q, J = 7.5 Hz, 1H), 2.91 (dd, J = 9.0 Hz, 4.5 Hz, 1H), 2.75 (dd, J = 10.5 Hz, 3.0 Hz, 1H), 1.97 (m, 1H), 1.86 (m, 1H), 1.56 – 1.46 (m, 6H), 1.33 (s, 3H), 1.24 (s, 3H), 1.18 (s, 3H), 1.12 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.4, 143.2, 134.9, 130.4, 129.5, 127.9, 127.6, 127.4, 120.1, 110.0, 78.5, 65.8, 63.6, 59.9, 59.8, 54.9, 47.7, 41.1, 39.5, 33.8, 33.0, 32.8, 29.3, 21.5, 20.1, 17.0, 15.2; IR (neat, thin film) v 2999, 2970, 2927, 2888, 2360, 2342, 1599, 1494, 1457, 1439, 1373, 1346, 1304, 1290, 1244, 1209, 1161, 1132, 1095, 1051, 1030, 994, 815, 753, 669, 589, 550 cm⁻¹; HRMS (ESI) calcd for [M+H]⁺C₂₉H₄₃O₄N₂S₁: 515.2938, found: 515.2947.


Data for *cis* isomer **15**: ¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, J = 8.5 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 7.17 (t, J = 8.5 Hz, 1H), 7.01 (d, J = 7.5 Hz, 1H), 6.85 (t, J = 7.5 Hz, 1H), 6.80 (d, J = 8.0 Hz, 1H), 4.16 (dd, J = 5.5 Hz, 4.5 Hz, 1H), 4.07 (dd, J = 7.5 Hz, = 2.5 Hz, 1H), 3.78 (m,1H), 3.71 (s, 3H), 3.55 (t, J = 9.5 Hz, 1H), 3.02 (m, 1H), 2.91 (dd, J = 9.0 Hz, 4.5 Hz, 1H), 2.42 (s, 3H), 1.97 (m, 1H), 1.86 (m. 1H), 1.46-1.59 (m, 7H), 1.33 (s, 3H), 1.24 (s, 3H), 1.18 (s, 3H), 1.12 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 157.3, 143.0, 134.8, 129.8, 129.5, 128.9, 127.5, 127.3, 120.2, 110.2, 77.6, 62.1, 60.1, 59.7, 54.9, 47.7, 42.2, 39.9, 33.2, 32.7, 30.1, 29.6, 21.4, 20.4, 17.1; IR (neat, thin film) v 2927, 2877, 2360, 2340, 1599, 1494, 1464, 1345, 1290, 1244, 1163, 1129, 1093, 1029, 816, 752, 682, 668, 656, 594, 548 cm⁻¹; HRMS (ESI) calcd for [M+H]⁺C₂₉H₄₃O₄N₂S₁: 515.2938, found: 515.2943.



(trifluoromethyl)benzyl)pyrrolidin-2-yl)methoxy)piperidine (17) and (18)

The procedure for the diastereoselective aminooxygenation of **16** was the same as for the conversion of **1** to **2**. The 2:1 ratio of **17** and **18** was determined from the analysis of the crude ¹H NMR spectrum. The crude product was purified by column chromatography (10% ethyl acetate: hexanes) which gave a mixture of **17** and **18** in 88% yield. The diastereomers were separated by HPLC (5-20% ethyl acetate in hexanes, gradient). The *cis* stereoisomer was eluted first followed by the *trans* stereoisomer.

The *cis* isomer **18** was assigned by *nOe* experiment. Data for *cis* isomer **18**: ¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 7.5 Hz, 1H), 7.38 (t, J = 7.5 Hz, 1H), 7.31 (m, 4H), 4.14 (dd, J = 5.5 Hz, 5 Hz, 1H), 4.01 (dd, J = 7.5 Hz, 2.5 Hz, 1H), 3.76 (m, 1H), 3.58 (t, J = 8.5 Hz, 1H), 3.07 (q, J = 7.0 Hz, 1H), 2.97 (dd, J = 8.5 Hz, 6.0 Hz, 1H), 2.81 (dd, J = 9.5 Hz, 4.5 Hz, 1H), 2.43 (s, 3H), 1.96 (m, 1H), 1.82 (m, 1H), 1.67 (m, 1H), 1.47 (m, 6H), 1.32 (s, 3H), 1.25 (s. 3H), 1.15 (s, 3H), 1.10 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 143.4, 141.3, 134.4, 131.9, 129.7, 128.8, 127.4, 124.8 (q, J_{C-F} = 3.97 Hz), 123.1 (q, J_{C-F} = 3.37 Hz), 77.6, 61.5, 60.1, 59.7, 47.5, 43.3, 39.8, 35.2, 33.4, 32.8, 30.0, 29.9, 21.4, 20.4, 17.0; IR (neat, thin film) v 2974, 1933, 1873, 2363, 2344, 1739, 1598, 1493, 1450, 1374, 1333, 1263, 1242, 1200, 1163, 1125, 1096, 1073, 1046, 1030, 1015, 991, 955, 910, 876, 815, 734, 704, 689, 663, 656, 594, 547 cm⁻¹; HRMS (ESI) calcd for [M+H]⁺C₂₉H₄₀O₃N₂F₃S₁: 553.2706, found: 553.2723.

The *trans* isomer **17** was obtained as yellow solid and the relative stereochemistry was determined by X-ray crystallography (Figure 2).

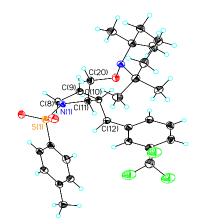



Figure 2. Crystal structure of 17.

Data for *trans* isomer **17**: mp 143-146 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.74 (d, J = 8.0 Hz, 2H), 7.44 (d, J = 8.0 Hz, 1H), 7.35 (m, 3H), 7.17 (d, J = 8.0 Hz, 1H), 7.07 (s, 1H), 3.93 (dd, J = 5.5 Hz, 3.5 Hz, 1H), 3.81 (t, J = 8.5 Hz, 1H), 3.48 (m, 1H), 3.38 (m, 2H), 2.58 (m, 1H), 2.46 (s, 3H), 2.26 (m, 1H), 2.04 (m, 1H), 1.49-124 (m, 6H), 1.16 (s, 3H), 1.09 (s. 3H), 1.05 (s, 3H), 0.924 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 143.5, 140.3, 134.7, 132.0, 129.7, 128.8, 127.6, 125.6 (q, J_{C-F} = 3.45 Hz), 123.1 (q, J_{C-F} = 3.97 Hz), 78.6, 62.3, 59.8, 47.6, 43.0, 39.5, 38.7, 33.1, 32.8, 29.7, 21.4, 20.3, 20.0, 17.0; IR (neat, thin film) v 2973, 2929, 2873, 2356, 1597, 1493, 1451, 1373, 1347, 1334, 1261, 1244,

1201, 1161, 1125, 1096, 1055, 1002, 905, 877, 816, 752, 735, 704, 663, 598, 590, 551, 512 cm⁻¹; HRMS (ESI) calcd for $[M]^+C_{29}H_{39}O_3N_2F_3S_1$: 552.2628, found: 552.2641.

(3aS,6aS)-6-(2,2,6,6-Tetramethylpiperidin-1-yloxy)-1tosyloctahydrocyclopenta[b]pyrrole (20)

Substrate 19 was synthesized according to the reported procedure.⁹ The procedure for the aminooxygenation reaction of substrate 19 is the same as in the conversion of 1 to 2 except that the reaction was heated to 140 °C for 36 h. Based on the ¹H NMR spectrum of the crude product, the aminooxygenation product 20 and elimination product 21 was obtained in 7:1 ratio. Purification of the crude product by column chromatography (10% EtOAC in hexanes) in silica gel gave 20 as a white solid in 57% yield. The stereochemistry of 20 was determined by X-ray crystallography (Figure 3).

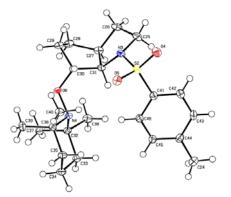
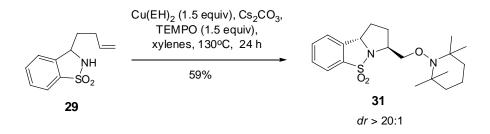



Figure 3. Crystal structure of 20.

Data for **20**: mp = 103-109 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, J = 8.5 Hz, 2H), 7.32 (d, J = 8.0 Hz, 1H), 4.62 (t, J = 2.0 Hz, 1H), 3.91 (d, J = 8.0 Hz, 1H), 3.38 (m, 1H), 3.19 (m, 1H), 2.57 (m, 1H), 2.43 (s, 3H), 1.94 (m, 2H), 1.75 (m, 1H), 1.50-1.57 (m, 7H), 1.43 (m, 2H), 1.12-1.31 (m, 12H); ¹³C NMR (75 MHz, CDCl₃) δ 143.2, 134.0, 129.4, 128.0, 88.7, 68.4, 59.9, 49.6, 41.8, 40.4, 34.3 (br peak), 31.2, 30.0, 29.8, 21.5, 20.4, 17.2; IR (neat, thin film) v 3061, 2930, 2869, 2852, 2252, 1733, 1660, 1598, 1494, 1454, 1376, 1349, 1306, 1288, 1256, 1240, 1164, 1128, 1092, 1029, 965, 837, 816, 731, 710, 669, 659, 586, 549 cm⁻¹; HRMS (ESI) calcd for [M]⁺ C₂₃H₃₆O₃N₂S₁: 420.2441, found: 420.2447.

The elimination product **21** matches the ¹H NMR spectrum of the previously reported data: ¹ ¹H NMR (500 MHz, CDCl₃) δ 7.74 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 5.81 – 5.74 (d, 2H), 4.56 (d, 1H), 3.36 (m, 1H), 3.08 (m, 1H), 2.52 (m, 1H), 2.43 (s, 3H), 2.17 – 2.12 (m, 1H), 1.85 (m, 1H), 1.55 – 1.50 (m, 2H).

(±)-3-(2,2,6,6-Tetramethyl-piperidin-1-yloxymethyl)-1,2,3,9btetrahydro[*d*]pyrrolo[1,2-*b*]isothiazole 5-5-dioxide (31)

The procedure for the aminooxygenation reaction of **29** was the same as for the conversion of **1** to **2** except that 1.5 equiv of TEMPO was used. Using more equivalent of TEMPO leads to low yield of the desired product presumably due to decomposition of starting material. Purification of the crude product by flash chromatography on silica gel (5-20% EtOAc in hexanes gradient) gave a white solid (49.5 mg) in 59% yield. The *trans* stereochemistry of **31** was determined by X-ray crystallography (Figure 4).

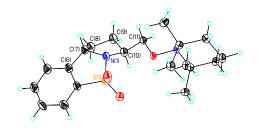
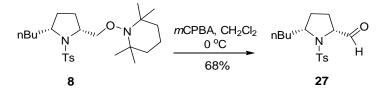



Figure 4. Crystal structure of 31.

Data for **31**: mp 103-106 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, J = 7.5 Hz, 1H), 7.60 (t, J = 7.5 Hz, 1H), 7.51 (t, J = 7.5 Hz, 1H), 7.34 (d, J = 7.5 Hz, 1H), 5.04 (t, J = 7.0 Hz, 1H), 4.25 (m, 1H), 3.97 (m, 2H), 2.54 (m, 1H), 2.11 (m, 1H), 2.03 (M, 1H), 1.86 (m, 1H), 1.60 (m, 2H), 1.45 (m, 4H), 1.21 (s, 3H), 1.21 (m, 3H), 1.16 (s, 3H), 1.14 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 139.4, 136.1, 132.9, 129.3, 123.7, 121.6, 79.3, 65.7, 60.0, 58.7, 39.6, 33.0, 32.3, 29.6, 20.2, 17.0; IR (neat, thin film) v 2969, 2933, 2870, 2360, 2341, 1734, 1705, 1469, 1452, 1374, 1359, 1312, 1258, 1171, 1133, 1091, 1059, 972, 759, 742, 579 cm⁻¹; HRMS (ESI) calcd for [M+H]⁺ C₂₀H₃₁O₃N₂S₁: 379.2050, found: 379.2049.

Oxidation of TEMPO Adduct/Formal Synthesis of (+)-Monomorine

(2*R*,5*R*)-2-(Formyl)-5-butyl-*N*-(*p*-tosyl)-pyrrolidine (27)

Using a modified procedure,¹⁰ a solution of the TEMPO adduct 8 (40 mg, 0.089 mmol, 1 equiv) in 1 mL dry CH₂Cl₂ was stirred in a 5 mL round bottom flask equipped with magnetic stir bar. After the addition of *m*-CPBA (22.9 mg, 0.133 mmol, 1.5 equiv), the reaction mixture was stirred and kept at 0 °C for 2 h. Stirring the solution for more than 2 h leads to undesired product. It was then guenched with cold ag. Na₂S₂O₃ (3 mL), extracted with CH₂Cl₂ (4 mL), then with EtOAc (2 x 4 mL). The combined organic extracts were washed with aq. NaHCO₃, followed by brine solution, dried with anhydrous Na_2SO_4 and concentrated *in vacuo*. Purification was done by flash chromatography (10%) EtOAc: hexanes) to afford 27, a white solid in 68% yield (18.6 mg). The data matched those of the literature values.¹¹ $\left[\alpha\right]^{23}_{D} = +17.2^{\circ}$ (c = 0.60, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 9.63 (d, J = 2.0 Hz, 1H), 7.72 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 3.87 (dt, J = 5.5 Hz, 2.5 Hz, 1H), 3.67 (m, 1H), 2.44 (s, 3H), 2.00 (m, 1H), 1.90 (m, 1H),1.86 (m, 1H), 1.25-1.56 (m, 7H), 0.92 (t, J = 7.0 Hz, 3H); 13 C NMR (125 MHz, CDCl₃) δ 200.4, 144.0, 134.0, 129.9, 127.6, 67.7, 62.0, 35.9, 29.8, 28.2, 25.5, 22.5, 21.5, 14.0; IR (neat, thin film) v 2954, 2934, 2868, 2361, 1734, 1597, 1457, 1347, 1206, 1161, 1092, 1035, 1010, 816, 708, 666, 596, 551 cm⁻¹; HRMS (ESI) calcd for $[M+H]^+ C_{16}H_{24}O_3N_1S_1$: 310.1471, found: 310.1470.

Crystallographic Data for Compounds 2, 17, 20 and 31

X-ray diffraction data for compounds 2, 17, 20 and 31 were collected at 90(1) K using a Bruker SMART APEX2 CCD diffractometer installed at a rotating anode source (MoK α radiation, λ =0.71073Å), and equipped with an Oxford Cryosystems nitrogen gas-flow apparatus. The data were collected by the rotation method with 0.5° frame-width (ω scan) and 30 sec. exposure time per frame. Five sets of data (360 frames in each set) were collected, nominally covering complete reciprocal space. The data were integrated, scaled, sorted and averaged using the APEXII software package.¹² The structure was solved by direct methods using SHELXS.¹³ The structure was refined by full-matrix least squares against F² using SHELXL.¹³

All non-hydrogen atoms were refined anisotropically. X-H distances were set to idealized values and not refined. Hydrogen atoms were refined with the "riding" model with $U_{iso}=1.5 U_{eq}$ for CH₃ and $U_{iso}=1.2 U_{eq}$ for the remaining hydrogens.

Crystal data and data collection information are summarized in Tables 1-4.

Chemical formula C₂₄ H₄₀ N₂ O₄ S C24 H40 N2 O4 S Stoichiometric formula Formula weight 452.64 Crystal system, space group Orthorhombic, $P2_12_12_1$ Unit cell dimensions: a = 8.1083(5) [Å] b = 10.8440(6) [Å] c = 27.2736(16) [Å] $\alpha = 90 [\circ]$ $\beta = 90 [^{\circ}]$ $\gamma = 90 [^{\circ}]$ 2398.1(2) [Å⁻³] Volume 4, 1.254 $[Mg/m^3]$ Z, Calculated density Radiation ΜοΚα Wavelength $\lambda = 0.71073$ [Å] θ -range for data collection 1.49 to 28.19 [°] $0.66 [Å^{-1}]$ $\sin\theta/\lambda$ max Absorption coefficient $\mu = 0.167 \,[\text{mm}^{-1}]$ Temperature 90(1) [K] F(000) 984 Crystal size 0.25 x 0.15 x 0.04 [mm] Crystal shape Prism Colorless Crystal color **Data Collection** Diffractometer APEXII CCD area detector diffractometer Measurement method *π*-scan Absorption correction Multi-scan (SADABS 2004/1; Sheldrick, 2004)Max. and min. transmission $T_{max} = 0.998$, $T_{min} = 0.959$ Reflections collected / unique / R_{int} 46282 / 5894 / 0.0359 Completeness to $\theta = 27.54^{\circ}$ 99.9 [%] Limiting indices $h = -10 \rightarrow 10$ $k = -14 \rightarrow 14$ $1 = -36 \rightarrow 36$ Refinement Full-matrix least-squares on F^2 Refinement method Data / restraints / parameters 5894 / 0 / 286 R [I>2sigma(I)] R1 = 0.0255 / WR2 = 0.0618R (all data) R1 = 0.0305 / WR2 = 0.0649Goodness-of-fit on $F^2 = S$ 1.084 0.279 [e Å ⁻³] $\Delta \rho_{max}$ -0.232 [e Å ⁻³] $\Delta \rho_{\rm min}$ Flack parameter -0.02(4)

Table 1. Crystal data and data collection information for compound 2 (CCDC 696031).

Chemical formula $C_{29}H_{39}F_3N_2O_3S$ M_r 552.68 Cell setting, space group Monoclinic, C2/cTemperature (K) 90(2) *a*, *b*, *c* (Å) 36.619 (6), 7.7648 (12), 20.354 (3) β (°) 101.835 (3) $V(\text{Å}^3)$ 5664.4 (15) Ζ 8 $D_x ({\rm Mg m}^{-3})$ 1.296 Radiation type Μο Κα μ (mm⁻¹) 0.17 Crystal form, colour Block, colorless 0.48 imes 0.28 imes 0.14Crystal size (mm) **Data collection** Diffractometer **Bruker SMART APEX2** Data collection method ω and ϕ -scans Absorption correction Multi-scan (based on symmetry-related measurements) 0.924 T_{\min} 0.977 Tmax No. of measured, independent and 22109, 5555, 4207 observed reflections Criterion for observed reflections $I > 2\sigma(I)$ 0.051 $R_{\rm int}$ 26.0 θ_{max} (°) Refinement F^2 Refinement on $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.058, 0.161, 1.05 No. of relections 5555 reflections No. of parameters 347 H-atom treatment Constrained to parent site Calculated $w = 1/[\sigma^2(F_o^2) + (0.0592P)^2 +$ Weighting scheme 3.2247P] where $P = (F_o^2 + 2F_c^2)/3$ < 0.0001 $(\Delta/\sigma)_{\rm max}$ $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}$ (e Å⁻³) 0.82, -0.72

Table 2. Crystal data and data collection information for 17 (CCDC 711960).

Chemical formula	$C_{46}H_{72}N_4O_6S_2$
Formula weight	841.20
Temperature	363(2) K
Wavelength	0.71073 Å
Crystal system	orthorhombic
Space group	P n a 21
Unit cell dimensions	$a = 16.017(3) \text{ Å} \alpha = 90^{\circ}$
	$b = 8.7090(17) \text{ Å} \beta = 90^{\circ}$
	$c = 31.460(6) \text{ Å} \gamma = 90^{\circ}$
Volume	4388.4(15) Å ³
Ζ	4
Density (calculated)	1.273 Mg/cm ³
Absorption coefficient	0.174 mm^{-1}
F(000)	1824
Theta range for data collection	1.29 to 30.57°
Index ranges	-22<=h<=22, -12<=k<=12, -45<=l<=45
Reflections collected	95952
Independent reflections	13467 [$R(int) = 0.0602$]
Structure solution technique	direct methods
Structure solution program	SHELXS-97 (Sheldrick, 2008)
Refinement method	Full-matrix least-squares on F ²
Refinement program	SHELXL-97 (Sheldrick, 2008)
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$
Data / restraints / parameters	13467 / 1 / 533
Goodness-of-fit on F ²	1.057
Δ/σ_{max}	0.002
Final R indices	11229 data; $I > 2\sigma(I)$ R1 = 0.0365, wR2 = 0.0871
	all data $R1 = 0.0544, wR2 = 0.0983$
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0466P) ² +1.1249P] where P=(F_o^2 +2 F_c^2)/3
Absolute structure parameter	0.4(1)
Largest diff. peak and hole	0.481 and -0.348 eÅ ⁻³
R.M.S. deviation from mean	0.053 eÅ ⁻³

 Table 3. Crystal data and data collection information for 20 (CCDC 714177).

Chemical formula $C_{20}H_{30}N_2O_3S$ 378.52 M_r Cell setting, space group Monoclinic, $P2_1/c$ Temperature (K) 90(2) a, b, c (Å) 15.0345 (11), 8.1634 (6), 16.5707 (14) β (°) 98.427 (2) $V(Å^3)$ 2011.8 (3) Ζ 4 $D_{\rm x} \,({\rm Mg}\,{\rm m}^{-3})$ 1.250 Radiation type Μο Κα μ (mm⁻¹) 0.18 Crystal form, colour Block, colorless Crystal size (mm) $0.48 \times 0.40 \times 0.22$ **Data collection** Diffractometer **Bruker SMART APEX2** Data collection method ω and ϕ -scans Absorption correction Multi-scan (based on symmetry-related measurements) T_{\min} 0.917 0.961 $T_{\rm max}$ No. of measured, independent and 28293, 4459, 3713 observed reflections Criterion for observed reflections $I > 2\sigma(I)$ 0.037 R_{int} θ_{max} (°) 27.2 Refinement F^2 Refinement on $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.053, 0.139, 1.08 No. of relections 4459 reflections No. of parameters 239 H-atom treatment Constrained to parent site Calculated $w = 1/[\sigma^2(F_o^2) + (0.0544P)^2 +$ Weighting scheme 2.7105P] where $P = (F_o^2 + 2F_c^2)/3$ < 0.0001 $(\Delta/\sigma)_{\rm max}$ $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}$ (e Å⁻³) 0.78, -0.45

Table 4. Crystal data and data collection information for 31 (CCDC 704323).

References

¹ Sherman, E. S., Fuller, P.H., Kasi, D and Chemler, S. R. *J. Org. Chem.* **2007**, *72*, 3896-3905.

² Berry, M. B., Craig, D. Synlett **1992**, 41-44.

³ Manzoni, M. R., Ph.D. Thesis: "Vicinal Difunctionalization of Olefins: Aminohalogenation and Carboamination for the Rapid Assembly of Nitrogen Heterocycles," University at Buffalo, State University of New York, Buffalo, 2006.

⁴ Gribkov, D. V.; Hultzsch, K. C.; Hampel, F. J. Am. Chem. Soc. 2006, 128, 3748-3759.

⁵ Teeninga, H. and Engberts, J. B. F. N. J. Org. Chem., **1982**, 48, 537-542.

⁶ Davis, F. A., Towson, J. C., Vashi, D. B., ThimmaReddy, R., McCauley, J. P. Jr., Harakal, M. E. and Gosciniak, D. J. *J. Org. Chem.* **1990**, *50*, 1254-1261.

⁷ Liu, J. F. and Heathcock, C. H. J. Org. Chem. **1999**, 64, 8263 – 8266.

⁸ Negishi, E., Swanson, D. R., Rousset, C. J. J. Org. Chem. 1990, 55, 5406.

⁹ Larock, R. C., Hightower, T. R., Hasvold, L. A., Peterson, K. P. J. Org. Chem. **1996**, 61, 3584-3585.

¹⁰ Inokuchi, T.; Kawafuchi, H. *Tetrahedron*, **2004**, 60, 11969.

¹¹ Riesinger, S. W., Löfstedt, J., Pettersson-Fasth, H.and Bäckvall, J. *Eur. J. Org. Chem.* **1999**, 3277-3280.

¹²APEX2 and SAINT-Plus, Area detector control and integration software, Ver. 2.0-2. Bruker Analytical X-ray Systems, Madison, Wisconsin, U.S.A, **2005**

¹³ SHELX97 - Sheldrick, G. M. (1997). SHELX97. Programs for Crystal Structure Analysis (Release 97-2). University of Göttingen, Germany.