Table S4. Genetic crosses between *misfit* ko and a panel of female or male gamete deficient *P. berghei* mutants

Genetic crosses	Oocyst densities	Prevalence	Oocyst size	Sporulation	# of midguts	Type of feed
Δpbmisfit in GFP reference line genetic background						
$\triangle pbmisfit (?) \times \triangle pbs47 (?)$	62	100%	Normal	$\sqrt{}$	20	Membrane
	53	100%	Normal	$\sqrt{}$	40	Membrane
	13	100%	Normal	$\sqrt{}$	12	Membrane
	179	100%	Normal	$\sqrt{}$	45	Direct
$\triangle pbmisfit (?) \times \triangle pbs48/45 (?)$	22	43%	Small	_	30	Membrane
	9	16%	Small	_	44	Membrane
	21	40%	Small	_	10	Membrane
$\triangle pbmisfit (3) \times \triangle pbcdpk4 (2)$	19	83%	Small	_	29	Direct
	21	92%	Small	_	51	Direct
$\triangle pbmisfit (3) \times \triangle pbmap2 (9)$	18	100%	Small	_	58	Direct
	31	100%	Small	_	15	Direct
Δpbmisfit in ANKA 2.34 wt genetic background						
$\triangle pbmisfit (?) \times \triangle pbs47 (?)$	97	100%	Normal	\checkmark	45	Membrane
$\triangle pbmisfit (?) \times \triangle pbs48/45 (?)$	1	37%	Small	_	22	Membrane
$\triangle pbmisfit (?) \times \triangle pbcdpk4 (?)$	7	83%	Small	_	47	Direct
	3.1	82%	Small	_	50	Direct
$\triangle pbmisfit (?) \times \triangle pbnek4 (?)$	34	96%	Normal	\checkmark	49	Direct
	213	100%	Normal	\checkmark	50	Direct
Control crosses of <i>∆pbpplp5</i>						
$\triangle pplp5 (\lozenge) \times \triangle pbcdpk4 (\diamondsuit)$	30	96%	Normal	\checkmark	50	Direct
$\triangle Applp5 (3) \times \triangle pbmap2 (9)$	39	86%	Normal	$\sqrt{}$	50	Direct

The table reports the outcome of A. stephensi infections with P. berghei parasites generated by genetically crossing $\Delta pbmisfit$ (misfit ko) parasites with mutants that are either female ($\Delta pbs47$, $\Delta pbnek4$) or male ($\Delta pbs48/45$, $\Delta pbcdpk4$, $\Delta pbmap2$) gamete deficient. The results from two independent misfit ko lines, where misfit was disrupted in the Pbc507 (GFP reference) or ANKA 2.34 wt genetic background lines, respectively, are shown. Crosses between the male gamete deficient $\Delta pbcdpk4$ or $\Delta pbmap2$ and $\Delta pplp5$ mutants were used as a control. Each line represents an independent crossing and infection experiment, carried out by feeding mosquitoes either via a membrane on ookinete $in\ vitro$ cultures initiated with blood of mice co-infected with the indicated mutants or directly on co-infected mice. Only crosses where males carry functional misfit alleles result in normal oocyst development. Crosses where functional misfit alleles are provided only by female gametes result in oocysts of reduced prevalence (percentage of midguts with at least one oocyst) or density (mean oocyst number per infected midgut), small in size and which fail to sporulate.