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Supplemental Text 
Stochastic model and simulations  

If molecular fluctuations are neglected, initial conditions determine the dynamics of the model and 

each cell develops towards one of the stable fixed points. Since numbers of M and K are low initially, a 

deterministic numerical simulation would end up with 0% cells in the K-state. To explain the 

heterogeneity of a cell culture molecular fluctuations are thus of prime importance. 

To evaluate our model including stochastic fluctuations we implemented Gillespie’s stochastic 

algorithm (14). All possible reactions and the corresponding transition rates are given in Supplemental 

Table 3. 

To render our model more realistic, we further allowed parameter values to vary to incorporate cell-to-

cell variability (size, variable number of cellular machinery, etc.), i.e. we introduced extrinsic noise. 

For each realization of the simulation every parameter was chosen out of a Gaussian distribution about 

its mean with a standard deviation of 5% of its mean, and then held constant for that run (γK was not 

varied, since its value is set by the topology of the model). The magnitude of variation in the 

parameters was chosen to lie in a realistic range, since no quantitative data on this subject could be 

obtained. The qualitative and quantitative influence of extrinsic noise can be investigated by stability 

and sensitivity analysis, respectively (see below). In each run the evolution of an individual cell was 

simulated for 6 hours. 

The influence of the cell population as a whole is incorporated via S(t). Information on cell density and 

nutrient supply is integrated in this function by quorum sensing. For simplicity we assumed that there is 

a linear relation between cell density (which rises sigmoidal with time) and S(t). Thus a sigmoidal 

function as given by a Hill-function is appropriate. We empirically chose 
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as shown in Supplemental Fig. 1. Realizations of our simulations are shown as ComK vs. time in Fig. 

5a,b and in M-K phase space in Supplemental Fig. 2. In the former, one can see that saturation is 

achieved for most cells and that a band of saturation values is found, similarly to that of Fig. 2c. 

We evaluated 1000 simulations and found that in 14.7% of all runs the K-state was reached, 

reproducing the known literature value. The K-state was defined as K > 900 at the end of the 

simulation period. 

We also extracted the switching periods for our simulations. To this purpose we normalized the 
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timecourses of all cells that entered K-state to their maximal value and then shifted the time axis to 

overlay them at half maximal time (Fig. 5c). The temporal derivative of the mean of these curves was, 

in analogy with the experimental data, taken to obtain the switching rate. The switching period was 

defined as the time interval, where this rate was at least 0.1 of its maximal value. We found a mean 

switching period of 1.2h, in good accordance with experiment. 

 

Motivation of reaction rates  

Rates of the distinct chemical processes, as given in the terms of equations (1) and (2) of the main text 

are either well motivated from literature or generic representations of the molecular processes. 

Michaelis-Menten degradation of ComK is the primary mechanism which keeps protein numbers low 

in the vegetative state. Linear degradation, which is not catalyzed by protease complexes, is much 

slower (5), but establishes an equilibrium between degradation and production of ComK at high levels. 

Recent studies have postulated an inhibition of the comS promoter by high ComK concentrations on 

long timescales (6-8). This would lead to S becoming a function of not only t but also of K. Taylor 

expansion of this function S(K,t) in K then recovers to first order linear degradation. 

Autocatalytic feedback in comK transcription is modeled by a Hill-function which is the generic 

function if formation of oligomers and promoter binding/unbinding are fast. It is known that four 

ComK proteins can bind to the comK promoter cooperatively (9), which gives γK = 4. 

The small basal transcription rate is attributed to comK promoter leaking (10). The two linear terms for 

ComK production and mRNA degradation are the generic choices for these elementary processes. For 

parameter values of the model see Supplemental Table 2. 

 

Rise of ComS facilitates activation of auto-feedback in two distinct manners.  

Degradation of ComK follows Michaelis-Menten kinetics, catalyzed by the MecA/ClpC/ClpP protease 

complex (D). The reaction scheme is  
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where Kf, Df, and [KD] refer to free ComK, free protease complex, and ComK bound to the protease 

complex, respectively. Reactions λ1 and λ-1 are fast in comparison with the actual degradation λ2. 

Cells respond to high density by increasing ComS concentration which couples into the competence 

decision network ((9), (Fig. 1)). ComS is a small peptide that is degraded by the MecA/ClpC/ClpP 

protease complex (11). Protease complexes are thus partially occupied by ComS and degradation of 

ComK is slowed down. Furthermore Kf is increased in the presence of S and thus more K is available 
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for dimer formation and binding to the comK promoter, which has a prominent effect near the lower 

fixed point and threshold (Supplemental Fig. 3). Since degradation of ComS and ComK happens 

through the same processes (9) we assume identical rates, 
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Neither absolute affinities of ComK nor ComS towards the protease complex nor total ComS numbers 

are known. But since we are interested in the dynamics of K, only the number of protease complexes 

currently occupied by S is of importance. In this sense S is understood as an effective ComS number 

which gives, when assuming identical affinities towards the protease complex as for ComK, the right 

number of occupied MecA/ClpC/ClpP binding sites. 

By the law of mass action one finds 
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which appears in eqn. (2) of the main text. Here particle conservation, i.e. K = Kf + [KD], S = Sf + 

[SD], and D = Df + [KD] + [SD], was used. 

S as a function of time was set empirically as an external control parameter (see above). 

 

Parameters of the model 

Our model includes ten parameters (Supplemental Table 2) and the external control functions S(t) and 

αM(t) (Supplemental Figure 1). All parameters were chosen consistently with results of earlier studies. 

δK, D and βK/δM, could be obtained directly from literature. Further constraints were M ≈ 1 in the 

vegetative state in stationary phase (12), a switching threshold of a few hundred ComK proteins and a 

saturation value of 104-105 proteins in the K-state (5). 

In earlier studies (3) we found that basal expression increases about an hour before entrance to 

stationary phase and that after a 'switching-window' the percentage of competent cells stay constant. 

We incorporated that into the model by reducing αM by a factor of r outside of that window in all 

simulations. r = 0.5 was chosen small enough so that switching was very rare for the reduced basal 

transcription rate r·αM (Supplemental Figure 1).  

The rates of the degradation reaction λ1, λ-1, and λ2 have not been addressed experimentally. However, 

this is not a drawback to the model, since λ2 is incorporated in δK (Michaelis-Menten theory). λ1 and λ-1 

appeared explicitly in Kf(K,S) and since both rates are fast, only their ratio is of interest. Varying λ1/λ-1 

has only minor influence on the model dynamics. 
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Sensitivity and Stability 

The broad distribution of saturation levels was attributed to variability in the parameters of the model, 

known as extrinsic noise (13). To quantify its influence on the saturation value of ComK one can define 

the sensitivity Σ(μ) with respect to a given parameter μ as the relative change ΔK/K* of the upper fixed 

point K*(μ) due to a relative change Δμ/μ in that parameter (Supplemental Table 2). An analytical 

expression is given by 
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as follows by Taylor expansion up to linear order of the fixed point’s position. 

If parameters of the model are varied strongly the qualitative features of stationary states can change 

(bifurcation). This may for example be the case for non-wild type strains, for which the competence 

circuit (Fig. 1) is altered. Numerically we can compute the number and kind of fixed points of our 

model and thereby analyze its possible dynamics. An example is given in Fig. 4b, which also explains 

deterministic switching for the rok- strain. Note that the wild type parameters have to be set close to the 

bifurcation in which the lower stable and the instable fixed point annihilate to admit stochastically 

induced crossing of threshold. 
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Supplementary Tables 
 
Strain Genotype Source  

BD 630 his leu met - 

BD 2955 his leu met rok- (spca), (1) 

BD 2711 his leu met comK-gfp (CBLb, cata) (2) 

BM 101 his leu met rok- (spca), comK-gfp (CBLb, cata) this study 

BM 77 his leu met comK-gfp (CBLb, cata), multicopy comS (kana) (3) 

BM 2528 his leu met, multicopy comS (kana) (4) 

 

Supplemental Tab. 1. B. subtilis strains used in this study.  
a kan, cat and spc stand for resistance to kanamycin, chloramphenicol and spectinomycin respectively. 
b Inserted by Campell like integration. 
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Parameter Significance Mean value Motivation/ Explanation Sensitivity of upper 
fixed point Σ 

βK Translation rate per 
mRNA 

1 1/s burst factor: βK/ δM ≈ 50; 
(12) 

3.31 

δK Maximal Michaelis-
Menten degradation rate 
of K 

11.3 1/s ≈ 11.5 1/s; (5) Fig. 1A 
therein 

-2.98 

δ0 Linear degradation rate of 
K 

 1.5·10-4 1/s Ration of saturation of rok- 
and wild type 

-0.34 

qK (K+S) at half-maximal 
enzymatic degradation 

400 <9000; (5) Fig. 1A therein; 
sets position of fixed points 

0.14 

αM Minimal transcription rate 0.025 1/s M ≈ 1 before switching; (12) 0.39 

βM Maximal additional 
transcription rate by 
feedback 

0.19 1/s position of upper fixed 
points/ saturation 

2.93 

pK Half-maximal feedback 600 position of switching 
threshold 

negligible 

γK Cooperativity/Hill 
Coefficient 

4 four K proteins bind to the 
promoter cooperatively (9) 

negligible 

δM Degradation rate per 
mRNA 

0.022 1/s burst factor: βK/δM ≈ 50 and 
M ≈ 1 before switching; (12) 

-3.31 

D Number of protease 
complexes 

700 (5) negligible 

λ1/λ-1 Equilibrium constant of 
degradation reaction 

1 variation of this parameter 
are of minor influence only 

negligible 

 
Supplemental Tab. 2. Parameters of the model. Besides the constraints given in the column 

motivation/explanation, parameters were chosen to be in line with our experimental findings.
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Description Reaction Transition rate 

protein production 1+→ KK  MKβ  

protein degradation 1−→ KK  
K

KSq
K

K

K
0δ

δ
−

++
 

mRNA production 1+→ MM  
)/(1 fK

M
M

Kp K+
+ γ

βα  

mRNA degradation 1−→ MM  MMδ  

 
Supplemental Tab. 3. Reactions of the stochastic model. Processes and their corresponding transition 
rates are given. Note that the rates depend on the number of K and M. These transition rates are used in 
the stochastic simulations. 
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Supplementary Figure Captions 
 

Supplemental Fig. 1. Empirically set development of the number of ComS molecules S(t) used for the 

simulations and of the basal transcription rate αM(t). The latter gives rise to a window of opportunity. 

 

Supplemental Fig. 2. Fluctuations in vegetative state and crossing of switching threshold. The lower 

left part of Figures 4a,b of the main text are shown. For a typical realization (black line) switching 

occurs after a long period of fluctuations about the lower fixed point. Note that only discrete molecule 

numbers are taken, which can be seen very well for the number of mRNAs. Nullclines (Blue: dM/dt = 

0; red: dK/dt = 0) are plotted for S = 0 (dotted lines) and S = 1500 (straight lines). 

 

Supplemental Fig. 3. Influence of [ComS] on the fraction of free ComK. ComS binds competitively to 

the MecA/ClpC/ClpP protease complex, thereby increasing the amount of free ComK (KF), see eqn. (4) 

of Supplemental text. Dashed line: S = 0, straight line: S = 1500. Near the lower stable and unstable 

fixed points (K ≈ 200 and K ≈ 600, respectively) this has an important effect on free ComK 

concentration. 

 

Supplemental Fig. 4. Comparison of switching kinetics between bulk and single cell measurements to 

confirm equal development under microscopic conditions and in liquid culture. Fraction of cells in the 

K-state. Black: cells grown in Erlenmeyer flask, grey: cells grown on a microscope slide. a) wt, b) rok-. 

Black and grey lines: best fit to a sigmoidal function. 

 

Supplemental Fig. 5. Switching kinetics of individual rok- cells (BM101). a) Time course of 

fluorescence intensity of cells switching into the K-state. b) The fluorescence of 50 individual cells was 

normalized to the cumulative expression (maximum fluorescence intensity). The time axis was shifted 

by τ1/2, where cells had half maximum fluorescence intensity. 

 

Supplemental Fig. 6. Switching kinetics of individual ComS overproducing cells (BM77). a) Time 

course of fluorescence intensity of cells switching into the K-state. b) The fluorescence of 50 individual 

cells was normalized to the cumulative expression (maximum fluorescence intensity). The time axis 

was shifted by τ 1/2, where cells had half maximum fluorescence intensity. 

 

Supplemental Fig. 7. Switching period is independent of growth phase. a) Histogram of switching 
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period ρ. Red line: best fit to a Gaussian function with <ρ> = 1.44 ± 0.02 and a width of 0.33 ± 0.02. b) 

Switching period ρ as a function of growth phase T. 
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