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Section S1:  Initial parameter estimates

As described in the text, an MPF is modeled as the sum of a background function C(x)  and a 
signal function H (x) .  The background function is given by



 
C(x) = b + d ic(x)
 (1)

where c(x)  represents the expected frequency of occurrence according to dinucleotide 
composition, and b  and d  are free parameters in the model.  The signal function H (x)  is given 
by
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where M  represents the number of overrepresentation peaks within the MPF.  For MLFs, M  
can equal either 0 or 1, while M  can take on any non-negative integer for MRFs.  The 
parameters a , µ , and σ  represent free parameters within the model. Estimating these 
parameters involves optimizing the log-likelihood of the data using a quasi-Newton method 
called Broyden’s method (1).  This method accepts an initial parameter vector θ0  and iteratively 
updates the parameters until they converge to a local optimum.  As the final model can ultimately 
be affected by the choice of the initial parameters, MPF estimation is conducted using several 
different initial parameter values.  These initial values are obtained by considering the outlying 
data points, as their departure from the background frequency can potentially signify positional 
enrichment.  For each of the several initial parameter estimates for a given motif, values for µ  
are set to the locations of the most extreme outlier points, while the coefficient a  is estimated to 
be the height of the occurrence frequency at this location over the background frequency.  The 
initial σ -value of the Gaussian term is then determined using the occurrence frequency at the 
surrounding positions.  For a single MPF, Broyden’s method is conducted separately on each 
initial parameter vector.  By iteratively updating each parameter vector, the method produces 
different parameter estimates for each initial vector upon convergence.  The final parameters are 
ultimately taken to be those which produce the highest log-likelihood of the data.

We find that parameter estimation is quite robust, as initial parameter vectors at different 
positions within the location of enrichment typically converge to very similar values.  Initial 
parameter vectors not within the location of enrichment often produce different parameter 
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estimates, although (by definition) they produce lower log-likelihoods and therefore do not affect 
the final results.  The robustness of the parameter estimates is clearly illustrated by comparing 
the predictions generated during the human and the mouse RefSeq analyses (Table 1 in the text, 
and Table T2 in Section S4).  The location and width of the enrichment was found to be very 
similar for motifs present in both species, despite the fact that the analysis was conducted upon 
independent data sets.  Moreover, the initial parameter vectors were generated independently 
during the two analyses; any random differences in the data would therefore affect the initial 
parameter estimates.  Thus, the initial parameter vectors differed for each motif shared between 
the two species, with different site locations chosen for the initial µ  estimate and different initial 
σ -values.  Therefore, the high level of similarity between the predictions attests to the 
robustness of the methodology.

Initial parameter estimates for MRFs are determined in a similar fashion as those for an MLF.  
MRF estimation is conducted in an iterative fashion, with the addition of a new Gaussian term at 
each step (i.e., incrementing the value of M  by 1 at each iteration).  In the case where the MRF 
has multiple Gaussian terms, initial parameter estimates are taken to be the final parameter 
estimates of the previous MRF, along with the additional Gaussian term added to the signal 
function.  The initial values of this (new) Gaussian term are estimated in the same manner as that 
for the MLF model, as described above.  Although this procedure involves estimating several 
parameters, in practice we have found that the previously determined parameters (i.e., those of 
the previous Gaussian terms) do not change during subsequent iterations.  Thus, each MRF 
estimation only involves optimizing the parameters for a single additional Gaussian term, and 
therefore the robustness of the parameter estimates are equivalent to that of an MLF.
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Section S2:  MPF statistics

The significance of spatial bias for a given motif is determined by considering two different 
models, a null model and an alternative model.  Here, for simplicity, we illustrate this 
comparison given the MLF model.  The statistical model is identical for MRFs, although more 
than one such comparison may be necessary for MRF estimation.  

For any given MLF g(x) , the null model comprises only the background function g(x) = C(x) .  
In contrast, the alternative model is given by g(x) = C(x) + H (x) , where H (x)  incorporates 
positional bias into the MLF g(x) .  The complete function model for any MLF is given by



 

g(x) = b + d ic(x) + a iexp −
(x − µ)2
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(Note Eqs 1 and 2.)  Both the null model as well as the alternative model can be defined as in Eq 
3, although the null hypothesis is special case of this model where a  is set to zero.  Thus, the 
null model is nested within the alternative hypothesis.  In general, when nested models meet 
certain requirements (‘regularity conditions’), the ‘scaled deviance’ of the two models given the 
data follows a χ 2  distribution (2).  Given the parameter vectors θnull  and θalt  of the null and 
alternative models, respectively, the scaled deviance Z  is given by



 
Z = 2 i L(D;θalt ) − L(D;θnull )[ ]
 (4)

where L(D;θnull )  and L(D;θalt )  represent the log-likelihoods of the respective models given the 
data D .

Assuming regularity of the models, Z ~ χ 2  with θalt − θnull  degrees of freedom.  More 

specifically, Z  converges asymptotically to the χ 2  distribution assuming a large number of data 
points (2).  However, there are several regularity conditions that must be satisfied in order for Z  
to converge to a χ 2  distribution.  For instance, the ‘true’ model must exist within the parameter 
space of the alternative hypothesis.  Of course, this is an assumption made whenever one fits a 
model function to any data.  In our case, inspection of the results suggest that our model does 
accurately fit the data (e.g., note Figure 1a in the text).

Another requirement for regularity is that the null model θnull  must be found strictly on the 
interior of the alternative model.  Specifically, any free parameter of θalt  that is fixed 
within the null hypothesis must lie within a compact neighborhood Θ  lying within the parameter 
space of the alternative model.  It is not necessarily obvious that this holds for the MLF model, 
as the (fixed) parameter a  is set to zero in the null model.  If a  was restricted to be positive, 
then the null model would lie ‘on the boundary’ of the alternative hypothesis rather than within 
the interior (in such a case, a  would equal zero for the null hypothesis, and a > 0  for the 
alternative model).  However, in our model, a  is not restricted to be positive, but can also take 
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on negative values.  We note that in such a case, the MLF itself does not take on negative values, 
as the positive values for C(x)  prevent this from occurring (i.e., C(x) + H (x) > 0  even though 
H (x) < 0 ).  Although cases where a < 0  are extremely rare, this did occur for one of our 
predicted 6mers (namely, CGCCCC in cluster 9, Table 1 in the text).

In addition to the requirements given above, the log-likelihood of the model as well as its 
derivatives must exist and be finite at the ‘true’ values of the parameters.  Our model
meets this condition; for instance, the maximum likelihood of any single data point is finite.  This 
maximum likelihood is obtained when the value of the MLF equals the observed frequency of 
the motif at x ; thus, the log-likelihood is bounded by this maximum value.  We note that this 
property is dependent upon the fact that the values of an MLF are not normalized across x .  It is 
important to emphasize that the value of g(x)  represents, for a particular value of x , the 
probability of motif occurrence. Thus, g(x)  is not a probability distribution across x , as the sum 
of its values across x  does not equal one.  This distinction is important; if the values of g(x)  
were normalized across all positions, the log-likelihood of the function would become 
unbounded, as the limit of the log-likelihood would approach +∞  as σ → 0 .  This corresponds 
to fitting the Gaussian term of H (x)  to a single data point, at which the height of the Gaussian 
curve would rise arbitrarily high as σ  approaches zero.

Upon implementation, the method uses an F-test to determine the significance of positional 
enrichment.  The statistic F  is given by


 F =
Z(θalt ,θnull )[ ] n − θalt⎡⎣ ⎤⎦
Z(θSat ,θalt )[ ] θalt − θnull⎡⎣ ⎤⎦


 (5)

where Z(θ j ,θk )  represents the scaled deviance of models j  and k , n  represents the number of 

data points, and model Sat  represents the ‘saturated model’; i.e., the model that optimizes the 
log-likelihood of the data without limits on the number of parameters.  This statistic F  follows 
an F-distribution with θalt − θnull  and n − θalt  degrees of freedom (2); p-values obtained during 
the analyses described in the text were produced using this statistic.

We note, however, that the scaled deviance converges asymptotically to the χ 2  distribution as 

the number of data points n→∞ .  In order to determine whether fitting the χ 2  distribution is 
appropriate given the number of data points during our MLF analysis, we conducted a simple test 
using a completely randomized data set.  Namely, we generated a simulated data set assuming a 
completely uniform distribution of each nucleotide type at each site.  We note that this type of 
simulated data differs substantially from the control sets mentioned in the text (i.e., intergenic 
sequences and position-specific dinucleotide simulations).  That is, in the completely randomized 
sequences, no higher-order dependencies exist between sites.  In contrast, data sets obtained 
using biological data are not random, as genomic data follows various trends such as high 
frequencies of repeat sequences, position-specific fluctuations in dinucleotide content, etc.  
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Conducting a comprehensive 6mer MLF analysis on the randomized data set only produced one 
prediction with a p-value under 1e-5.  This is similar to what we would expect from a 
randomized data set, as we are testing for multiple hypotheses.  Thus, it appears that the number 
of data points used during MLF estimation is large enough to assume a χ 2  distribution.
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Section S3:  Putatively novel 7mers of Vardhanabhuti et al

Vardhanabhuti et al (3) reported a list of 168 putatively novel 7mer motif clusters with positional 
specificity.  Their analysis was first conducted by analyzing positional preferences of known 
protein binding motifs in TRANSFAC (4).  They subsequently scanned for spatial bias across the 
list of 7mers that had been filtered for matches to the known TF binding sites in TRANSFAC.  
Thus, they presented predictions from this list of (filtered) 7mers as novel motifs.  However, 
inspection of the results showed that a large fraction of these 7mers still matched known binding 
sites in TRANSFAC.  Table T1 shows the 15 top-ranking 7mers reported by Vardhanabhuti et al.  
The second row shows the ‘novel’ motif clusters predicted during their analysis; the third column 
shows matches to known cis-regulatory elements in TRANSFAC according to STAMP (5).  The 
corresponding TRANSFAC motif is shown to the right of its binding protein (only aligned sites 
are shown), along with the STAMP E-value in the last column.  The strongest match according to 
STAMP is shown, and 7mers matching binding sites known to be positionally enriched are also 
shown below the strongest match.  Eleven of the sixteen produced matches to known binding 
sites at an E-value threshold of 1e-6, while two additional predicted 7mer clusters produced 
weaker matches (denoted by the (✝) character in the 3rd column).  Although these last two motifs 
produced weaker matches, they are identifiable as the CAAT-box (CCATTGG; rank 9) and the 
YY1 binding site (GAAGATG; rank 12); positional specificity for each was predicted at the 
same location of enrichment found using the known binding motif sequences.

Rank Consensus TF TFBS E-value
1 AGATGGC NF-muE1 AGATGGC 2e-11
2 ATTGGCT alpha-CP1 ATTGGCT 3e-10

NFY ATTGGYT 8e-8
3 CCGACAT -- -- --
4 CACTTCC GABP CnCTTCC 1e-9

ETS nACTTCC 1e-8
5 GGTGAGT -- -- --
6 AGCCAAT alpha-CP1 AGCCAAT 3e-10

NFY ARCCAAT 8e-8
7 GCGGGGC SP1 GCGGGGn 7e-7
8 GGAAGTG GABP GGAAGTG 1e-10

ETS GGAAGTn 1e-8
9 CCATTGG †alpha-CP1 TCATTGG 1e-6
10 GTCAATC COMP1 GTCAATC 2e-7
11 GACGTAA CREB GACGTMW 1e-9
12 GAAGATG †YY1 nAAnATG 1e-6
13 CTGATTG NFY CTGATTG 3e-9
14 TATAAGG SRF WATAAGG 1e-7

†TBP TATAAAn 7e-6
15 ATGGCGG E2F TTSTCGG 3e-7

Table 1

1

Table T1
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Section S4:  Supplementary MLF tables: Mouse data

Table T2

Motif cluster groups exhibiting positional enrichment in mouse RefSeq promoters (6-8).  The 
mouse RefSeq analysis was conducted on a data set of 18,354 non-redundant regulatory 
sequences in the (-500,+100) range.  Matches to spatially biased motifs in humans are shown to 
the right of the mouse MLF analysis results.  The location (µ ) and width (σ ) of enrichment are 
given to the right of each motif cluster.  The third column shows factor names binding to the 
known regulatory elements in TRANSFAC (4); putatively novel motifs in mouse are labeled m1-
m15.  Both the cross-species comparisons and comparisons to the TF binding sites in 
TRANSFAC were conducted using STAMP (5) (E-value threshold: 1e-6).

Table T3

Positionally enriched motif comparisons between the mouse RefSeq and RIKEN promoter data 
sets (9,10).  The RIKEN promoter data consisted of 1,354 high-quality mouse promoters 
produced by CAGE-tag data.  Many of the positionally enriched motifs found using the RefSeq 
data could not be detected using the significantly smaller RIKEN data set.  We find that this is 
due to the highly reduced number of motif occurrences at each position within the promoters.  As 
the MLF model was designed to be conducted on a genome-wide level, we find that the method 
is best applied to large data sets in order to detect motifs with a low overall frequency of 
occurrence.
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Location-specific motif clusters

Mouse RefSeq data Human RefSeq data
Rank p TF Consensus µ (σ) Consensus µ (σ)
1 7e-135 Sp1(-) SCYCCKCCCC -75.7 (51.7) GCCCCKCCCC -73.2 (45.0)
2 4e-127 Tbp ATATAAARGC -29.9 (1.7) ATATAAAWR -29.6 (1.9)
3 3e-116 Tbp ATATAW -29.7 (1.8) TWTATA -29.9 (2.0)
4 2e-112 Sp1(+) GRGGGGGGCGKG -64.6 (42.8) AGGGGGCGGGG -65.3 (52.2)
5 3e-103 m1 GGTAAG 71.6 (33.9) CAGGTAAG 74.5 (31.6)
6 2e-102 m2 TGTGTGT -434.8 (212.5) GTGTGT -325.6 (234.4)
7 6e-101 Nfy(+) WCCAATGR -84.7 (40.1) AGCCAATCAG -75.7 (40.7)
8 7e-100 Nfy(-) SATTGGT -83.0 (44.1) CTSATTGGCT -75.8 (42.7)
9 5e-98 m3 CGCCATGGCY 52.4 (34.9) CRCCATGGA 53.8 (38.0)
10 4e-92 Creb1 GTGACG -44.5 (34.6) CGTGACGTC -47.1 (39.0)
11 3e-90 Elk4(+) GCCGGAAGTG -31.5 (37.0) ACCGGAAGTG -23.9 (32.3)
12 4e-73 Zfp36I2 RGCGGCG 32.6 (44.4) CAGCGGCKGC 37.0 (40.7)
13 2e-64 m4 GTGAGTG 70.1 (32.7) GTGAGTG 69.2 (36.4)
14 2e-63 m5 WGGTGA 70.1 (34.8) -- -- --
15 3e-63 Zeb1 AGGTAA -47.1 (123.8) -- -- --
16 4e-60 E2f1 TGGCGG 23.8 (16.7) GATGGCGG 32.9 (22.1)
17 9e-60 m6 CGCGCGC -31.6 (97.1) GCGCGC -51.8 (95.0)
18 3e-58 Zeb1 CAGGTA 313.9 (112.4) -- -- --
19 9e-57 Nfy(+) GCCAAT -91.0 (21.9) AGCCAATCAG -75.7 (40.7)
20 3e-55 Yy1 GATGGC 26.9 (20.1) ATGGCC 53.6 (33.9)
21 8e-53 m7 CTGCTGCY 55.1 (37.0) TCTGCTGCT 54.0 (33.5)
22 3e-51 Creb1 CGTCAC -53.2 (39.5) TCGTCAC -47.0 (37.4)
23 7e-50 Yy1 CAAGATGG 16.5 (10.7) CAAGATGG 23.9 (17.1)
24 3e-49 Nfy(+) AGCCAA -96.4 (46.0) AGCCAATCAG -75.7 (40.7)
25 7e-49 Nrf1 TGCGCA -57.8 (46.8) RTGCGCA -52.7 (59.8)
26 2e-47 Elk4(-) CTTCCGG -15.4 (16.0) CACTTCCGGT -21.3 (32.2)
27 2e-44 Zfp219 CCCCCC -117.6 (99.9) †CCCACCC -130.0 (70.2)
28 2e-43 m8 CACGCC -113.3 (90.6) -- -- --
29 2e-43 Tbp TAAATAG -28.8 (1.7) TAAAAA -27.8 (0.9)
30 3e-43 Myc CACGTG -53.3 (46.1) CACGTG -51.0 (50.7)
31 2e-39 Maz(-) CCCTCC -61.9 (32.8) CTCCCTC -111.0 (100.6)
32 4e-37 m9 AAGGTA 149.6 (47.8) -- -- --
33 9e-36 Zbtb7a GCCCCC -66.3 (33.6) CGCCCC 35.0 (32.2)
34 1e-32 m10 ATGGAG 52.5 (36.2) -- -- --
35 2e-31 Inr CTCAGTN -3.0 (0.2) GCTCAGTCC -3.0 (0.2)
36 9e-31 Nfy(+) AATCAG -74.4 (35.8) -- -- --
37 5e-30 m11 CTCTCT -350.6 (114.9) -- -- --
38 2e-25 Inr TCAGTC -2.2 (0.5) CAGTTG -1.2 (0.5)
39 1e-24 Tead2 CCGCCG 67.7 (32.1) -- -- --
40 3e-24 Nfy(-) ATTGGC -100.0 (16.1) CTSATTGGCT -75.8 (42.7)
41 2e-23 m12 GCAGCA 28.6 (15.4) -- -- --
42 9e-23 Nfy(-) TTGGCT -70.9 (26.7) -- -- --
43 3e-21 Inr GGCAGT -3.0 (0.2) CAGTGC -1.0 (0.2)
44 7e-21 m13 GGTGGC 45.1 (29.6) -- -- --
45 2e-20 m14 GGACCC 102.1 (46.4) GGACCC 78.7 (27.8)
46 9e-20 Inr CAGTCY -1.0 (0.2) GCTCAGTCC -3.0 (0.2)
47 9e-18 Inr CACTTC -1.0 (0.2) TCACTT -1.9 (0.5)
48 1e-17 Mef2 AAAATA 202.3 (78.0) AAAAAT 77.3 (23.1)
49 1e-16 m15 GAAGGT 54.4 (38.3) AAGAAG 96.5 (55.5)

Table 1

1

Table T2
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Location-specific motif clusters

Mouse RefSeq data Mouse RIKEN data
Rank p TF Consensus µ (σ) Consensus µ (σ)
1 7e-135 Sp1(-) SCYCCKCCCC -75.7 (51.7) CCCCGCCC -63.5 (28.0)
2 4e-127 Tbp ATATAAARGC -29.9 (1.7) GNCTATAWAAG -33.2 (1.3)
3 3e-116 Tbp ATATAW -29.7 (1.8) CTATAT -31.9 (0.9)
4 2e-112 Sp1(+) GRGGGGGGCGKG -64.6 (42.8) GGGGGCGGGG -70.2 (29.6)
5 3e-103 m1 GGTAAG 71.6 (33.9) -- -- --
6 2e-102 m2 TGTGTGT -434.8 (212.5) GTGTGT -424.1 (27.5)
7 6e-101 Nfy(+) WCCAATGR -84.7 (40.1) CCAATG -77.9 (0.4)
8 7e-100 Nfy(-) SATTGGT -83.0 (44.1) ATTGGT -68.1 (0.6)
9 5e-98 m3 CGCCATGGCY 52.4 (34.9) GCCATG 18.1 (9.4)
10 4e-92 Creb1 GTGACG -44.5 (34.6) -- -- --
11 3e-90 Elk4(+) GCCGGAAGTG -31.5 (37.0) -- -- --
12 4e-73 Zfp36I2 RGCGGCG 32.6 (44.4) -- -- --
13 2e-64 m4 GTGAGTG 70.1 (32.7) GGTGAGT 53.1 (22.9)
14 2e-63 m5 WGGTGA 70.1 (34.8) -- -- --
15 3e-63 Zeb1 AGGTAA -47.1 (123.8) -- -- --
16 4e-60 E2f1 TGGCGG 23.8 (16.7) -- -- --
17 9e-60 m6 CGCGCGC -31.6 (97.1) GCGCGCG -19.7 (3.4)
18 3e-58 Zeb1 CAGGTA 313.9 (112.4) -- -- --
19 9e-57 Nfy(+) GCCAAT -91.0 (21.9) CCAATG -77.9 (0.4)
20 3e-55 Yy1 GATGGC 26.9 (20.1) AGATGGC 12.3 (2.6)
21 8e-53 m7 CTGCTGCY 55.1 (37.0) -- -- --
22 3e-51 Creb1 CGTCAC -53.2 (39.5) -- -- --
23 7e-50 Yy1 CAAGATGG 16.5 (10.7) CAAGATG 10.0 (2.6)
24 3e-49 Nfy(+) AGCCAA -96.4 (46.0) -- -- --
25 7e-49 Nrf1 TGCGCA -57.8 (46.8) -- -- --
26 2e-47 Elk4(-) CTTCCGG -15.4 (16.0) -- -- --
27 2e-44 Zfp219 CCCCCC -117.6 (99.9) CCCCCT -123.1 (70.7)
28 2e-43 m8 CACGCC -113.3 (90.6) -- -- --
29 2e-43 TBP TAAATAG -28.8 (1.7) AAATAG -27.1 (0.5)
30 3e-43 Myc CACGTG -53.3 (46.1) -- -- --
31 2e-39 MAZ(-) CCCTCC -61.9 (32.8) CCCTCC -84.9 (46.1)
32 4e-37 m9 AAGGTA 149.6 (47.8) -- -- --
33 9e-36 Zbtb7a GCCCCC -66.3 (33.6) GCCCCC -45.0 (3.0)
34 1e-32 m10 ATGGAG 52.5 (36.2) -- -- --
35 2e-31 Inr CTCAGTN -3.0 (0.2) GSCTCAGTGA -3.5 (0.7)
36 9e-31 Nfy(+) AATCAG -74.4 (35.8) -- -- --
37 5e-30 m11 CTCTCT -350.6 (114.9) -- -- --
38 2e-25 Inr TCAGTC -2.2 (0.5) TCAGTT -2.3 (0.5)
39 1e-24 Tead2 CCGCCG 67.7 (32.1) GCCGCCG 12.3 (4.0)
40 3e-24 Nfy(-) ATTGGC -100.0 (16.1) ATTGGC -67.8 (2.4)
41 2e-23 m12 GCAGCA 28.6 (15.4) -- -- --
42 9e-23 Nfy(-) TTGGCT -70.9 (26.7) TTGGCT -69.7 (16.3)
43 3e-21 Inr GGCAGT -3.0 (0.2) GGCAGA -3.4 (0.6)
44 7e-21 m13 GGTGGC 45.1 (29.6) -- -- --
45 2e-20 m14 GGACCC 102.1 (46.4) GACCCC 72.2 (0.5)
46 9e-20 Inr CAGTCY -1.0 (0.2) CAGTCTG -1.3 (0.7)
47 9e-18 Inr CACTTC -1.0 (0.2) -- -- --
48 1e-17 MEF2 AAAATA 202.3 (78.0) -- -- --
49 1e-16 m15 GAAGGT 54.4 (38.3) -- -- --

Table 1

1

Table T3
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Section S5:  Supplementary MRF partner motif tables

Tables T4-T8

Partner motifs pairing with five predicted fixed motifs during the comprehensive MRF analysis.  
These include the NRF1 and EVI1 binding elements, as well as the novel y1-y3 motifs.  
Consensus motifs derived from each partner motif cluster are shown in the second column; 
factors binding to the known regulatory elements in TRANSFAC (4) are shown in the third 
column (STAMP (5) E-value threshold: 1e-5).  Reverse complement matches for NRF1 are 
shown in the right-most column; numbers correspond to the rank-order on the left.  E.g., the 
partner motif 2 is the reverse complement match of motif 20.

y1 partner motifs (TTTGTA)
Consensus TF

1 TCCCAAAGTGCTG TOPORS
2 AACTCCT --
3 TTACAGG --
4 ACCGC --
5 TGAGCCA JUN
6 ATGTTG --
7 ATTAC --
8 CGATCC --
9 CTGAG CDC5L
10 GCAAT --
11 TGGGAT PITX2
12 CTGGTCT --
13 GTTGC RFX
14 TCAAG NKX2
15 TCCGC --
16 TCTTG EVI1
17 CTCGA XBP1
18 GGCTG --
19 TGTCA TGIF

Table 1

1

  

NRF1 partner motifs (GCATGC)
Consensus TF RC

1 AGACG --
2 TAGAGA -- [20]
3 GATTAC --
4 ATTCT --
5 CAAGC --
6 CGAACT RXR
7 CTGCC --
8 CTGGT --
9 GATCT --
10 GCAAC RFX
11 GGTCT --
12 GGTTTC IRF1 [16]
13 GTAGA -- [20]
14 GTATT -- [17]
15 TTAGT -- [19]
16 AAACC -- [12]
17 AAATACAA -- [14]
18 ACAAA SOX10
19 TACTAA MEF2 [15]
20 TCTCTAC -- [2]
21 TAAAA TBP
22 TCGAG XBP1
23 TGCAC --

Table 1

1

  

y2 partner motifs (ATTGC)
Consensus TF

1 AAATTA POU6F1
2 TACTAAAA MEF2
3 AGCGA --
4 CGTCT --
5 CTCTAC --
6 CTGTCT SMAD3
7 TCAAA TCF4
8 TCTCA --

Table 1

1

Table T4                                 Table T5                                 Table T6

EVI1 partner motifs (TCTTG)
Consensus TF

1 TAATTT POU6F1
2 TAGCTG TOPORS
3 GCTAAT CHX10
4 GTAGC --
5 TTGTATTT --
6 TCAGC NFE2
7 TTTTA TBP

Table 1

1

  

y3 partner motifs (GAGCT)
Consensus TF

1 AAATACA --
2 TACTAA MEF2
3 ATCGA CUX1
4 CAAAA --
5 CAGCT UBP1
6 CTCTAC --
7 GCGAG --

Table 1

1

Table T7                                  Table T8
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