Biophysical Journal, Volume 96

**Supporting Material** 

## **DNA Sequence-directed Organization of Chromatin: Structure-based Computational Analysis of Nucleosome-binding Sequences**

Sreekala Balasubramanian, Fei Xu, and Wilma K. Olson

**Supplementary Materials** 

DNA Sequence-directed Organization of Chromatin: Structure-based Analysis of Nucleosome-binding Sequences

Sreekala Balasubramanian, Fei Xu, and Wilma K. Olson

Department of Chemistry & Chemical Biology

Rutgers, the State University of New Jersey

Wright-Rieman Laboratories

610 Taylor Road

Piscataway, New Jersey 08854-8087, USA

#### **List of Supplementary Tables**

- Table S1. Protein-DNA complexes with resolution ≤ 2.5 Å used to generate knowledge-based potentials.
- Table S2.Nucleosome-positioning sequences: (i) nucleosome-binding sequences from the<br/>mouse genome; (ii) anti-selection sequences from the mouse genome; (iii) synthetic<br/>SELEX sequences; (iv) high-resolution positioning sequences.
- Table S3. Properties of DNA base-Pair steps used in knowledge-based potentials: (i) number of base-pair steps included in derived 'energy' functions; (ii) average values and dispersion of Tilt,  $\langle \theta_1 \rangle \pm (\sigma_{\theta_1})$ , in protein-bound DNA dimers; (iii) average values and dispersion of Roll,  $\langle \theta_2 \rangle \pm (\sigma_{\theta_2})$ , in protein-bound DNA dimers; (iv) average values and dispersion of Twist,  $\langle \theta_3 \rangle \pm (\sigma_{\theta_3})$ , in protein-bound DNA dimers; (v) average values and dispersion of Shift,  $\langle \theta_4 \rangle \pm (\sigma_{\theta_4})$ , in protein-bound DNA dimers; (vi) average values and dispersion of Slide,  $\langle \theta_5 \rangle \pm (\sigma_{\theta_5})$ , in protein-bound DNA dimers; (vii) average values and dispersion of Rise,  $\langle \theta_6 \rangle \pm (\sigma_{\theta_5})$ , in protein-bound DNA dimers; (viii) relative base-pair flexibility V of protein-bound DNA dimers.
- Table S4.Comparative 'cost' of nucleosomal deformation of individual base-pair steps with<br/>knowledge-based functions based on different subsets of observed protein-bound<br/>DNA conformations: (i) pyrimidine-purine (YR) base-pair steps; (ii) purine-purine<br/>and pyrimidine-pyrimidine (RR, YY) base-pair steps; (iii) purine-pyrimidine (RY)<br/>base-pair steps.
- Table S5.Threading scores of known nucleosome-binding and nucleosome-resistant sequences<br/>on the central 60 base-pair steps of the 147-bp nucleosome core-particle structure<br/>(NDB\_ID pd0287) (2) and an ideal 61-bp superhelical template with the same<br/>average global structure.

| NDB_ID PDB_ID |      | Structure Description                                                         | Resol.<br>(Å) | Literature citation         |
|---------------|------|-------------------------------------------------------------------------------|---------------|-----------------------------|
| PD0002        | 1A73 | INTRON-ENCODED ENDONUCLEASE I-PPOI/DNA COMPLEX                                | 1.8           | Flick et al., 1998          |
| PD0003        | 1CRX | CRE RECOMBINASE/DNA COMPLEX                                                   | 2.4           | Guo et al., 1997            |
| PD0006        | 3PVI | <b>RESTRICTION ENDONUCLEASE PVUII/DNA COMPLEX</b>                             | 1.59          | Horton et al., 1998b        |
| PD0007        | 9ANT | ANTENNAPEDIA HOMEODOMAIN/DNA COMPLEX                                          | 2.4           | Fraenkel & Pabo, 1998       |
| PD0008        | 1A6Y | REVERBA ORPHAN NUCLEAR RECEPTOR/DNA COMPLEX                                   | 2.3           | Zhao et al., 1998           |
| PD0010        | 1BGB | ECORV ENDONUCLEASE/DNA COMPLEX                                                | 2.0           | Horton & Perona, 1998a      |
| PD0011        | 2PVI | <b>RESTRICTION ENDONUCLEASE/DNA COMPLEX</b>                                   | 1.76          | Horton et al., 1998a        |
| PD0012        | 1BNZ | SSO7D HYPERTHERMOPHILE PROTEIN/DNA COMPLEX                                    | 2.0           | Gao et al., 1998            |
| PD0013        | 1RV5 | ECORV ENDONUCLEASE/DNA COMPLEX                                                | 2.1           | Horton & Perona, 1998b      |
| PD0016        | 3HDD | ENGRAILED HOMEODOMAIN/DNA COMPLEX                                             | 2.2           | Fraenkel et al., 1998       |
| PD0020        | 1BC8 | SAP-1 ETS DOMAIN/DNA COMPLEX                                                  | 1.9           | Mo et al., 1998             |
| PD0024        | 1B3T | EBNA-1 NUCLEAR PROTEIN/DNA COMPLEX                                            | 2.2           | Bochkarev et al., 1998      |
| PD0027        | 1BC7 | SERUM RESPONSE FACTOR ACCESSORY PROTEIN 1A (SAP-1)/DNA<br>COMPLEX             | 2.0           | Mo et al., 1998             |
| PD0028        | 1BG1 | TRANSCRIPTION FACTOR STAT3B/DNA COMPLEX                                       | 2.2           | Becker et al., 1998         |
| PD0029        | 2BAM | PROTEIN (ENDONUCLEASE BAMHI)/DNA COMPLEX                                      | 2.0           | Viadiu & Aggarwal, 1998     |
| PD0030        | 2KTQ | LARGE FRAGMENT OF DNA POLYMERASE I/DNA COMPLEX                                | 2.3           | Li <i>et al.</i> , 1998b    |
| PD0031        | 3BAM | PROTEIN (RESTRICTION ENDONUCLEASE BAMHI) (3.1.21.4)/DNA<br>COMPLEX            | 1.8           | Viadiu, & Aggarwal, 1998    |
| PD0032        | 3KTQ | LARGE FRAGMENT OF DNA POLYMERASE I/DNA COMPLEX                                | 2.3           | Li et al., 1998b            |
| PD0033        | 4KTQ | LARGE FRAGMENT OF DNA POLYMERASE I/DNA COMPLEX                                | 2.5           | Li et al., 1998b            |
| PD0035        | 1BDT | WILD TYPE GENE-REGULATING PROTEIN ARC/DNA COMPLEX                             | 2.5           | Schildbach et al., 1999     |
| PD0037        | 1B94 | <b>RESTRICTION ENDONUCLEASE ECORV/DNA COMPLEX</b>                             | 1.9           | Thomas <i>et al.</i> , 1999 |
| PD0042        | 1B8I | IV/HOMEOBOX PROTEIN EXTRADENTICLE/DNA COMPLEX PRE-<br>TRANSITION STATE ECO RI | 2.4           | Passner et al., 1999        |
| PD0049        | 1CKQ | ENDONUCLEASE/DNA COMPLEX                                                      | 1.85          | Horvath et al., unpublished |
| PD0050        | 6PAX | HOMEOBOX PROTEIN PAX-6/DNA COMPLEX                                            | 2.5           | Xu et al., 1999             |
| PD0051        | 1CKT | HIGH MOBILITY GROUP PROTEIN HMG1/DNA COMPLEX                                  | 2.5           | Ohndorf et al., 1999        |

Table S1. Protein-DNA complexes with resolution ≤ 2.5 Å used to generate knowledge-based potentials.

| NDB_ID PDB_ID |      | Structure Description                                 | Resol.<br>(Å) | Literature citation                 |
|---------------|------|-------------------------------------------------------|---------------|-------------------------------------|
| PD0052        | 1SSP | URACIL-DNA GLYCOSYLASE/DNA COMPLEX                    | 1.9           | Parikh et al., 1998                 |
| PD0054        | 1CL8 | ENDONUCLEASE/DNA COMPLEX                              | 1.8           | Horvath <i>et al.</i> , unpublished |
| PD0055        | 1QPS | ENDONUCLEASE ECORI/DNA COMPLEX                        | 2.5           | Horvath et al., unpublished         |
| PD0056        | 1QPZ | PURINE NUCLEOTIDE SYNTHESIS REPRESSOR/DNA COMPLEX     | 2.5           | Glasfeld et al., 1999               |
| PD0062        | 1QRH | <b>RESTRICTION ENDONUCLEASE ECO-RI/DNA COMPLEX</b>    | 2.5           | Choi et al., 2002                   |
| PD0065        | 1QSY | KLENOW FRAGMENT OF DNA POLYMERASE I/DNA COMPLEX       | 2.3           | Li et al., 1999                     |
| PD0066        | 1QSS | KLENOW FRAGMENT OF DNA POLYMERASE I/DNA COMPLEX       | 2.3           | Li et al., 1999                     |
| PD0067        | 1QTM | DNA POLYMERASE I (E.C.2.7.7.7)/DNA COMPLEX            | 2.3           | Li <i>et al.</i> , 1999             |
| PD0068        | 1QUM | ENDONUCLEASE IV (E.C.3.1.21.2)/DNA COMPLEX            | 1.6           | Hosfield et al., 1999               |
| PD0070        | 1D3U | TATA-BINDING PROTEIN/DNA COMPLEX                      | 2.4           | Littlefield et al., 1999            |
| PD0071        | 1BY4 | PROTEIN RETINOIC ACID RECEPTOR/DNA COMPLEX            | 2.1           | Zhao et al., 2000                   |
| PD0073        | 3HTS | HEAT SHOCK TRANSCRIPTION FACTOR/DNA COMPLEX           | 1.8           | Littlefield & Nelson, 1999          |
| PD0075        | 1B72 | PBX1, HOMEOBOX PROTEIN HOX-B1/DNA TERNARY COMPLEX     | 2.4           | Piper et al., 1999                  |
| PD0076        | 2IRF | INTERFERON REGULATORY FACTOR 2/DNA COMPLEX            | 2.2           | Fujii <i>et al.</i> , 1999          |
| PD0088        | 1BF4 | PROTEIN (CHROMOSOMAL PROTEIN SSO7D)/DNA COMPLEX       | 1.6           | Gao et al., 1998                    |
| PD0089        | 1HWT | PROTEIN (HEME ACTIVATOR PROTEIN)/DNA COMPLEX          | 2.5           | King et al., 1999a                  |
| PD0090        | 2HAP | HEME ACTIVATOR PROTEIN HAP1-18/DNA COMPLEX            | 2.5           | King et al., 1999b                  |
| PD0096        | 1CYQ | INTRON-ENCODED HOMING ENDONUCLEASE I-PPOI/DNA COMPLEX | 1.9           | Galburt et al., 1999                |
| PD0099        | 1DIZ | 3-METHYLADENINE DNA GLYCOSYLASE II/DNA COMPLEX        | 2.5           | Hollis et al., 2000                 |
| PD0101        | 1DFM | ENDONUCLEASE BGLII/DNA COMPLEX                        | 1.5           | Lukacs et al., 2000                 |
| PD0108        | 1DMU | BGLI RESTRICTION ENDONUCLEASE/DNA COMPLEX             | 2.2           | Newman et al., 1998                 |
| PD0110        | 1QRV | HIGH MOBILITY GROUP PROTEIN D/DNA COMPLEX             | 2.2           | Murphy IV et al., 1999              |
| PD0111        | 1DP7 | MHC CLASS II TRANSCRIPTION FACTOR HRFX1/DNA COMPLEX   | 1.5           | Gajiwala <i>et al.</i> , 2000       |
| PD0115        | 1DSZ | RETINOIC ACID RECEPTOR RXR α & RAR α/DNA COMPLEX      | 1.7           | Rastinejad et al., 2000             |
| PD0116        | 1DUX | ETS-DOMAIN PROTEIN ELK-1/DNA COMPLEX                  | 2.1           | Mo et al., 2000                     |
| PD0117        | 1EBM | 8-OXOGUANINE DNA GLYCOSYLASE/DNA COMPLEX              | 2.1           | Bruner et al., 2000                 |
| PD0119        | 1CA5 | CHROMOSOMAL PROTEIN SAC7D/DNA COMPLEX                 | 2.2           | Su <i>et al.</i> , 2000             |
| PD0120        | 1CA6 | CHROMOSOMAL PROTEIN SAC7D/DNA COMPLEX                 | 2.2           | Su et al., 2000                     |
| PD0121        | 1EGW | MADS BOX TRANSCRIPTION ENHANCER FACTOR 2/DNA COMPLEX  | 1.5           | Santelli & Richmond, 2000           |
| PD0122        | 1QPI | TETRACYCLINE REPRESSOR/DNA COMPLEX                    | 2.5           | Orth et al., 2000                   |

| NDB_ID PDB_ID |      | Structure Description                                              | Resol.<br>(Å) | Literature citation                    |
|---------------|------|--------------------------------------------------------------------|---------------|----------------------------------------|
| PD0126        | 1QAI | REVERSE TRANSCRIPTASE/DNA COMPLEX                                  | 2.3           | Najmudin et al., 2000                  |
| PD0127        | 1EMH | URACIL-DNA GLYCOSYLASE/DNA COMPLEX                                 | 1.8           | Parikh et al., 2000                    |
| PD0131        | 1EON | TYPE II RESTRICTION ENZYME ECORV/DNA COMPLEX                       | 1.6           | Horton <i>et al.</i> , 2000            |
| PD0132        | 1EOO | TYPE II RESTRICTION ENZYME ECORV/DNA COMPLEX                       | 2.2           | Horton & Perona, 2000                  |
| PD0139        | 1ESG | TYPE II RESTRICTION ENZYME BAMH/DNA COMPLEX                        | 1.9           | Viadiu & Aggarwal, 2000                |
| PD0141        | 1EWN | 3-METHYL-ADENINE DNA GLYCOSYLASE/DNA COMPLEX                       | 2.1           | Lau <i>et al.</i> , 2000               |
| PD0142        | 1EWQ | DNA MISMATCH REPAIR PROTEIN MUTS/DNA COMPLEX                       | 2.2           | Obmolova et al., 2000                  |
| PD0147        | 1EYU | TYPE II RESTRICTION ENZYME PVUII/DNA COMPLEX                       | 1.8           | Horton & Cheng, 2000                   |
| PD0151        | 1D02 | <b>RESTRICTION ENDONUCLEASE/DNA COMPLEX</b>                        | 1.7           | Deibert et al., 1999                   |
| PD0152        | 1D1U | MOLONEY MURINE LEUKEMIA VIRUS REVERSE<br>TRANSCRIPTASE/DNA COMPLEX | 2.3           | Cote et al., 2000                      |
| PD0153        | 1D2I | <b>RESTRICTION ENDONUCLEASE BGLI/DNA COMPLEX</b>                   | 1.7           | Lukacs et al., 2000                    |
| PD0154        | 1QN4 | TRANSCRIPTION INITIATION FACTOR TFIID-1/DNA COMPLEX                | 1.9           | Patikoglou et al., 1999                |
| PD0160        | 1QNA | TRANSCRIPTION INITIATION FACTOR TFIID-1/DNA COMPLEX                | 1.8           | Patikoglou et al., 1999                |
| PD0173        | 1MJ2 | METHIONINE REPRESSOR MUTANT (Q44K)/DNA COMPLEX                     | 2.4           | Garvie & Phillips, 2000                |
| PD0180        | 1GD2 | TRANSCRIPTION FACTOR PAP1/DNA COMPLEX                              | 2.0           | Fujii et al., 2000                     |
| PD0194        | 1FJX | HHAI METHYLTRANSFERASE MUTANT                                      | 2.3           | Vilkaitis et al., 2000                 |
| PDE001        | 1ERI | ECO RI ENDONUCLEASE (E.C.3.1.21.4)/DNA COMPLEX                     | 2.5           | Kim et al., 1990                       |
| PDE005        | 1DNK | (E.C.3.1.21.1)/DNA COMPLEX                                         | 2.3           | Weston et al., 1992                    |
| PDE006        | 2DNJ | (E.C.3.1.21.1)/DNA COMPLEX                                         | 2.0           | Lahm & Suck, 1991                      |
| PDE009        | 1HCR | HIN RECOMBINASE/DNA COMPLEX                                        | 2.3           | Feng et al., 1994                      |
| PDE0125       | 1BPY | DNA POLYMERASE β/DNA COMPLEX                                       | 2.2           | Sawaya et al., 1997                    |
| PDE0126       | 1BPX | DNA POLYMERASE β/DNA COMPLEX                                       | 2.4           | Sawaya et al., 1997                    |
| PDE0128       | 1TC3 | TC3 TRANSPOSASE/DNA COMPLEX                                        | 2.5           | Van Pouderoyen <i>et al.</i> ,<br>1997 |
| PDE0131       | 2BDP | DNA POLYMERASE I/DNA COMPLEX                                       | 1.8           | Kiefer et al., 1998                    |
| PDE0132       | 3BDP | DNA POLYMERASE I/DNA COMPLEX                                       | 1.9           | Kiefer et al., 1998                    |
| PDE0133       | 4BDP | DNA POLYMERASE I/DNA COMPLEX                                       | 1.8           | Kiefer et al., 1998                    |
| PDE0135       | 1T7P | DNA POLYMERASE, THIOREDOXIN/DNA COMPLEX                            | 2.2           | Doublie et al., 1998                   |
| PDE014        | 1RVA | ECO RV/DNA COMPLEX                                                 | 2.0           | Kostrewa & Winkler, 1995               |
| PDE0143       | 1A35 | HUMAN TOPOISOMERASE I/DNA COMPLEX                                  | 2.5           | Redinbo et al., 1998                   |

| NDB_ID PDB_ID |      | Structure Description                                                  | Resol.<br>(Å) | Literature citation           |
|---------------|------|------------------------------------------------------------------------|---------------|-------------------------------|
| PDE0145       | 1BSU | ENDONUCLEASE ECORV (E.C.3.1.21.4)/DNA COMPLEX                          | 2.0           | Martin et al., 1999           |
| PDE020        | 1BHM | BAMHI (E.C.3.1.21.4)/DNA COMPLEX                                       | 2.2           | Newman et al., 1995           |
| PDE025        | 1FJL | SEGMENTATION PROTEIN PAIRED/DNA COMPLEX                                | 2.0           | Wilson et al., 1995           |
| PDE139        | 1AZ0 | ECORV ENDONUCLEASE (E.C.3.1.21.4)/DNA COMPLEX                          | 2.0           | Perona & Martin, 1997         |
| PDE141        | 6MHT | CYTOSINE-SPECIFIC METHYLTRANSFERASE HHAI (E.C.2.1.1.73)/DNA<br>COMPLEX | 2.05          | Kumar et al., 1997            |
| PDR001        | 3CRO | 434 CRO/DNA COMPLEX                                                    | 2.5           | Mondragon & Harrison,<br>1991 |
| PDR004        | 2OR1 | 434 REPRESSOR/DNA COMPLEX                                              | 2.5           | Aggarwal <i>et al.</i> , 1988 |
| PDR010        | 1LMB | LAMBDA REPRESSOR/DNA COMPLEX                                           | 1.8           | Beamer & Pabo, 1992           |
| PDR011        | 1RPE | 434 REPRESSOR/DNA COMPLEX                                              | 2.5           | Shimon & Harrison, 1993       |
| PDR013        | 1TRR | TRP REPRESSOR/DNA COMPLEX                                              | 2.4           | Lawson & Carey, 1993          |
| PDR015        | 1PER | 434 REPRESSOR/DNA COMPLEX                                              | 2.5           | Rodgers & Harrison, 1993      |
| PDR018        | 1PDN | PRD PAIRED/DNA COMPLEX                                                 | 2.5           | Xu et al., 1995               |
| PDR021        | 2NLL | RETINOIC ACID RECEPTOR, THYROID HORMONE RECEPTOR/DNA<br>COMPLEX        | 1.9           | Rastinejad et al., 1995       |
| PDR022        | 1TSR | P53 TUMOR SUPPRESSOR/DNA COMPLEX                                       | 2.2           | Cho et al., 1994              |
| PDR023        | 1BER | CAP/DNA COMPLEX                                                        | 2.5           | Parkinson et al., 1996        |
| PDR031        | 1AIS | TATA-BINDING PROTEIN/DNA COMPLEX                                       | 2.1           | Kosa et al., 1997             |
| PDR032        | 1A3Q | HUMAN NF-κB P52 BOUND TO DNA                                           | 2.1           | Cramer et al., 1997           |
| PDR034        | 1AU7 | PIT-1 MUTANT/DNA COMPLEX                                               | 2.3           | Jacobson et al., 1997         |
| PDR036        | 1MNM | α-2 TRANSCRIPTIONAL REPRESSOR/DNA COMPLEX                              | 2.2           | Tan & Richmond, 1998          |
| PDR047        | 1AZP | HYPERTHERMOPHILE CHROMOSOMAL PROTEIN SAC7D/DNA<br>COMPLEX              | 1.6           | Robinson et al., 1998         |
| PDR048        | 1AZQ | HYPERTHERMOPHILE CHROMOSOMAL PROTEIN SAC7D/DNA<br>COMPLEX              | 1.9           | Robinson et al., 1998         |
| PDR049        | 1AKH | MAT A1/ $\alpha$ 2/DNA TERNARY COMPLEX                                 | 2.5           | Li <i>et al.</i> , 1998a      |
| PDR051        | 2RAM | TRANSCRIPTION FACTOR NF-κB P65/DNA COMPLEX                             | 2.4           | Chen et al., 1998             |
| PDR056        | 1BL0 | MULTIPLE ANTIBIOTIC RESISTANCE PROTEIN/DNA COMPLEX                     | 2.3           | Rhee et al., 1998             |
| PDRC03        | 1HCQ | ESTROGEN RECEPTOR/DNA COMPLEX                                          | 2.4           | Schwabe et al., 1993          |
| PDT012        | 1YTB | TATA BINDING PROTEIN (TBP)/DNA COMPLEX                                 | 1.8           | Kim et al., 1993              |
| PDT013        | -    | HNF-3/FORK HEAD DNA-RECOGNITION MOTIF/DNA COMPLEX                      | 2.5           | Clark et al., 1993            |

| NDB_ID PDB_ID |      | Structure Description                                                  | Resol.<br>(Å) | Literature citation            |
|---------------|------|------------------------------------------------------------------------|---------------|--------------------------------|
| PDT015        | 1NFK | NUCLEAR FACTOR κB (NF-κB)/DNA COMPLEX                                  | 2.3           | Ghosh et al., 1995             |
| PDT028        | 1YRN | MAT A1 HOMEODOMAIN, MAT α2 HOMEODOMAIN/DNA COMPLEX`                    | 2.5           | Li et al., 1995                |
| PDT029        | 2DGC | GCN4/DNA COMPLEX                                                       | 2.2           | Keller et al., 1995            |
| PDT030        | 1LAT | GLUCOCORTICOID RECEPTOR MUTANT/DNA COMPLEX                             | 1.9           | Gewirth & Sigler, 1995         |
| PDT031        | -    | EVEN-SKIPPED HOMEODOMAIN/DNA COMPLEX                                   | 2.0           | Hirsch & Aggarwal, 1995        |
| PDT033        | 1PUE | TRANSCRIPTION FACTOR PU.1/DNA COMPLEX                                  | 2.1           | Kodandapani et al., 1996       |
| PDT034        | 1CDW | TATA BINDING PROTEIN (TBP)/DNA COMPLEX                                 | 1.9           | Nikolov et al., 1996           |
| PDT035        | 1IGN | RAP1/DNA COMPLEX                                                       | 2.2           | Koenig et al., 1996            |
| PDT036        | 1YTF | TRANSCRIPTION FACTOR IIA (TFIIA)/DNA COMPLEX                           | 2.5           | Tan et al., 1996               |
| PDT038        | 1UBD | YY1 ZINC FINGER DOMAIN MUTANT/DNA COMPLEX                              | 2.5           | Houbaviy et al., 1996          |
| PDT039        | 1AAY | ZIF268 ZINC FINGER PEPTIDE/DNA COMPLEX                                 | 1.6           | Elrod-Erickson et al., 1996    |
| PDT040        | 1IHF | INTEGRATION HOST FACTOR/DNA COMPLEX                                    | 2.2           | Rice et al., 1996              |
| PDT043        | 2HDD | ENGRAILED HOMEODOMAIN Q50K VARIANT/DNA COMPLEX                         | 1.9           | Tucker-Kellogg et al.,<br>1997 |
| PDT044        | 1ZME | PROLINE UTILIZATION TRANSCRIPTION ACTIVATOR (PUT3)/DNA<br>COMPLEX      | 2.5           | Swaminathan et al., 1997       |
| PDT045        | 1XBR | T DOMAIN/DNA COMPLEX                                                   | 2.5           | Muller & Herrmann, 1997        |
| PDT048        | 1AWC | GA BINDING PROTEIN $\alpha$ , GA BINDING PROTEIN $\beta$ 1/DNA COMPLEX | 2.1           | Batchelor et al., 1998         |
| PDT049        | 2CGP | CATABOLITE GENE ACTIVATOR PROTEIN/DNA COMPLEX                          | 2.2           | Passner & Steitz, 1997         |
| PDT055        | 1A1F | THREE-FINGER ZIF268 PEPTIDE/DNA COMPLEX                                | 2.1           | Elrod-Erickson et al., 1998    |
| PDT056        | 1A1G | THREE-FINGER ZIF268 PEPTIDE/DNA COMPLEX                                | 1.9           | Elrod-Erickson et al., 1998    |
| PDT057        | 1A1H | QGSR (THREE-FINGER ZIF268 VARIANT)/DNA COMPLEX                         | 1.6           | Elrod-Erickson et al., 1998    |
| PDT059        | 1A1I | ZINC FINGER/DNA COMPLEX                                                | 1.6           | Elrod-Erickson et al., 1998    |
| PDT062        | 1AM9 | STEROL REGULATORY ELEMENT BINDING(STRE)/DNA COMPLEX                    | 2.3           | Parraga <i>et al.</i> , 1998   |
| PDTB41        | 1MEY | CONSENSUS ZINC FINGER/DNA COMPLEX                                      | 2.2           | Kim & Berg, 1996               |
| PDV001        | 2BOP | E2/DNA COMPLEX                                                         | 1.7           | Hegde et al., 1992             |

Note: Multiple entries of *Eco* RV endonuclease reflect different structures solved to study the different functional aspects of the catalytic activity of the enzyme.

#### **References to Table S1**

- Aggarwal, A.K., Rodgers, D.W., Drottar, M., Ptashne, M. & Harrison, S.C. (1988) Recognition of a DNA operator by the repressor of Phage 434: A view at high resolution. *Science* 242, 899-907.
- Batchelor, A.H., Piper, D.E., Charles De La Brousse, D., McKnight, S.L. & Wolberger, C. (1998) The structure of GABP α/β: an ETS domainankyrin repeat heterodimer bound to DNA. *Science* 279, 1037-1041.
- Beamer, L.J. & Pabo, C.O. (1992) Refined 1.8 Å crystal structure of the λ repressor-operator complex. J. Mol. Biol., 227, 177-196.
- Becker, S., Groner, B. & Muller, C.W. (1998) Three-dimensional structure of the Stat3β homodimer bound to DNA. *Nature* 394, 145-151.
- Bochkareva, A., Bochkareva, E., Edwards, A.M. & Frappier, L. (1998) The 2.2 Å structure of a permanganate-sensitive DNA site bound by the Epstein-Barr virus origin binding protein, EBNA1. J. Mol. Biol. 284, 1273-1278.
- Bruner, S.D., Norman, D.P. & Verdine, G.L. (2000) Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. *Nature* **403**, 859-866.
- Chen, Y.Q., Ghosh, S. & Ghosh, S. (1998) A novel DNA recognition mode by the NF-K B P65 homodimer. Nature Struct. Biol. 5, 67-73.
- Cho, Y., Gorina, S., Jeffrey, P.D. & Pavletich, N.P. (1994) Crystal structure of a P53 tumor suppressor-DNA complex: Understanding tumorigenic mutations. *Science* 265, 346-355.
- Choi, J., Kim, Y., Greene, P., Hager, P. & Rosenberg, J.M. (to be published) X-ray structure of the DNA-*Eco* RI endonuclease complexes with the ED144 & RK145 mutations.
- Clark, K.L., Halay, E.D., Lai, E. & Burley, S.K. (1993) Co-crystal structure of the HNF-3/Fork Head DNA-recognition motif resembles histone H5. *Nature* **364**, 412-420.
- Cote, M.L., Yohannan, S.J. & Georgiadis, M.M. (2000) Use of an N-terminal fragment from Moloney murine leukemia virus reverse transcriptase to facilitate crystallization and analysis of a pseudo-16-mer DNA molecule containing G-A mispairs. *Acta Crystallogr., Sect. D* 56, 1120-1131.
- Cramer, P., Larson, C.J., Verdine, G.L. & Muller, C.W. (1997) Structure of the human NF-κB p52 homodimer-DNA complex at 2.1 Å resolution. *EMBO J.*. 16, 7078-7090.
- Deibert, M., Grazulis, S., Janulaitis, A., Siksnys, V. & Huber, V. (1999) Crystal structure of Mun I restriction endonuclease in complex with cognate DNA at 1.7 Å Resolution. *EMBO J.* **18**, 5805-5816.
- Doublie, S., Tabor, S., Long, A.M., Richardson, C.C.& Ellenberger, T. (1998) Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution. *Nature* **391**, 251-258.
- Elrod-Erickson, M., Benson, T.E. & Pabo, C.O. (1998) High-resolution structures of variant Zif268-DNA complexes: implications for understanding zinc finger-DNA recognition. *Structure* **6**, 451-464.
- Elrod-Erickson, M., Rould, M.A., Nekludova, L. & Pabo, C.O. (1996) Zif268 protein-DNA complex refined at 1.6 Å: a model system for understanding zinc finger-DNA interactions. *Structure* **4**, 1171-1180.
- Feng, J.A., Johnson, R.C. & Dickerson, R.E. (1994) Hin recombinase bound to DNA: The origin of specificity in major and minor groove interactions. *Science* 263, 348-355.
- Flick, K.E., Jurica, M.S., Monnat Jr., R.J. & Stoddard, B.L. (1998) DNA binding and cleavage by the nuclear intron-encoded homing endonuclease I-PpoI. *Nature* **394**, 96-101.
- Fraenkel, E. & Pabo, C.O. (1998) Comparison of X-ray and NMR structures for the *Antennapedia* homeodomain-DNA complex. *Nature Struct. Biol.* **5**, 692-697.

- Fraenkel, E., Rould, M.A., Chambers, K.A. & Pabo, C.O. (1998) Engrailed homeodomain-DNA complex at 2.2 Å resolution: a detailed view of the interface and comparison with other engrailed structures. J. Mol. Biol. 284, 351-361.
- Fujii, Y., Shimizu, T., Kusumoto, M., Kyogoku, Y., Taniguchi, T. & Hakoshima, T. (1999) Crystal structure of an IRF/DNA complex reveals novel DNA recognition and cooperative binding to a tandem repeat of core sequence. *EMBO J.* **18**, 5028-5041.
- Fujii, Y., Shimizu, T., Toda, T., Yanagida, M. & Hakoshima, T. (2000) Structural basis for the DNA recognition diversity of bZIP transcription factors revealed by the crystal structure of Pap1/DNA complex. *Nature Struct. Biol.* 7, 889-893.
- Gajiwala, K.S., Chen, H., Cornille, F., Roques, B.P., Reith, W., Mach, B. & Burley, S.K. (2000) Structure of the winged helix-protein hRFX1 reveals a new mode of DNA binding. *Nature* 403, 916-921.
- Galburt, E.A., Chevalier, B., Tang, W., Jurica, M.S., Flick, K.E., Monnat Jr., R.J. & Stoddard, B.L. (1999) A novel endonuclease mechanism directly visualized for I-PpoI. *Nature Struct. Biol.* **6**, 1096-1099.
- Gao, Y.G., Su, S.Y., Robinson, H., Padmanabhan, S., Lim, L., McCrary, B.S., Edmondson, S.P., Shriver, J.W. & Wang A. H. (1998) The crystal structure of the hyperthermophile chromosomal protein Sso7D bound to DNA. *Nature Struct. Biol.* **5**, 782-786.
- Garvie, C.W. & Phillips, S.E.V. (2000) Direct and indirect readout in mutant Met repressor-operator complexes. Structure Fold. Des. 8, 905-914.
- Gewirth, D.T. & Sigler, P.B. (1995) The basis for half-site specificity explored through a non-cognate steroid receptor-DNA complex. *Nature Struct. Biol.* **2**, 386-394.
- Ghosh, G., Van Duyne, G., Ghosh, S. & Sigler, P.B. (1995) Structure of NF-KB p50 homodimer bound to a KB site. Nature 373, 303-310.
- Glasfeld, A., Koehler, A.N., Schumacher, M.A. & Brennan, R.G. (1999) The role of lysine 55 in determining the specificity of the purine repressor for its operators through minor groove interactions. J. Mol. Biol. 291, 347-361.
- Guo, F., Gopaul, D.N. & Van Duyne, G.D. (1997) Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. *Nature* **389**, 40-46.
- Hegde, R.S., Grossman, S.R., Laimins, L.A. & Sigler, P.B. (1992) Crystal structure at 1.7 Å of the bovine papillomavirus-1 E2 DNA-binding domain bound to its DNA target. *Nature* **359**, 505-512.
- Hirsch, J.A. & Aggarwal, A. K. (1995) Structure of the even-skipped homeodomain complexed to AT-rich DNA: New perspectives on homeodomain specificity. *EMBO J.* 14, 6280-6291.
- Hollis, T., Ichikawa, Y. & Ellenberger, T. (2000) DNA bending and a flip-out mechanism for base excision by the helix-hairpin-helix DNA glycosylase, *Escherichia coli* AlkA. *EMBO J.* **19**, 758-766.
- Horton, J.R., Bonventre, J. & Cheng, X. (1998a) How is modification of the DNA substrate recognized by the *Pvu*II restriction endonuclease? *J. Biol. Chem.* **379**, 451-458.
- Horton, J.R. & Cheng, X. (2000) PvuII endonuclease contains two calcium ions in active sites. J. Mol. Biol. 300, 1049-1056.
- Horton, N.C., Connolly, B.A. & Perona, J.J. (2000) Inhibition of EcoRV endonuclease by deoxyribo-3'-S-phosphorothiolates: a high-resolution X-ray crystallographic study J. Am. Chem. Soc. 122, 3314-3324.
- Horton, J.R., Nastri, H.G., Riggs, P.D., & Cheng, X. (1998b) Asp34 of *PvuII* endonuclease is directly involved in DNA minor groove recognition and indirectly involved in catalysis. *J. Mol. Biol.* 284, 1491-1504.
- Horton, N.C. & Perona, J.J. (1998a) Recognition of flanking DNA sequences by EcoRV endonuclease involves alternative patterns of watermediated contacts. J. Biol. Chem. 273, 21721-21729.
- Horton, N.C. & Perona, J.J. (1998b) Role of protein-induced bending in the specificity of DNA recognition: crystal structure of EcoRV endonuclease complexed with d(AAAGAT) + d(ATCTT). J. Mol. Biol. 277, 779-783.

- Horton, N.C. & Perona, J.J. (2000) Crystallographic snapshots along a protein-induced DNA-bending pathway. *Proc. Natl. Acad. Sci., USA* 97, 5729-5734.
- Horvath, M.M., Choi, J., Kim, Y., Wilkosz, P. & Rosenberg, J.M. (to be published) The integration of recognition and cleavage: X-ray structures of pre- transition state and post-reactive DNA-*Eco* RI endonuclease complexes.
- Hosfield, D.J., Guan, Y., Haas, B.J., Cunningham, R.P. & Tainer, J.A. (1999) Structure of the DNA repair enzyme endonuclease IV and its DNA complex: double-nucleotide flipping at abasic sites and three-metal-ion catalysis. *Cell* **98**, 397-408.
- Houbaviy, H.B., Usheva, A., Shenk, T. & Burley, S.K. (1996) Cocrystal structure of YY1 bound to the adeno-associated virus P5 initiator. *Proc. Natl. Acad. Sci., USA* **93**, 13577-13582.
- Jacobson, E.M., Li, P., Leon-del-Rio, A., Rosenfeld, M.G. & Aggarwal, A.K. (1997) Structure of Pit-1 POU domain bound to DNA as a dimer: unexpected arrangement and flexibility. *Genes Dev.* **11**, 198 - 212.
- Keller, W., Koenig, P. & Richmond, T.J. (1995) Crystal structure of a bZIP/DNA complex at 2.2 Å: determinants of DNA specific recognition. J. Mol. Biol. 254, 657-667.
- Kiefer, J.R., Mao, C., Braman, J.C. & Beese, L.S. (1998) Visualizing DNA replication in a catalytically active *Bacillus* DNA polymerase crystal. *Nature* **391**, 304-307.
- Kim, C.A. & Berg, J.M. (1996) A 2.2 Å resolution crystal structure of a designed zinc finger protein bound to DNA. *Nature Struct. Biol.* 3, 940-945.
- Kim, Y., Geiger, J.H., Hahn, S. & Sigler, P.B. (1993) Crystal structure of a yeast TBP/TATA-box complex. Nature 365, 512-520.
- Kim, Y., Grable, J.C., Love, R., Greene, P.J. & Rosenberg, J.M. (1990) Refinement of EcoRI endonuclease crystal structure: a revised protein chain tracing. *Science* 249, 1307-1309.
- King, D.A., Zhang, L., Guarente, L. & Marmorstein, R. (1999a) Structure of a HAP1-DNA complex reveals dramatically asymmetric DNA binding by a homodimeric protein. *Nature Struct. Biol.* **6**, 64-71.
- King, D.A., Zhang, L., Guarente, L. & Marmorstein, R. (1999b) Structure of HAP1-18-DNA implicates direct allosteric effect of protein-DNA interactions on transcriptional activation. *Nature Struct. Biol.* 6, 22-27.
- Kodandapani, R., Pio, F., Ni, C.Z., Piccialli, G., Klemsz, M., McKercher, S., Maki, R.A. & Ely, K.R. (1996) A new pattern for helix-turn-helix recognition revealed by the PU.1 ETS-domain-DNA complex. *Nature* **380**, 456-460.
- Koenig, P., Giraldo, R., Chapman, L. & Rhodes, D. (1996) Crystal structure of the DNA binding domain of yeast RAP1 in complex with a telomeric DNA site. *Cell* 85, 125-136.
- Kosa, P.F., Ghosh, G., DeDecker, B.S. & Sigler, P.B. (1997) The 2.1- Å crystal structure of an archaeal preinitiation complex: TATA-box-binding protein/transcription factor (II)B core/TATA-box. *Proc. Natl. Acad. Sci., USA* 94, 6042-6047.
- Kostrewa, D. & Winkler, F.K. (1995) Mg<sup>2+</sup> binding to the active site of *Eco*RV endonuclease: a crystallographic study of complexes with substrate and product DNA at 2 Å resolution. *Biochemistry* **34**, 683-696.
- Kumar, S., Horton, J.R., Jones, G.D., Walker, R.T., Roberts, R.J. & Cheng, X. (1997) DNA containing 4'-thio-2'-deoxycytidine inhibits methylation by HhaI methyltransferase. *Nucleic Acids Res.* 25, 2773-2783.
- Lahm, A. & Suck, D. (1991) DNase I-induced DNA conformation. 2 Å structure of a DNase I-octamer complex. J. Mol. Biol. 222, 645-667.
- Lau, A.Y., Wyatt, M.D., Glassner, B.J., Samson, L.D. & Ellenberger, T. (2000) Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG. Proc. Natl. Acad. Sci., USA 97, 13573-13578.
- Lawson, C.L. & Carey, J. (1993) Tandem binding in crystals of a trp repressor/operator half-site complex. Nature 366, 178-182.

- Li, T., Stark, M.R., Johnson, A.D. & Wolberger, C. (1995) Crystal structure of the MATa1/MATα2 homeodomain heterodimer bound to DNA. *Science* 270, 262-269.
- Li, T., Jin, Y., Vershon, A.K. & Wolberger, C. (1998a) Crystal structure of the MATa1/MATα2 homeodomain heterodimer in complex with DNA containing an A-tract. *Nucleic Acids Res.* 26, 5707-5718.
- Li, Y., Korolev, S. & Waksman, G. (1998b) Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of *Thermus aquaticus* DNA polymerase I: structural basis for nucleotide incorporation. *EMBO J.* **17**, 7514-7525.
- Li, Y., Mitaxov, V., Waksman, G. (1999) Structure-based design of *Taq* DNA polymerases with improved properties of dideoxynucleotide incorporation. *Proc. Natl. Acad. Sci., USA* 96 9491-9496.
- Littlefield, O., Korkhin, Y. & Sigler, P.B. (1999) The structural basis for the oriented assembly of a TBP/Tfb/promoter complex. *Proc. Natl. Acad. Sci., USA* **96**, 13668-13673.
- Littlefield, O. & Nelson, H.C.M. (1999) A new use for the 'wing' of the winged helix-turn-helix motif in the Hsf-DNA cocrystal. *Nature Struct. Biol.* **6**, 464-470.
- Lukacs, C.M., Kucera, R., Schildkraut, I. & Aggarwal, A.K. (2000) Understanding the immutability of restriction enzymes: crystal structure of BgIII and its DNA substrate at 1.5 Å resolution. *Nature Struct. Biol.* **7**, 134-140.
- Martin, A.M., Sam, M.D., Reich, N.O. & Perona, J.J. (1999) Structural and energetic origins of indirect readout in site-specific DNA cleavage by a restriction endonuclease. *Nature Struct. Biol.* **6**, 269-277.
- Mo, Y., Vaessen, B., Johnston, K. & Marmorstein, R. (1998) Structures of SAP-1 Bound to DNA targets from the E74 and c-fos promoters: insights into DNA sequence discrimination by ETS proteins. *Mol. Cell* **2**, 201-212.
- Mo, Y., Vaessen, B., Johnston, K. & Marmorstein, R. (2000) Structure of the elk-1-DNA complex reveals how DNA-distal residues affect ETS domain recognition of DNA. *Nature Struct. Biol.* **7**, 292-297.
- Mondragon, A. & Harrison, S.C. (1991) The phage 434 Cro/OR1 complex at 2.5 Å resolution. J. Mol. Biol. 219, 321-334.
- Muller, C.W. & Herrmann, B.G. (1997) Crystallographic structure of the T domain-DNA complex of the *Brachyury* transcription factor. *Nature* **389**, 884-888.
- Murphy IV, F.V., Sweet, R.M. & Churchill, M.E.A. (1999) The structure of a chromosomal high mobility group protein-DNA complex reveals sequence-neutral mechanisms important for non-sequence-specific DNA recognition. *EMBO J.* **18**, 6610-6618.
- Najmudin, S., Cote, M.L., Sun, D., Yohannan, S., Montano, S.P., Gu, J. & Georgiadis, M.M. (2000) Crystal structures of an N-terminal fragment from Moloney murine leukemia virus reverse transcriptase complexed with nucleic acid: functional implications for template-primer binding to the fingers domain. J. Mol. Biol. 296, 613-622.
- Newman, M., Lunnen, K., Wilson, G., Greci, J., Schildkraut, I. & Phillips, S.E.V. (1998) Crystal structure of restriction endonuclease BglI bound to its interrupted DNA recognition sequence. *EMBO J.* **17**, 5466-5476.
- Newman, M., Strzelecka, T., Dorner, L.F., ISchildkraut, I. & Aggarwal, A.K. (1995) Structure of BamHI endonuclease bound to DNA: partial folding and unfolding on DNA binding. *Science* 269, 656-663.
- Nikolov, D.B., Chen, H., Halay, E.D., Hoffman, A., Roeder, R.G. & Burley, S.K. (1996) Crystal structure of a human TATA box-binding protein/TATA element complex. *Proc. Natl. Acad. Sci., USA* **93**, 4862-4867.
- Obmolova, G., Ban, C., Hsieh, P. & Yang, W. (2000) Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA. *Nature* 407, 703-710.
- Ohndorf, U.M., Rould, M.A., He, Q., Pabo, C.O. & Lippard, S.J. (1999) Molecular basis for recognition of cisplatin-modified DNA by highmobility-group proteins. *Nature* **399**, 708-712.

- Orth, P., Schnappinger, D., Hillen, W., Saenger, W. & Hinrichs, W. (2000) Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. *Nature Struct. Biol.* 7, 215-219.
- Parikh, S.S., Mol, C.D., Slupphaug, G., Bharati, S., Krokan, H.E. & Tainer, J.A. (1998) Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA. *EMBO J.* 17, 5214-5226.
- Parikh, S.S., Slupphaug, G., Krokan, H.E., Blackburn, G.M. & Tainer, J.A. (2000) Uracil-DNA glycosylase-DNA substrate and product structures: conformational strain promotes catalytic efficiency by coupled stereoelectronic effects. *Proc. Natl. Acad. Sci., USA* 97, 5083-5088.
- Parkinson, G., Wilson, C., Gunasekera, A., Ebright, Y.W., Ebright, R.H. & Berman, H.M. (1996) Structure of the CAP-DNA complex at 2.5 Å resolution: a complete picture of the protein-DNA interface. J. Mol. Biol. 260, 395-408.
- Parraga, A., Bellsolell, L., Ferre-D'Amare, A.R. & Burley, S.K. (1998) Co-crystal structure of sterol regulatory element binding protein 1A at 2.3 Å resolution. *Structure* **6**, 661-672.
- Passner, J.M., Ryoo, H.D., Shen, L., Mann, R.S. & Aggarwal, A.K. (1999) Structure of a DNA-bound ultrabithorax-extradenticle homeodomain complex. *Nature* 397, 714-719.
- Passner, J.M. & Steitz, T.A. (1997) The structure of a CAP-DNA complex having two cAMP molecules bound to each monomer. *Proc. Natl. Acad. Sci., USA* 94, 2843-2847.
- Patikoglou, G.A., Kim, J.L., Sun, L., Yang, S.-H., Kodadek, T. & Burley, S.K. (1999) TATA element recognition by the TATA box-binding protein has been conserved throughout evolution. *Genes Dev.* **13**, 3217-3230.
- Perona, J.J. & Martin, A.M. (1997) Conformational transitions and structural deformability of EcoRV endonuclease revealed by crystallographic analysis. J. Mol. Biol. 273, 207-225.
- Piper, D.E., Batchelor, A.H., Chang, C.P., Cleary, M.L., Wolberger, C. (1999) Structure of a HoxB1-Pbx1 heterodimer bound to DNA: role of the hexapeptide and a fourth homeodomain helix in complex formation. *Cell* **96**, 587-597.
- Rastinejad, F., Perlmann, T., Evans, R.M. & Sigler, P.B. (1995) Structural determinants of nuclear receptor assembly on DNA direct repeats. *Nature* 375, 203-211.
- Rastinejad, F., Wagner, T., Zhao, Q. & Khorasanizadeh, S. (2000) Structure of the RXR-RAR DNA-binding complex on the retinoic acid response element DR1. *EMBO J.* **19**, 1045-1054.
- Redinbo, M.R., Stewart, L., Kuhn, P., Champoux, J.J. & Hol, W.G. (1998) Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA. *Science* 279, 1504-1513.
- Rhee, S., Martin, R.G., Rosner, J.L. & Davies, D.R. (1998) A novel DNA-binding motif of MarA: the first structure for an AraC family transcriptional activator. *Proc. Natl. Acad. Sci., USA* **95**, 10413-10418.
- Rice, P.A., Yang, S.W., Mizuuchi, K. & Nash, H.A. (1996) Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. *Cell* 87, 1295-1306.
- Robinson, H., Gao, Y.G., McCrary, B.S., Edmondson, S.P., Shriver, J.W. & Wang, A.H. (1998) The hyperthermophile chromosomal protein Sac7d sharply kinks DNA. *Nature* **392**, 202-205.
- Rodgers, D.W. & Harrison, S.C. (1993) The complex between phage 434 repressor DNA-binding domain and operator site OR3: structural differences between consensus and non-consensus half-sites. *Structure* 1, 227-240.
- Santelli, E. & Richmond, T.J. (2000) Crystal structure of MEF2A core bound to DNA at 1.5 Å resolution. J. Mol. Biol. 297, 437-449.
- Sawaya, M.R., Prasad, R., Wilson, S.H., Kraut, J. & Pelletier, H. (1997) Crystal structures of human DNA polymerase β complexed with gapped and nicked DNA: evidence for an induced fit mechanism. *Biochemistry* **36**, 11205-11215.

- Schildbach, J.F., Karzai, A.W., Raumann, B.E. & Sauer, R.T. (1999) Origins of DNA-binding specificity: role of protein contacts with the DNA backbone. Proc. Natl. Acad. Sci., USA 96, 811-817.
- Schwabe, J.W.R., Chapman, L., Finch, J.T. & Rhodes, D. (1993) The crystal structure of the estrogen receptor DNA-binding domain bound to DNA: how receptors discriminate between their response elements. *Cell* **75**, 567-578.
- Shimon, L.J. & Harrison, S.C. (1993) The phage 434 OR2/R1-69 complex at 2.5 Å resolution. J. Mol. Biol. 232, 826-838.
- Su, S., Gao, Y.G., Robinson, H., Liaw, Y.C., Edmondson, S.P., Shriver, J.W. & Wang, A.H.-J. (2000) Crystal structures of the chromosomal proteins Sso7D/Sac7D bound to DNA containing T-G mismatched base-pairs. J. Mol. Biol. 303, 395-403.
- Swaminathan, K., Flynn, P., Reece, R.J. & Marmorstein, R. (1997) Crystal structure of a PUT3-DNA complex reveals a novel mechanism for DNA recognition by a protein containing a Zn2Cys6 binuclear cluster. *Nature Struct. Biol.* **4**, 751-759.
- Tan, S., Hunziker, Y., Sargent, D.J. & Richmond, T.J. (1996) Crystal structure of a yeast TFIIA/TBP/DNA complex. Nature 381, 127-134.
- Tan, S. & Richmond, T.J. (1998) Crystal structure of the yeast MATα2/MCM1/DNA ternary complex. Nature 391, 660-666.
- Thomas, M.P., Brady, R.L., Halford, S.E., Sessions, R.B. & Baldwin, G.S. (1999) Structural analysis of a mutational hot-spot in the EcoRV restriction endonuclease: a catalytic role for a main chain carbonyl group. *Nucleic Acids Res.* 27, 3438-3445.
- Tucker-Kellogg, L., Rould, M.A., Chambers, K.A., Ades, S.E., Sauer, R.T. & Pabo, C.O. (1997) Engrailed (Gln50-->Lys) homeodomain-DNA complex at 1.9 Å resolution: structural basis for enhanced affinity and altered specificity. *Structure* **5**, 1047-1054.
- Van Pouderoyen, G., Ketting, R.F., Perrakis, A., Plasterk, R.H.A. & Sixma, T.K. (1997) Crystal structure of the specific DNA-binding domain of Tc3 transposase of *C. elegans* in complex with transposon DNA. *EMBO J.* 16, 6044-6054.
- Viadiu, H. & Aggarwal, A.K. (1998) The role of metals in catalysis by the restriction endonuclease BamHI. Nature Struct. Biol. 5, 910-916.
- Viadiu, H. & Aggarwal, A.K. (2000) Structure of BamHI bound to non-specific DNA: a model for DNA sliding. Mol. Cell 5, 889-895.
- Vilkaitis, G., Dong, A., Weinhold, E., Cheng, X. & Klimasauskas, S. (2000) Functional roles of the conserved threonine 250 in the target recognition domain of Hhal DNA methyltransferase. J. Biol. Chem. 275, 38722-38730.
- Weston, S.A., Lahm, A. & Suck, D. (1992) X-ray structure of the DNase I-d(GGTATACC)<sub>2</sub> complex at 2.3 Å resolution. J. Mol. Biol. 226, 1237-1256.
- Wilson, D.S., Guenther, B., Desplan, C. & Kuriyan, J. (1995) High resolution crystal structure of a paired (Pax) class cooperative homeodomain dimer on DNA. *Cell* 82, 709-719.
- Xu, H.E., Rould, M.A., Xu, W., Epstein, J.A., Maas, R.L. & Pabo, C.O. (1999) Crystal structure of the human Pax6 paired domain-DNA complex reveals specific roles for the linker region and carboxy-terminal subdomain in DNA binding. *Genes Dev.* **13**, 1263-1275.
- Xu, W., Rould, M.A., Jun, S., Desplan, C. & Pabo, C.O. (1995) Crystal structure of a paired domain-DNA complex at 2.5 Ångstroms resolution reveals structural basis for Pax developmental mutations. *Cell* **80**, 639-650.
- Zhao, Q., Chasse, S.A., Devarakonda, S., Sierk, M.L., Ahvazi, B. & Rastinejad, F. (2000) Structural basis of RXR-DNA interactions. J. Mol. Biol. 296, 509-520.
- Zhao, Q., Khorasanizadeh, S., Miyoshi, Y., Lazar, M.A. & Rastinejad, F. (1998) Structural elements of an orphan nuclear receptor-DNA complex. *Mol. Cell* **1**, 849-861.

#### Table S2. Nucleosome-positioning sequences

#### (i) Nucleosome-binding sequences from the mouse genome SET 1A A-tracts 1 (90%)

Widlund, H.R., Cao, H., Simonsson, S., Magnusson, E., Simonsson, T., Nielsen, P.E., Kahn, J.D., Crothers, D.M.
& Kubista, M. (1997) Identification and characterization of genomic nucleosome-positioning sequences. J. Mol. Biol. 267, 807-817.

| phcn4  | 122 bp | TAGGACCTGG | AGTATGGCGA | GAAAACTGAA | AATCACAGAA | AATGAGAAAT |
|--------|--------|------------|------------|------------|------------|------------|
| _      | _      | ACACACTTTA | GGATGTGAAA | TATGGCGAGG | ААААСТБААА | AAGGTGGAAA |
|        |        | ATTCAGAAAT | GTCCACTGTA | GG         |            |            |
| phcn8  | 127 bp | AGGACCTGGA | ACATGGTGAG | ААААСТБААА | ATCACAGAAA | ATGAGAAATA |
| F      |        | GACACTTTAG | GACGTGAAAT | ATGACGAGGA | AAACAGAAAA | AGTTGGAAAA |
|        |        | TTTAGAAATG | TCTAACGTAG | GACGTGG    |            |            |
| phcn12 | 123 bp | TGAAGGACCT | GGAATATGGC | GACGGAAAAC | TGAAAATCAC | GGAAAATGAG |
|        |        | AAATACACAC | TTTACGACGT | GAAATATGGC | GAGGAAAACT | GATAAAGGTG |
|        |        | GAATATTTAG | AAACGTCCAC | TGT        |            |            |
| phcn14 | 125 bp | AGGGACATGG | AATATGGAGA | GAAAACTGAA | AATCACGGAA | AATGAAAAAT |
|        |        | ACACACTTTA | GGACGTGAAA | TATAGCGAGG | AAAACTGAAA | AAGGTGGAAT |
|        |        | ATTTAGAAAT | GTCCACTGTA | GGACG      |            |            |
| phcn17 | 120 bp | CCGGAATATG | GCGAGAAAAC | TGAAAATCAC | GTAAAATGAG | AAATACACAC |
|        |        | TTTAGGACGT | GAGATATCGC | GAGGAAACCT | GAAAAAGGTG | GAAAATTTAG |
|        |        | AAATGTCACA | GTAGGACGTG |            |            |            |
| phcn18 | 125 bp | TGACCTGGAA | TATGGCGAGA | ААССТБАААА | TCACGCAAAA | TGAGAAATAC |
|        |        | ACACTTTAGG | ACATGAAATA | TGGTGAGGAA | AATTGAAAAA | GGTGGAATAT |
|        |        | TAAGAAATGT | CCACTGTAGG | ACGTG      |            |            |
| phcn21 | 129 bp | TGAAGGACCT | GGAATATGGC | GAGAGAACTG | AAAATCACCG | AAAATGAGAA |
|        |        | ATACACACTT | TAGGACGTGA | AATATGGCGA | GGAAAACTGA | AAAAGATGGA |
|        |        | AAATTTAGAA | ATATCCACTG | TAGGACGTG  |            |            |
| phcn22 | 118 bp | AATGTGGCGA | GAAAAGTGAA | AATCACGGAA | AATGAGAAAT | АААСАСТТТА |
|        |        | GGAAGTGAAA | TATGGCGAGG | AAAACTGAAA | AGGATGGAAA | ATTTAGAAAT |
|        |        | GTCCACTGTA | GGACGTGG   |            |            |            |
| phcn23 | 125 bp | GAGGACCTGG | AATATGGTGA | GAAGACTGAA | AATCACGGAA | AATGAGAAAT |
|        |        | ACACACTTTT | GGACGTGAAA | TATGGCGAGG | ААААСТБААА | AAGGTGGAAA |
|        |        | ATTTAGAAAT | GTCCACTGTA | GGACG      |            |            |
| phcn24 | 111 bp | AGAGAAAACC | GAAAATCACG | GAAAATGAGA | AATACGCACT | TTAGGACGTG |
|        |        | AAATATGGCG | AGGAAAACTG | AAAAAGGTGG | AAAATTTAGG | GATGTCCACT |
|        |        | GTAGGACGTG | G          |            |            |            |
| phcn26 | 127 bp | AGGACCTGGA | ACATGGCGAG | AAAACTGAAG | ATCACGGAAA | ATGAGAAATA |
|        |        | CACACTTTAG | GGCGTGAAAT | ATGACGAGGA | AAACTGAAAA | AGGTGGAGAA |
|        |        | TTTAGAAATG | TCCACTGTAG | GACGTGG    |            |            |

| phen29     | 120 bp   | GGAATATGGC | GAGAAAACAG | AAAATCACGG | GAAATGAGAA | ATACACACTT |
|------------|----------|------------|------------|------------|------------|------------|
|            |          | TAGGACGTGA | AATATAGCGA | GGGGAACTGA | AAAAGGTGGA | AAATTTAGAA |
|            |          | ATGTCCGCTG | TAGGACGTGG |            |            |            |
| phcn39     | 128 bp   | AGAGGACCTG | GAATATGGCG | AGAAAACTGA | AAATCACGGA | AAATGAGAAA |
|            |          | TACACACTTT | AGGACATGAA | ATATGGCGAG | GAAAACTGAA | AAAGGTGGAA |
|            |          | AATTGAGAAA | TGCCACTGTA | GGACGTGG   |            |            |
| phcn43     | 119 bp   | AGGACCTGGA | ATATGGCGAG | ААААСТБААА | ATCACGGAAA | ATGAGAAACA |
| -          | -        | CGCGCTTAAG | GACATGAAAT | ATGGCGAGAA | АААСТБАААА | AGGTGGAATA |
|            |          | TATAGAAATG | TCCACTGTA  |            |            |            |
| phcn46     | 126 bp   | ATGCACACTG | TAGGACCTGG | AATATGGCGA | GAAAACTGAA | AATTAAGGAA |
| 1          | 1        | AATGAGAAAT | ATACACTTTA | GGACGTGAAA | TATGGCGAGG | AGGACTGAAA |
|            |          | GAGGTGGAAA | ATTTAGATAC | GTCCAC     |            |            |
| phcn47     | 128 bp   | AAGGACCTGG | AATATGACGA | GAAAACTGAA | AATCACGGAA | AATGAGAGAT |
| r · ·      | F        | ACACACTTTA | GGACGTGAAA | TATGGCGAAG | ААААСТБААА | AGGTCGGAAA |
|            |          | ATTTAGAAAT | GTCCACCGTA | GACGTGGA   |            |            |
| phen50     | 109 bp   | AGAGAACTGA | AAATCACCGA | AAATGAGAAA | TACACGCTTT | AGGACGTGAA |
| F          |          | ATATGGCGAG | GAAAACTGAA | AAAGTGGAAA | ATTTAGAAAT | GTCCACTGTA |
|            |          | GGACGTGGT  |            |            |            |            |
| phwn12     | 126 bp   | GACCTGGAAA | ATGGCGAGAA | ААСТGААААТ | CACGGAAAAT | GTGAAATACA |
| <b>T</b> . | <b>r</b> | CACTTTAGGA | CATGAAATAT | GGCGAGGAAA | ATTGAAAAAG | TTGGATAATT |
|            |          | TAGAAATGTC | Састстасса | CGTGGA     |            |            |

## SET 1B A-tracts 2 (81%)

Widlund, H.R., Cao, H., Simonsson, S., Magnusson, E., Simonsson, T., Nielsen, P.E., Kahn, J.D., Crothers, D.M.
& Kubista, M. (1997) Identification and characterization of genomic nucleosome-positioning sequences. J. Mol. Biol. 267, 807-817.

| AATGATAAGC               |
|--------------------------|
| ACGTGAAAAA               |
|                          |
| ATGAGGAACA               |
| CGTGAAAAAT               |
|                          |
| TAGAGATGTG               |
| GGAAAATGAG               |
|                          |
| AATGAGAAAC               |
| ACGTGAAAAA               |
|                          |
| AAATGAGAAA               |
| ATTACGGAAA               |
|                          |
| AGTGAGAAAC               |
| ACGTGAAAAA               |
|                          |
| CACTCGACGA               |
| GAAATGCTCA               |
|                          |
| AATGAGAAGC               |
| CGTGAAAAAT               |
|                          |
|                          |
| ATGAGAAACA               |
| ATGAGAAACA<br>CGTGAAAAAT |
|                          |

<sup>†</sup> Chain length without space reported in sequence dataset of M. Kubista.

## SET 1C A-tracts 3 (72%)

Widlund, H.R., Cao, H., Simonsson, S., Magnusson, E., Simonsson, T., Nielsen, P.E., Kahn, J.D., Crothers, D.M.
& Kubista, M. (1997) Identification and characterization of genomic nucleosome-positioning sequences. J. Mol. Biol. 267, 807-817.

| phcn3    | 123 bp | ACGTGAAAAA<br>ACTGAAAAATC<br>GCGAGGAAAA | TGAGAAATGC<br>ACGGAAAATG<br>CTGACAAAGG | ACACTGAAGG<br>AGAAATACAC<br>CGG        | ACCTGAAATA<br>ACTTTAGGAC           | TGGCGAGAAA<br>GTGAAATATG |
|----------|--------|-----------------------------------------|----------------------------------------|----------------------------------------|------------------------------------|--------------------------|
| phcn7    | 118 bp | AGAAAACTGA<br>ATATGGCGAG                | AAATCACGGA<br>GAAAATGGAA               | AAATTAGAAA<br>AAAGGTGGAA               | TACACACTTT<br>AATTTAGCAG           | AGGACGTGAA<br>TGTCCACTGT |
| phcn9    | 136 bp | AGGAGGTGGA                              | ATATGGCA<br>ATAAGGCAAG                 | ААААСТGААА                             | ATCATGGAAA                         | ATGAGAAACA               |
|          |        | TCCACTTGAC<br>GAGAGATGCA                | GACTTGAAAA<br>CCCTGAAGGA               | ATGACAAAAT<br>CCTGGAATAT               | CACTAAAATA<br>GGCGAG               | CGTGAAAAAT               |
| phen11   | 124 bp | ATGGCTAGAA<br>CTTGAAAAAT<br>CTGAGGGACC  | AACTGAAAAT<br>GTCGAAATCA<br>TGGAATATGG | CATGGAAAAA<br>CTAAAAAACG<br>CGAG       | GAGAAACATC<br>TGAAAAATGA           | CACTTGACGA<br>GAAATGCACA |
| phen19   | 129 bp | ATGGCGAGAA<br>ATGCAGTGAA                | AACTGAAGTT<br>ATATTGAGCG               | CACGGAAAAT<br>AAGGAAAACT               | GGAGAAATAC<br>GAAAAAGGTG           | ACACTTTAGG<br>GAAAATTTAG |
| phcn28   | 122 bp | AAATGTCCAC<br>AGAAAACTGA                | TGTAGGACGA<br>AAATCACGGA               | GGAATATGG<br>AAATGAGGAA                | TACACACTTT                         | AGGACGTGAA               |
| phen37   | 117 bp | AGGATCGTGG                              | AATATAGCAG                             | GC                                     |                                    |                          |
| pitens / | 117 op | AGAACACIGA<br>ATATGGCGAG<br>AGGACGTGGA  | GAAAACTAAA<br>ATATGGC                  | AAAGGTGGAA                             | AATTTAGAAA                         | TGTCCACTGT               |
| phcn44   | 123 bp | ATGGCGAGAA<br>CGTGAAATAT<br>CACTGTAGGA  | AACTGAAAAT<br>GGCGAGGAAA<br>CGTGGAATAT | CACGGAAAAT<br>ACTGAAAAAG<br>GGC        | GAAAAATACA<br>GTGGAAAATT           | CACTTCAGGA<br>TAGAAATGTC |
| phwn11   | 123 bp | ATGGCGAGAA<br>CGTGAAGTAT<br>CGCTGTAGGA  | AACTGCAAAT<br>GGCGAGGAAA<br>CGTGGAATAT | CACGGAGAAT<br>ACTGAAAAAG<br>GGC        | GAGAAATACA<br>GTGGAAAATT           | CACTTTAGGA<br>TAGAAATGTC |
| phwn29   | 136 bp | AGGACGTGCA<br>TCCACTTGAC<br>GAGAAATGCA  | ATAAGGCAAG<br>GACTTGAAAA<br>CCCTGAAGGA | AAAACTGAAA<br>ATGACAAAAT<br>CCTGGAATAT | ATCATGGAAA<br>CACTAAAATA<br>GGCGAG | АТGАGАААСА<br>СGTGАААААТ |
| phwn36   | 120 bp | TGGAAAATTA<br>AAAAAACGTG<br>AGAAAACTGA  | GAAACATCCA<br>AAAGATGAGA<br>AAATCACGGA | CTTGATGACT<br>AATGCACACT               | TGAATAATGA<br>GAAGGACCTG           | CGAAATCACT<br>GAATATGGCG |

## SET 2 TG/CTG RUNS (47%)

Widlund, H.R., Cao, H., Simonsson, S., Magnusson, E., Simonsson, T., Nielsen, P.E., Kahn, J.D., Crothers, D.M.
& Kubista, M. (1997) Identification and characterization of genomic nucleosome-positioning sequences. J. Mol. Biol. 267, 807-817.

| phcn31 | 141 bp | GCATGCATGC ATACACGC | AT GTATACGAAC  | ATGTACACAC | ATACTCATGA   |
|--------|--------|---------------------|----------------|------------|--------------|
|        | *      | ACACGCATAC ACGCGCAC | AT ATGCATACAT  | GCTTGTATAC | ACACATGTAT   |
|        |        | ACGAACATGT GTACACAT | АС ТСАТАААСАС  | TCACACACAC | C            |
| phcn32 | 125 bp | TACACACACA CCACATCA | TG CATACACACA  | CATCAATGCA | ATGCATACAC   |
|        |        | ACATACATAC ACATACTA | AC ACATACACTC  | ACACACACGC | AGAAATTATG   |
|        |        | CATGCATCAT CGACATTG | GC ACGCA       |            |              |
| phcn33 | 133 bp | TACACACACT AACACACA | CA CATGCACACA  | TACACACAGA | CACATGCACA   |
|        |        | TATACACACA CATACACA | CG CATACACACA  | CATACACACA | CATATACACA   |
|        |        | CACATGCACA CTTACACA | CA CATGCACACA  | CAC        |              |
| phcn40 | 151 bp | AGCACTGTGA CAACACAG | TG GAGCAGCTTA  | ACACCACAGT | GTAGCACTAT   |
|        |        | GACATCAGAG TTGAGCAC | TG TGTCACCACT  | CAGAGAACTA | TGACACTACA   |
|        |        | GTAGAGCACT GTAACATC | AC AGTCGAGCAC  | TGTAACACCA | CATATGCGCA T |
| phwn2  | 128 bp | GAGAGTAACA TAGGCACA | .GG TGTGGAGAGT | AACACAGGCA | CAGGTGTGGA   |
|        |        | GAGTACACAC AGGCACAG | GC GTGGAGAGTA  | CACACAGGCA | CAGGTGTGGA   |
|        |        | GAGCACACAC AGGCACAG | GT GTGGAGAG    |            |              |
| phwn3  | 139 bp | CACTGTGACA ACAATGTG | GA ACATTGTGAC  | ATCACAGTGG | CGAACAGTGA   |
|        |        | CGGAACAGTA AAGGAGTC | TG ACAGTACAGT  | GGAAAACAGT | GACGGAACTG   |
|        |        | TGGAGCACTG TGATTACA | CC ATGGGACATG  | TTGCACCAC  |              |
| phwn4  | 124 bp | GAGAGTAACA CAGGCACA | GG TGTGGAGAGT  | AACACAGGCA | CAGGTGTGGG   |
|        |        | AGAGTGACAC ACAGGCAC | AG GTGAGGAGAG  | TACACACAGG | CACAGGTGTG   |
|        |        | GAGAGCACAC ACAGGTGC | GG AGAG        |            |              |
| phwn7  | 132 bp | AGCAGCAGCA GCAACAGI | AG TAGAAGCAGC  | AGCACTAACG | ACAGCACAGC   |
|        |        | AGTAGCAGTA ATAGAAGC | AG CAGCAGCAGC  | AGTAGCAGTA | GCAGCAGCAG   |
|        |        | CAGCAGCAAT TTCAACAA | CA GCAGCAGCAG  | СТ         |              |
| phwn10 | 127 bp | AGACCTTGTC TCAACACA | CA CACACACACA  | CACACACACA | CACACACGCG   |
|        |        | CGCACACACA CGCACACA | CA CATATGCACA  | CACACACGCA | CACGCACACA   |
|        |        | CACATGCACA CGCGCACG | TG CACACAC     |            |              |
| phwn13 | 134 bp | CACACACACA TACTCACA | CA CCTGTACCAC  | ACACACACAT | GCACATATCT   |
|        |        | GCACCACACA CAAACACA | TG CGTGTACACA  | CACATACTCA | CACCTGTACC   |
|        |        | ACACACACAC ATGCACAC | AT CCGCACCACA  | CGCA       |              |
| phwn14 | 128 bp | CTTCCTCATG CATGAGCI | TG CATGAGCTTG  | CATATGCTCA | CATACCACAC   |
|        |        | ATGTGAGTCT ACACACAA | TG AGCACACACA  | CACACACACA | CATCACTAAC   |
|        |        | CGTCTCGGTC TGGCCATC | AT AGTCTGGC    |            |              |
| phwn15 | 133 bp | CACACACACA CACCACAT | AC ACACACACAC  | CACATACACA | CACACACACT   |
|        |        | ACATACACAC ACACACAT | TC ACGCACACAC  | ACATACACAT | ACACACACAC   |
|        |        | ACCACATACA CACACATA | CA CACCACATAC  | ACA        |              |

| phwn16              | 140 bp | CACTGTGACA | ACAATGTGGA | ACATTGTGAC | ATCACAGTGG | CGAACAGTGA |
|---------------------|--------|------------|------------|------------|------------|------------|
|                     |        | CAAAGCAGCA | AAGGAGTCTG | ACAGCACAGT | GGAAAACAGT | GACAGCAGAC |
|                     |        | TGTGAGCACA | GTGATTGCAC | CATGGAGCAT | ACTACACCAC |            |
| phwn17              | 139 bp | GAGCACCTGT | GACACCACAA | GGGGGCCTTG | TGACTGCACA | GAGGGGCACT |
|                     |        | GTGTCACAAC | AGTGGAATGC | TGTGACAGTA | CAGTGGAGCA | GTGTGACAAA |
|                     |        | ACAGTGGAGT | ACTGTGACAC | AATAGTAGGG | CAATATGAC  |            |
| phwn18              | 128 bp | ATGCGCAGAC | GCACACACAT | GAGCATGCGC | AGACGCACAT | ACATGAGCGT |
|                     |        | ACGCAGACGC | ACACACATGA | GCATGCGCGC | GCGACACACA | CACACACACA |
|                     |        | CACACACACA | CGAGTGGCAA | GGCGGGGG   |            |            |
| phwn20              | 122 bp | ATGCGCTGAC | GCACACACAT | GAGCACGCGC | AGACGCACAT | ACATGAGCGT |
|                     |        | ACGCAGACAC | ACACACATGA | GCATGCGCGC | GCGACAACAC | ACACGCTCAC |
|                     |        | ACACACGAGT | GGCAAGGCGG | GG         |            |            |
| phwn22              | 131 bp | CAATGTGACA | TTACATGTAG | CATGGTGAAA | TCCCAGTGGA | ATACTGTGAC |
|                     |        | ACCACATTGG | AGCACAATGA | CACCACTGTG | GAGCATGTGA | CACCACAGTG |
|                     |        | GAGCACTGTG | AAACCTCAGT | GGAGCACTGG | Т          |            |
| phwn23              | 126 bp | GCAGTGCTCA | CATACAGCGC | ACACATACAG | TGCTCCATAT | AGTGCACACA |
|                     |        | TACAGTGCAC | ACATACGGTG | CTCACGTACA | GTGCTCACAT | ACAGTGTACA |
|                     |        | CATACAGTAC | ACACATACAC | TGCACA     |            |            |
| phwn24              | 139 bp | CACTGTGACA | ACAATGTGGA | ACATTGTGAC | ATCACAGTGG | CGAACAGCGA |
|                     |        | CAAAACAGTA | AAGGAGTCTG | ACAGCACAGT | GGAAAACAGT | GACAGAACTG |
|                     |        | TGGAGCACTG | TGATTGCACC | ATGGAGCATG | TTACACCAC  |            |
| phwn25              | 134 bp | ATGCGCAGAC | GCACACACAT | GAGCATGCGC | AGGCGCACAT | ACATGAGCAT |
|                     |        | ACGCAGACGC | ACACACATGA | GCATGCGCGC | GCACACACAC | ACACACACAC |
|                     |        | ACACACACAC | ACACACACGA | GTGGCAAGGC | GGGG       |            |
| phwn28              | 139 bp | CACTGTGACA | ACAAAGTGGA | ACATTGTGAC | ATCACAGTGG | CGAATAGCGA |
|                     |        | CAAAACAGTA | ACGGAGTCTG | ACAGCACGGT | GGAAAACAGT | GACAGAACTG |
|                     |        | TGGAGCACCG | TGGTTGCACC | ATGGAGCATG | TTACGCCAC  |            |
| phwn30              | 131 bp | CAATGTGACA | TCACATGTAG | CATGGTGAAA | TCCCAGTGGA | ATACTGTGAC |
|                     |        | ACCACATTGG | AGCACAGTGA | CGCCACAGTG | GAGCATGTGG | CACCACAGTG |
|                     |        | GAGCACTGTG | AAACCACAGT | GGAGCACTGG | G          |            |
| phwn32 <sup>†</sup> | 138 bp | TGCCAGATGA | CACGTGCTAT | GCCCAGGTGA | CACAAGCTAT | GCCCAGATGA |
| •                   | *      | TACGTGCTAT | GCCCAGGTGA | CACATGCTAT | GCCCAGGTGA | CACATGCTAT |
|                     |        | GCCCAAGTGA | CACATGCCAT | GCCAGGTGAC | ACAAGCTA   |            |
|                     |        |            |            |            |            |            |

<sup>†</sup> Reverse complement of unlabeled file in sequence dataset of M. Kubista.

## SET 3 Phased TATA (96%)

Widlund, H.R., Cao, H., Simonsson, S., Magnusson, E., Simonsson, T., Nielsen, P.E., Kahn, J.D., Crothers, D.M.
& Kubista, M. (1997) Identification and characterization of genomic nucleosome-positioning sequences. J. Mol. Biol. 267, 807-817.

| phen5  | 123 bp | AGGTCTATAA | GCGTCTATAA | ACGTCTATAA | ACGTCTATAA | GCGTCTATAA |
|--------|--------|------------|------------|------------|------------|------------|
|        |        | ACGCCTATAA | GCGCCTATAA | ACGCCTATAC | GAGCCTATAA | ACGCCTATAC |
|        |        | ACGGCTATAC | ACGTCTATAC | ACG        |            |            |
| phen25 | 126 bp | AGGTCTCTAA | GCGTCTAAAA | ACGCCTATAA | ACGTTTATAA | ACGTCTATAA |
| •      |        | ACGCCTACAA | ACGCCTATAA | ACGCCTATAC | AAGCCTATAA | ACGCCTGTAC |
|        |        | ACGTCTACAC | ACGTCTATAC | ACGTCT     |            |            |
| phcn41 | 126 bp | AGGTCTATAA | GCGTCTATAA | GCGTCTATGA | ACGTCTATAA | ACGTCTATAA |
| •      |        | ACGCCTATAA | ACGCCTATAA | ACGCCTATAC | AAGCCTATAA | ACGCCTATAC |
|        |        | ACGTCTATGC | ACGACTATAC | ACGTCT     |            |            |
| phcn49 | 126 bp | AGGTCTATAA | GCGTCTATAA | ACGTCTATAA | ACGTTTATAA | ACGTCTATAA |
| 1      | Ĩ      | ACGCCTATAA | ACACCTATAA | ACGCCTATAC | AAGCCTATAA | ACGCCTATAC |
|        |        | ACGTCTATAC | ACGCCTATAC | GCGTCT     |            |            |

## SET 4 phased TG/CA (96%)

Widlund, H.R., Cao, H., Simonsson, S., Magnusson, E., Simonsson, T., Nielsen, P.E., Kahn, J.D., Crothers, D.M.
& Kubista, M. (1997) Identification and characterization of genomic nucleosome-positioning sequences. J. Mol. Biol. 267, 807-817.

| phcn6               | 126 bp | ATTTGTAGAA | CAGTGTATAT | CAATGAGTTA | CAATGAAAAA | ACATGGAGAA |
|---------------------|--------|------------|------------|------------|------------|------------|
| -                   | -      | TGATAAATAC | CACACTGTAG | AACATATTAG | ATGAGTGAGT | TACGCTGAAA |
|                     |        | AACACATACG | TTGGAAACCG | GCATTG     |            |            |
| phcn16              | 123 bp | ATTTGTAGAA | CAGTGTATAT | CAATGAGCTA | CAATGAAAAT | CATGGAAAAT |
| 1                   | 1      | GATAAAAACC | ACACTGTAGA | ACATATTAGA | TGAGTGAGTT | ACACTGAAAA |
|                     |        | ACACATCCGT | TGGAAACCGG | CAT        |            |            |
| phcn27              | 126 bp | AACAGGATTT | GTAGAACAGT | GTATATCAAT | GAGTTACAAT | GAGAAACGTG |
| •                   |        | GAAAATGATA | GAAACCACAC | TGTAGAACAT | ATTATCTGAG | TGAGTTACAC |
|                     |        | AGAAAAACAC | ATTCGTTGGA | AACGGG     |            |            |
| phcn48 <sup>†</sup> | 118 bp | ATGTAGGACA | GTGTATATCA | ACGAGTTACA | ATGAGAAACA | TGGAAAATGA |
| 1                   | 1      | TAAAAACCAC | ACTGTAGAAC | AGATTAGATG | AGTGAGTTAC | ACTGAGAAAC |
|                     |        | ACATTCGTTG | GAAACGGC   |            |            |            |
| 4                   |        |            |            |            |            |            |

<sup>†</sup> DNA-binding site for CENP-B

#### SET 5 No sequence (40%)

Widlund, H.R., Cao, H., Simonsson, S., Magnusson, E., Simonsson, T., Nielsen, P.E., Kahn, J.D., Crothers, D.M.
& Kubista, M. (1997) Identification and characterization of genomic nucleosome-positioning sequences. J. Mol. Biol. 267, 807-817.

| phen1  | 144 bp <sup>†</sup>  | GGCGGGTAAT<br>CAATAGCGTC<br>CAATTGGCGT | TGAGCATCAG<br>AACAAGAGGA<br>GGCAGTAATA  | TAGGTATAGC<br>TAGTGGTGAG<br>GTCCTGTTTA | TAAGCGGGAT<br>CAGAGACGTG<br>GTAACTCGGT | GCGATAGTAG<br>CTGCGCGCTA<br>CTTG   |
|--------|----------------------|----------------------------------------|-----------------------------------------|----------------------------------------|----------------------------------------|------------------------------------|
| phcn15 | 145 bp <sup>†</sup>  | CGGGAGTAGA<br>AGGGATAAAC<br>GGCGAGCTTA | ATGCAAGCGA<br>GTGAACCGTT<br>CTGCCACGCG  | GGCCGGTACG<br>ATACAGAAAA<br>TTGAGAGCCA | AGCTAAAGAA<br>ATGCAGATAG<br>GCACCGGACA | TGCGTGATGC<br>AGTGACTAAC<br>CGATA  |
| phcn34 | 125 bp <sup>†</sup>  | CAGCCCCGGC<br>ACCCTCCTAC<br>ACACCCTACT | CTTGAACTAT<br>CTCTACCTCA<br>TAACACAGTG  | AGAGCAGCTG<br>CGAATGTTAG<br>ACCAA      | AAGATAACTT<br>GACTACAGGT               | TGAATTTCTG<br>GAATGCCACC           |
| phcn35 | 145 bp <sup>†</sup>  | GTGAGCTGTG<br>AGTAAGTTAT<br>CTGGCACTAA | CGGAAGCAAA<br>GCCGCGGACA<br>GGCCGGTGGT  | AGGAAAGCGA<br>AGCAGCGTCG<br>ATCAGAAGCT | TTAACGGTGT<br>AAGCACCGGC<br>CCTGACAGCT | GCTGCATGAT<br>GATGGCACAG<br>TAGGG  |
| phcn36 | 146 bp <sup>†</sup>  | GGCGAAAGCG<br>CATTGAGACC<br>CGAATGACTC | GTGAACAGTG<br>ACGCCAACAA<br>GATAAGTCTT  | GGTCGGAGCC<br>AACATTGGTT<br>AAGATAACGG | CATTATATTG<br>GCATGTGATA<br>GCGTATTGGT | GTTGAGAGGG<br>GTTTAACCAG<br>CGTTTG |
| phcn38 | 144 bp <sup>†</sup>  | GTGAGCTGTG<br>AGTAAGTTAT<br>TGGCACTAAG | CGGAAGCAAA<br>GCCGCGGGACA<br>GCCGGTGGTA | AGGAAAGCGA<br>AGCAGCGTCG<br>TCAGAAGCTC | TTAACGGTGT<br>AAGCACCGGG<br>CTGACAGCTT | GCTGCATGAT<br>ATGGCACAGC<br>AGGG   |
| phcn45 | 144 bp <sup>†£</sup> | AGAGGGCGGG<br>ATTAGGAGTG<br>TGGAAGTGGA | TGATATGGAA<br>CGCGCGGAGC<br>TAGAGGCGTC  | TCGGGGCCAA<br>TGTAAGCTCG<br>GAGGGTCCGG | TGCGCAGTTT<br>TCGAGCGTCC<br>ACCAGGTAGC | AAGGTTACAG<br>ATTGGCTAGG<br>GTTG   |
| phwnl  | 134 bp <sup>†</sup>  | GCGGAGGGTG<br>GTTAGCCGCG<br>TTGGGTGTAA | GGGCAATGGG<br>TGTAGCAATG<br>CCTGAATAGC  | AGCTGCGCAG<br>GAGCTGGTAG<br>GGCTGTAGTC | CAAATACTCC<br>CAGGCACGAA<br>GTCG       | GTCATCAGGG<br>TGACTCGGGT           |
| phwn5  | 144 bp*              | GAGGACAAGA<br>TGTGGTGATC<br>CCAGTCAATA | GCACCTAACT<br>AATCTCCCAC<br>TAGTTCCGCA  | ACACTAAAGC<br>CACGCTTTCC<br>TCAAGACAGA | CGGACCGTTG<br>ACCTGACAGC<br>AACGTCAATG | GCGCTCACCC<br>GCAGAGTATC<br>ACCC   |
| phwn6  | 140 bp <sup>§</sup>  | CGGGACAGTG<br>CAGTGGTAAT<br>TATTACAGGC | TCGACAAGCA<br>CAGGGCAGCG<br>GTTACGATGC  | AAGGCGTAGG<br>GCGCGAATAG<br>CCTATGTCGG | CCTACCGAGA<br>CGTACGTAGC<br>GTGTGCGAGC | GGCGTGGGAG<br>GGGTGTCAGC           |
| phwn9  | 127 bp*              | AGGGAGGGTT<br>GCTAGACACA<br>ACCACTGGAA | CTGACCTCAG<br>TGCCCTGAAA<br>CTCAGGAAAG  | AACTCAGGAG<br>GAGGAAAGCT<br>AGCTAGT    | GTGGATCAGA<br>TGCCTGCAGA               | GCCCCAGACT<br>GAGTGCTCTG           |
| phwn19 | 137 bp*              | TGTGAACAAC<br>CAGGCCAGAG<br>TTAGGACCAT | CAATCAACGG<br>CGAGACTAAA<br>GATCTCTCGC  | TGGCAGTGCA<br>ATCAATTCCA<br>ATCTCCCCCC | GCATGGTCTA<br>CACAAACCCT<br>AACCCCG    | TCAGGTTGTA<br>CTTACCAACG           |

| phwn21 | 146 bp <sup>*</sup> | ACTCAAAGAA | CAAAGATCCT | GCTAACCACG | GCATTAGGGA | ACGGGCGGTA |
|--------|---------------------|------------|------------|------------|------------|------------|
| *      | *                   | CCGATGCCGT | TCTGGTCGAC | AGCGCATAGC | CCCGGTCCAA | CTCCGTGCGG |
|        |                     | CCTAGAACGT | TACGTACCCT | AGATGCAGCG | GAACTCTTGC | GTGTCG     |
|        | 0                   |            |            |            |            |            |
| phwn31 | 144 bp <sup>§</sup> | CGGGCAGTAT | TGCGCACGAA | CAAGGTTACT | TTTGAAGACC | ACATCTGTAC |
|        |                     | ATCTGGGTAG | AGCAGGAAAG | CAATTGGTGT | GAAGTCATTG | GCGTTGCTGC |
|        |                     | ACAGACCAGC | GTCACAGTCG | TTAGGGAGCC | GGAATGCTAT | CTGG       |
|        | *                   |            |            |            |            |            |
| phwn33 | 124 bp              | GGGCTGTAGA | ATCTGATGGA | GGTGTAGGAT | GGATGGACAG | TATGACAAAA |
|        |                     | GGGTACTAGC | CTGGGACAGC | AGGATTGGTG | GAAAGGTTAC | AGGCAGGCCC |
|        |                     | AGCAGGCTCG | GACGCTGTAT | AGAG       |            |            |
|        | *                   |            |            |            |            |            |
| phwn34 | 142 bp              | AAGACAAAAT | ATGCACGATG | TCACATGCAG | GACCGCCGAT | TGTATTGATA |
|        |                     | CCATTACGTT | ATGCGTGGAC | GTCGGCTGTA | GTCCTAAGCG | CACCCCGACC |
|        |                     | GAGTTCTGTG | TACGAAACCT | ACCAGCTCCT | TCGACGCGAT | GT         |
|        |                     |            |            |            |            |            |
| phwn35 | 145 bp <sup>s</sup> | GCGGATAACA | ATTTCACATA | GGAAACAGCT | ATGACCATGA | TTACGCAAGC |
|        |                     | GCGCAATTAA | CCCTCACTAA | AGGGAACAAA | AGCTGGAGCT | CCACGCGGTG |
|        |                     | GCGGCCGCTC | TAGCCCGGGC | GGATCCCGAG | CTGTTTCCTG | TGTAA      |
| 1 05   | 10(1 *              |            |            |            |            |            |
| phwn37 | 136 bp              | TAGACCAGGT | GAGCAGGAGG | CGGACAGCAG | GGAACAGTCT | GGAGGGCAGG |
|        |                     | AAAGAGCTCT | GAGGAGCCAT | AGCGGGTAAA | GCTGAGGATG | GGTTTAAGCA |
|        |                     | AAAGCCAGAC | CAAGGACAGG | AGGATGTGCA | CACTGC     |            |

<sup>†</sup> Reverse complement of unlabeled file in sequence dataset of M. Kubista.
 <sup>£</sup> Chain length with extra space removed.
 <sup>\*</sup> Sequence included in M. Kubista list of Set5 sequences and in table.
 § Sequence not included in list of Set5 sequences in M. Kubista dataset (but in table).

# (ii) Anti-selection sequences from the mouse genome $^{\dagger}$

# TGGA Fragments

| Cao, H., | , Widlund,   | H. R.,   | Simonsson, | T. 8 | : Kubista, | М. | (1998) | TGGA | repeats | impair | nucleosome | formation. |
|----------|--------------|----------|------------|------|------------|----|--------|------|---------|--------|------------|------------|
| J. M     | ol. Biol. 28 | 31, 253- | 260.       |      |            |    |        |      |         |        |            |            |

| 35 | 105 bp | ATCATGGTGA<br>GATGGCGATG<br>GTAGG      | TGTTGATGAT<br>ATGATGATGA               | GATGATGATG<br>TGGATGGCGA           | ATGGTGATGA<br>TGGTGATAAT | TGATGATGGT<br>GATATGGGGA |
|----|--------|----------------------------------------|----------------------------------------|------------------------------------|--------------------------|--------------------------|
| 19 | 123 bp | AGATGGATGG<br>GATGATGATG<br>TGGATGGATA | ATGATGGATG<br>GATGAATAGA<br>GATGGATGGA | GATGATGGAT<br>TGGATGGATG<br>TGG    | AGATGGATGA<br>GATGATGGAT | TGGATGGATG<br>GGATGGACGA |
| 29 | 116 bp | TGGATGGATG<br>GGTGATGGAT<br>GGGTGCATGA | GATGGATGGG<br>GGATGGGTGG<br>TGGATG     | TGGATGGATG<br>ATGGGTGGAT           | AGATGATGGA<br>GGATGGATGA | TGGATGATAA<br>GATGATGGAC |
| 75 | 86 bp  | TGGATAGGTG<br>GATGATGGAT               | GATGGGTAGA<br>GGATGGATGG               | TGGATGAATG<br>ATGGATGGAT           | AATGAGTAGA<br>GGATGG     | TGGATGGATG               |
| 44 | 119 bp | TGGATCGATG<br>AGATCGATCG<br>GACGGATGGG | GATGGATGGG<br>GATGGATGGG<br>TGATGGATG  | TGGATGGATC<br>TGGATGGCCG           | AGATGATGGA<br>GATGGATGGA | TGTGATGATA<br>TGAGATGACG |
| 81 | 111 bp | TGGATGGATG<br>GATGATGGAT<br>GATGATGGAT | GATGAATGGG<br>GGATGGTGGA<br>G          | TGGATGGATG<br>TGGGCGGATG           | AGATGATGGA<br>GATGGATGAG | TGGATGATAA<br>ATGATGGATG |
| 49 | 116 bp | ATAGATGGAT<br>GGGTGGATGG<br>GTGGATGGGT | GAGTGGATGG<br>GTAGATGGAT<br>GGATGG     | ATGGATGGGT<br>GGATGGATGA           | GGATGGATGG<br>GTGGATGGAT | ACGGGTGGAT<br>GGATGGATGG |
| 62 | 115 bp | ATAGATGGAT<br>GGATGGGTGG<br>TGGATGGGTG | GAGTGGATGG<br>ATGGATGATG<br>GACGG      | ATGGGTGGAT<br>GATGGATGAG           | GGATAGATGG<br>TGGATGGATG | GTGGATGGGT<br>GATGGATGGG |
| 57 | 112 bp | ATAGATGGAT<br>GGGTGGATGG<br>ATGGGTGGAT | AAGTGGATGG<br>GTGGATGGAT<br>GG         | ATGGATGGGT<br>GGATAAGTGG           | GGATGGATGG<br>ATGGATGGAC | ATGGGTTGAT<br>GGATGGGTGG |
| 47 | 126 bp | TGGATCGATG<br>TGATCAAGAT<br>ATGATCGGAT | GGTGGATGCG<br>GATGATGGCA<br>GGATGGATGA | ACGGGTGGAT<br>TGGGTGGATC<br>TGAATG | CGGATGAGAT<br>GGGTGGATGG | GATGGATGGA<br>ATGGCATGAG |
| 77 | 120 bp | TGGATGGATG<br>ATAAGATGAT<br>GGAGGGATGG | GATGGATGGA<br>GGATGGATGG<br>ATGATAGATG | TGGGTGGATG<br>GTGGATAGGC           | GATGAGATGA<br>GGATGGATGG | TGGATGGATG<br>TTGAGATGAT |
| 23 | 117 bp | AAAGGGTGGA<br>ATGGGGTGGA<br>ATGGATGGAT | TGGAATGGGA<br>TAGAATGGAT<br>GGATGGT    | TGGAATGGGG<br>GGATGGATGG           | TGGAATGGAT<br>ACGAATGGAT | GGACGGATGG<br>GTGTGGATGG |

| 80 | 109 bp | AGGTGGATGG<br>TAAATGGATG<br>GATGGATGG  | ATGGTGGATA<br>GATGGATGGA              | GATGGATGGA<br>CGAATGGATG | TGGACGGATG<br>TGTGGATGGA | GATGGGTGGA<br>TGGATGGATG |
|----|--------|----------------------------------------|---------------------------------------|--------------------------|--------------------------|--------------------------|
| 86 | 119 bp | ATAGATGGAT<br>GGGTGGATGG<br>TGGGTGGATG | GAGTGGGTGG<br>GCGGATGGAT<br>GGTGGATGG | ATGGATGGGT<br>GATGGATGGA | GGATGGATGG<br>TGAGTGGATG | ATGGGTGGAT<br>GATGGATGGA |

## BADSECS

Cao, H., Widlund, H. R., Simonsson, T. & Kubista, M. (1998) TGGA repeats impair nucleosome formation. J. Mol. Biol. 281, 253-260.

| 24 | 93 bp  | TACCACAATG | ACTTGGACAC  | AAGATACCCC | CTCATCATCG | CACCTAATTG |    |
|----|--------|------------|-------------|------------|------------|------------|----|
|    |        | GTATCAATCA | GGGGGCCATC  | ACCCTCCAGA | ACTAAAGTTG | CTC        |    |
| 26 | 81 bp  | ATGACAGACG | ACGCTGTCAA  | ATATGATAGC | ACCAGCCGAG | CTCCCCGATG |    |
|    |        | TATGCCCACG | TTATCTTGTC  | CTGCTGAAGT | Т          |            |    |
| 28 | 95 bp  | AGGCTTACTC | GGACATACCC  | CCCACTAGTC | ТААСТТТААС | ATTCGAATGA |    |
|    | -      | CAAAAACCAC | TGAACTTACC  | TAAGTGCCTG | ACGTTCTTGT | CGCGG      |    |
| 48 | 117 bp | TCTAGAGTGT | ACAACTATCT  | ACCCTGTAGG | CATCAAGTCT | ATTTCGGTAA |    |
|    | •      | TCACTGCAGT | TGCATCATTT  | CGATACGTTG | CTCTTGCTTC | GCTAGCAACG |    |
|    |        | GACGATCGTA | CAAGCAC     |            |            |            |    |
| 51 | 91 bp  | AAGATCGCTA | ACTATCCTGG  | ACTTTGCGAC | GAAAATCTAG | CACTAAAGGC |    |
|    | -      | AGGTCAACTC | TTGACCACAC  | CTCGACGACT | GCCCGCAATT | А          |    |
| 78 | 97 bp  | ACGAATTACA | ATAATACGCC  | ACATAAGAGG | TATGACCCGC | ССАТСАСТТА |    |
|    | e e er | TCAAGTACAG | CACTTGCCTG  | CTATTGACTC | TGTTTCTTGA | GCAATCC    |    |
|    |        |            |             |            |            |            |    |
| 31 | 88 bp  | ACTACTTCGG | TATCACAACT  | GCGTGAATCG | CTACAAGTTA | CCGGACATAA |    |
|    |        | TCGTTGGTCA | CTGGCAGTCC  | CCATATCTAC | CCAAGCGT   |            |    |
| 32 | 86 bp  | ACCAAGATCC | TGTTATCAGT  | CGTAACGATT | AACCAACTGA | CCAATAGGAA |    |
|    |        | CACAGTCAGT | GGGGGAATCG  | ATTGAGTACG | GGCCTC     |            |    |
| 33 | 85 bp  | TTGCGCAAGT | CGGCGTACTC  | GTCGACCATT | CAAGCTGTTA | CCCTAGACTC |    |
|    | L.     | TCATACCCTC | TTACACTACC  | AATACCATAT | GCGGA      |            |    |
| 52 | 99 hn  | ACGGTAAGGC | GCACACCCGG  | СТТСТАТССС | TCAGCACCGT | СТАТАССТТС |    |
|    |        | CCGATATTCA | CGGCAACTAC  | ACATCAACCA | CTACGCGCTC | TCCTCAGGC  |    |
|    |        |            |             |            |            |            |    |
| 63 | 89 bp  | CCGGCTAGCG | TTTGTCCCAC  | TTTTCACTAC | TATGCAGACC | CTGATGTACC |    |
|    |        | CGACTCGAGT | ATCGTACCCT  | CACCGGCCGT | CTGGAGTTG  |            |    |
| 69 | 99 bp  | TACTTCGACT | ACACACGCCA  | ATTCCGCCAA | CCTCGTATCA | АТТААССТСА |    |
|    |        | TGACGTGTAT | ACCACCCGAC  | ACGCAAGGCA | TCTCGCAGGC | TCACCCTCG  |    |
| 73 | 95 bp  | AACGTTTCCC | CGAAAGTAGG  | CCTGATGAGA | CGACACCCTA | TCTCATGTGG |    |
|    | Je or  | ACGACTCATA | CGCCCCTGGC  | ACCATTTCTT | CATGTAGTCA | ACAGG      |    |
|    |        |            |             |            |            |            |    |
| 76 | 92 bp  | TTAGTCCGAA | CCAGCAGACG  | AGTACCCTAG | CTGTCGGAGG | TATCTATCAC |    |
|    |        | GTGCCCCAGC | TGCCACTCAT  | AATACTACAC | GAGATCCGGC | CC         |    |
| 84 | 102 bp | AGAGGTGACA | TGCGACTGAG  | GACATCTTAT | CAGTAGTCAC | AACAGCAGAT |    |
|    | -      | GGTGCTGCAA | TGCCCAACGA  | TTACCGTCTG | CCGCATAGCA | CAAGACCCGA | AA |
| 85 | 99 hn  | AACACGTCCC | ልሞርሞርልሮሮሮሮ  | ͲႺϹϹͲႺͲႺႺႺ | ልርሞርሞርልልልል | ͲႺሮͲሮልሮͲልሮ |    |
| 55 | >> op  | GCTGAGTATA | TTTTTATCACA | CATGTGTGGT | GGACCCCAGA | ATGCTAACT  |    |

| 27  | 87 bp  | ТАСААААТТА | CGCAAGGCTA | TAATGGCCCG  | AAGGCACGGA    | AGACCCGGCA    |   |
|-----|--------|------------|------------|-------------|---------------|---------------|---|
|     |        | AGCAACGCTA | ACTGGCGCGC | CAATCCTATG  | CTTTNNT       |               |   |
| 30  | 88 bp  | AACCAAGTGA | CAACTAACAC | ACACAGGTGA  | GTTATCAGCG    | GGCCGGCATC    |   |
|     |        | CAGTTTAGGA | GTGCCACGCC | CATCTATGTT  | AGATACAA      |               |   |
| 43  | 108 bp | CACCACATAG | TTTGGTGAAG | CCGGCTTCCA  | GCAAGCACAG    | TCGACTAACA    |   |
|     |        | AAAACGAAAT | ATCTGCCCCG | GGAGACGAGC  | TCCTTGGATT    | ACCGCTCTTG    |   |
|     |        | CCAACATG   |            |             |               |               |   |
| 53  | 87 bp  | ATCACACAGG | AAACAGCTAT | GACATGGCAC  | ACAGAAAACA    | GCTATGACTG    |   |
|     |        | GGAAAACCCT | GCCGTCGTGA | CCGGGAAAAC  | CCTGGCG       |               |   |
| 55  | 89 bp  | TTATACCCAA | AAAACCAGGT | GAACAGAACG  | GCCATGCAAT    | AGTTCCTGCA    |   |
|     |        | ACAAACCTGC | CTGAAATACG | TACACGGAAT  | CTAAAGTAC     |               |   |
| 56  | 77 bn  | TTCACACAGG | АААСАССТАТ | GACTGAGAAA  | ACCCTGGCGT    | CACACAGGAA    |   |
|     | ,, op  | ACAGCTATGA | CTGGGAAAAC | CCTGGCG     |               |               |   |
| 50  | 06 hn  |            | manacanaca | CMOMCOOCAO  | COOO3 (TT) C3 | amama a a a m |   |
| 59  | 90 DP  | GGTAAAAATG | ТСАСССАССС | TCCTGGAAAG  | AGCACCTAGA    | TGCAAG        |   |
|     |        | 001AAAAA10 | IIACIOAAIA | ICCIOGAAAO  | AGEACCIAGE    | ICCANO        |   |
| 66  | 101 bp | TGTGACGGTT | ATGCAACTAG | CACGTGATTT  | TCGTAAGAGG    | TCACAAGATA    |   |
|     |        | ATACGGCGAG | АТААСТТААА | CCATCGGACC  | CGATGACTAA    | CGGATACACT    | A |
| 67  | 84 bp  | CCAGTAGGGT | TTGTTCATAC | TGAGTAAAAG  | TCTGTCCATA    | ACTACCTACA    |   |
|     | Ĩ      | TGGAACGCAA | TCAGTCACAG | AAATTAGCGC  | CCGA          |               |   |
| 74  | 87 hn  |            | ͲልሮልሮልͲሮላላ | ACAGCAAACC  | Ͳልሮልሞልርሞላላ    | TACGACGGAC    |   |
| / · | 07.00  | TCAAACTCCG | GTCGGGCGAG | СТСАССТАНСС | ACCTAGA       | INCOACODAC    |   |
|     |        | TCAAACTCCG | GICGGGCGAG | CIGAGGIIGC  | ACCTAGA       |               |   |

<sup>†</sup> Names are denoted pasHC# as the plasmid counterparts.

# (iii) Synthetic SELEX sequences<sup>\*</sup>

Lowary, P.T. & Widom, J., New DNA sequence rules for high affinity binding to histone octamer and sequencedirected nucleosome positioning. (1998) J. Mol. Biol. 276, 19-42.

| 10nvp  | 233 bp | GCGAGCTCTA  | GATACGCTTA               | AAGTACTTAT | CGGCGGCGTA | CAAGCGTTTT |
|--------|--------|-------------|--------------------------|------------|------------|------------|
|        |        | AGGCTCCAAT  | TGCCTAGACC               | GCGGTGCCGG | TAAGCTAGCG | GGTCGAATGA |
|        |        | TTGTACTTCC  | CCCCTTCTGT               | CTTAAGCCCC | CAGCTCATCC | CTCTGTATTA |
|        |        | TTCACCCAAG  | GTCTCGCGCA               | ATTCCCCTGA | GATTGGGTAC | TAATGAATCC |
|        |        | GACCCGTGCG  | TGGAAGCCGA               | GAGGCGATTC | CGT        |            |
|        |        |             |                          |            |            |            |
| 11nvp  | 229 bp | ATGCACTAGA  | GGGTGACGAG               | CGCGATGCTG | GGCCGACACG | CTGGATGTAC |
| _      | _      | TGTTTTCATT  | AGTTGTAAAG               | GTGCCCGCTG | GAGGCAGCAT | CACAAGTTAT |
|        |        | AATTCGTCCA  | CTTTAAGAAT               | GTCGCCTTCG | GACTACCAGG | GCGGAACCGC |
|        |        | ACCAAGGGAC  | CGCTTATCTC               | GCGTTTAACG | GCGTTTGCAC | GCATCTAGAG |
|        |        | TACGCTACGA  | CATACGCCGA               | ACGTAAGCC  |            |            |
|        |        |             |                          |            |            |            |
| 13nvp  | 233 bp | TACATAGATT  | GTTGTACATC               | TCTAGACCCG | CTTAGCGTGC | GCTACTGTCG |
|        |        | ATTCTGAGCG  | GTTCACAACA               | CGGGTGCCTG | GGTTCGGGCC | CTCAACTGCG |
|        |        | AGCGAGCCCC  | TGGTGATCCC               | TTGTTTGGCC | CTGCTCGTAC | TGCTTCGGCT |
|        |        | CCATCCAAGG  | GGTTGAGAAC               | GTGGCATGCG | CGAAAACGAG | CCATATTTAT |
|        |        | TTCAAAGCGA  | TCCTCATTCG               | CGTTCCTGAC | TAT        |            |
|        |        |             |                          |            |            |            |
| 16nvp  | 233 bp | GATGCGTATT  | GCATACAAGG               | CAAGATAAAC | GTCGCAGAGC | TACCATATCG |
|        |        | TGCACAGGCT  | GCGCAAAGTC               | GGGTGCCCGC | GACGACGTGT | CTGGTTTCTC |
|        |        | AGCTATACTG  | GGACTAGCCC               | GAGAGTACTA | GAAAACCCGT | TTGGAGCCTC |
|        |        | ACGACCAAGG  | ACAAGAGGTA               | AGTGCGTAGA | TTGCTGTCTA | AGCCAGTTTA |
|        |        | AGCGTACTTA  | GAAGGCCCTA               | ACCGACGGCG | GAG        |            |
| 10     | 0001   |             |                          |            |            |            |
| 18nvp  | 232 bp | TTACAATTTA  | CAGTGACTTG               | GACACTTACT | GCTACAGAAC | CACAGGCAGC |
|        |        | ATGCTTAGCC  | TGGCGATTGC               | TTGGTGCCAA | TACAACGCAC | CAGGCGCTGT |
|        |        | AATCGACGTA  | ACTCAACGAG               | CCTGCCACGC | TAAGCATACT | TAGAACGTGC |
|        |        | CTAACCAAGG  | GGTGGAGCCT               | ATCGGGCTGT | GTGATTAAAA | AATGAACTCT |
|        |        | CTCGCTCTGG  | AGTCTTCCCG               | TACCCTTCGC | TC         |            |
| 22nvn  | 231 hn | CAACCCCCCCC | CCARCCCCRC               | ПАСАСССААС | ПАПСАССАП  | TCCCCCACCC |
| 2211vp | 251 op | CCACACOUTCC | AMCCACMCCM               |            |            |            |
|        |        | ATTCCCCCCCC | TACTACIGCI<br>TACTACCTCC | CCAATCTCCC |            |            |
|        |        | CULCCOOCC   |                          | CGAAIGIGGC |            |            |
|        |        | GIICCAAGGG  |                          |            | TUCCAUTGAG | GAAAGTAGAC |
|        |        | TCGAACACGG  | IGCATCCCTA               | ACCACGGCTA | A          |            |
| 24nvp  | 228 bp | GACTTCGGAA  | CGTAAAATTT               | CTGCCCCTGG | CTTCTGCGGA | CCGTCATCCC |
| 1      | 1      | CCGTATGGAG  | AGCCCCGGCA               | CATGGTGCCA | ATAGACATGT | CTTTCTACAA |
|        |        | ATTCAAAACG  | GGACTACAGT               | TGAGCTAGGC | TGACGGGGAT | CTATGAAGCC |
|        |        | CCAAGGAGTG  | CAGGGGTGTA               | CAGCTCACCG | CGTACGTCAC | TTTAAGCGGG |
|        |        | TCTAGGCGTC  | ACTAAGGGGC               | CGGTTGTA   |            |            |
|        |        |             |                          |            |            |            |
| 25nvp  | 232 bp | GATCTATAGA  | GCTCTAGAAT               | ATTTATGGAG | CTGAAAACTG | CTCCCCACA  |
|        |        | CCCTATACTG  | CCCGCGTAAG               | AAGGTGCCGA | CTATGTCTGC | GGAAATTAAG |
|        |        | AGGTATTAAA  | CGTGCAGCTG               | GAATGCTCTA | GACCCCTTTA | GGAGCCGCTA |
|        |        | GAGGCCAAGG  | TTAGCATATT               | AGCTCGGTAG | TTtGGCCTCA | GTCAATTGGG |
|        |        | TTCACTCCGA  | ACTGGACATA               | CCGATTTGGA | AC         |            |

| 26nvp              | 229 bp | TGGGCAAACT<br>CTTTCATTAA | ATCAGTCACA<br>ACTGCCCGGT | AATCACTTGC<br>GGTGCCTCTA | TTCGCCCAGA<br>GTGTACGCCA | GCACGCCCCG<br>GACGGACGTA |
|--------------------|--------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|                    |        | GAGCCTATTC               | TGGAGCGTTT               | CCACATAATC               | CACGAGACAG               | AAGATACTCA               |
|                    |        |                          | AATCTAGTGC               | AAACGCAAGT               | GACGTAACAG               | TATAACCGCG               |
|                    |        | CGGTGGCTAA               | CGACACCAAA               | ACTCCGATG                |                          |                          |
| 28nvp              | 226 bp | GAAGAGAATC               | CCTTTCTCTC               | ССААСТАААТ               | GCTTAGTTGG               | CGTCGGTGCT               |
|                    |        | ACCCCCTCAG               | GAAGGGTCTT               | AGGTGCCTCT               | AGACCCCTGC               | AGACGGCCGC               |
|                    |        | TTTCACTGAG               | TTACACTGGA               | TTGACGTTGT               | CCCACCCGGC               | GTTACTATCC               |
|                    |        | AAGGGTCTGC               | CATTACGCAT               | TGTAGGATGT               | TTCAAGCTTT               | GACTGGGTAT               |
|                    |        | TAGGAGGAAT               | CTCACGGTCA               | ААСТАА                   |                          |                          |
| 29nvp              | 231 bp | TGGGAGGGAC               | CAGTCCGCGA               | TGGAAATTAT               | TAACATGAGC               | ACCACAATTT               |
| 1                  | 1      | TCCGTCCAAC               | ACAGGCACTC               | CTGGTGCCTG               | AATGAGGGGC               | TTAACTGACC               |
|                    |        | CTAGTTAGCT               | GTGTAGCGAA               | CTCTAGTGTG               | TCCTAGAGTG               | CCTCTCGTGC               |
|                    |        | GATTCCAAGG               | GGTTTTGGCC               | TGGGGGATAG               | GCCACATAGC               | GGTACTATAG               |
|                    |        | GAGTCTGAGC               | GGGCGAGTTT               | GCCTCTAAGA               | С                        |                          |
| 2nvp               | 232 hn | GAGTCAGCCA               | GCTAGAACGC               | ТСТАСАСАСТ               | СТТАСССТСА               | ССТАСССАТ                |
| 21179              | 202 op | TAGATAAGCC               | CCTACGGAAC               | GCGGTGCCGG               | CGTTGTAACG               | AGGTTGTGTT               |
|                    |        | TTACACGGGA               | АСАТТАТСТС               | GCGTAGCGGC               | AATGGCGTAA               | CCCACCTTAC               |
|                    |        | TGTTCCAAGG               | TCTCACCTCC               | GAGTGAATCA               | TCCTCCAGGG               | TGTGCTCCTC               |
|                    |        | CGGGGTACCC               | CGCGATGTCC               | GTGGGTCGGC               | GA                       |                          |
|                    |        |                          |                          |                          |                          |                          |
| 30nvp              | 229 bp | TGTGCGTTGT               | GTAGTCACGG               | CGTTTGTGTC               | TCGATGAAAT               | CGGAAACCCA               |
|                    |        | GAACTTAAGC               | TGTGCTCCAC               | ACGGTGCCCC               | AAAAACGTTA               | GTAGGCCGGT               |
|                    |        | CTACAGCGTG               | CTAAAGCACT               | CTAGAGCCGA               | TCGTGACCCT               | GCTATGCTCT               |
|                    |        | GCCAAGGGCA               | CCTGGTGTAC               | CCCTTGCACG               | CAGGTCTGCC               | TCCGTGTATA               |
|                    |        | CAGGACATTA               | CCGTGCGCTG               | TACTATGAT                |                          |                          |
| 34nvp              | 231 bp | rTCgACGGgw               | gGGCCGCCTg               | CATGCCGTTA               | CCTcATCTTg               | CtCCGCTCTA               |
|                    |        | ACCACTTCAT               | TATCGAGCAC               | AGGTGCCCAG               | ACGATTTAAT               | TTcCGTgGGA               |
|                    |        | CGGCATcCTG               | CGGAAgGACG               | TATTTCGTCG               | TAGCAATGGC               | TGTTAAAGGT               |
|                    |        | TCTCCAAGGA               | GCCTTCTAGA               | CCGGCTTAGA               | GTCATCAGAA               | ТсСААТТСТА               |
|                    |        | AGCGCACCGC               | raATACTACT               | GAGGCTAggg               | G                        |                          |
| 37nvp <sup>#</sup> | 229 bp | ACGAATGCAC               | qGGqcCCGGT               | CTAATGGAGG               | CGTAATGGAA               | GGCAGCTAqG               |
| 1                  | Ĩ      | AGAGaAATGC               | TGCATTCAGT               | GTCCTTGGca               | tTttAAGCtA               | TACTAGACGq               |
|                    |        | CCCGGCGCgG               | GACTGGAACA               | CTCGGATAGG               | CATCAGGAgT               | AAGCATTGCA               |
|                    |        | ATAGGCACCC               | AGATTATTGC               | CCAGATTGTG               | CTaACACccg               | gagGaGttAc               |
|                    |        | GacAGTgcaA               | AGcacATCgG               | ATCTAGCCA                | -                        |                          |
| 38nvp              | 230 bp | cCaGGAAGCs               | acaCCAaGAt               | TTCCTccctT               | ATtaGCTCTA               | αGTATGcTta               |
| P                  | p      | AAcaGCTtaG               | CacGTTGtTT               | GCGGTGCCCC               | TGTGCATGCT               | AGAGCctTTG               |
|                    |        | GTTGAATGTG               | CATCAGCCTA               | GTATTGCAGG               | AGCaccCCGa               | GCCAACTGTA               |
|                    |        | CACCCAAGGT               | ATTCGTGTGA               | ACTTCaGcAC               | tTTTGtGcTG               | TCtTGAGttC               |
|                    |        | gCGTTAgCgg               | tTTTTAGGgg               | tAAAtgACCA               |                          |                          |
| 40nyn <sup>#</sup> | 231 hn | <u>ርርርርን አ</u> ረርጣ       | GGTAGGGGTT               | ርሞሞሮ አ ፈር ሮ + መ          | ርሞልርሞአርምርር               | ሞሞል ል ል ርምርርር            |
| .0117P             | 231 OP | TTAGAGGCCCC              | AdcGCadcad               |                          | CaGGtccCCc               | CACTGAATAG               |
|                    |        | тасстатост               | ATTTTCCCC                | TtttacCCAC               | GGat TTacca              | GGCCATACAA               |
|                    |        | AA+GGCACCG               |                          |                          | CGCCGTaGA+               | cGaGa+CTro               |
|                    |        |                          | aTgcCaTga+               | TCctaAcCaT               | t                        | coucarcityy              |
|                    |        | CLYCYACULA               | argeenrynt               | recegneed                | -                        |                          |

| 41nvp <sup>#</sup>          | 230 bp | AGCTGGAAAG<br>gTGTGCATCA<br>GTACCGGAAA<br>gGGGCACCTA<br>gAACCgGGGA | TGTAATAGGG<br>TAGTCTGGCA<br>ACgGCTCAGA<br>tCTCGTTCGA<br>TAGCAGTAGG | CGGGCGCGGG<br>CCTTGGCAGA<br>AcGACGTAAC<br>ACGGGTGTCC<br>TgACgGCACT  | GCGGACACTA<br>ATGAGGAGAT<br>AGamgccCTA<br>ACGCgGTTTC         | TTCgAAggCT<br>ATTGCgCCCT<br>AGcgCACCTA<br>TGcgAATCCT |
|-----------------------------|--------|--------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|
| 52nvp                       | 232 bp | GGACCCGtTA<br>CGAtTTTTCA<br>ATTcCGCGGC<br>GAgGCCAAGG<br>CacCCCTAGA | TtgGAATTGA<br>ACTACACgGC<br>TACATGCGct<br>CAAGCACGGt<br>TgGGCAGCTT | GTCGTATGTC<br>ATGGTGCCCA<br>GTGTCTTCTA<br>cCCGGTAACG<br>GGAACGcCTA  | CGACgGCGCG<br>CCTCCATAGT<br>GACCCTCTAG<br>AACgGGGTTG<br>CT   | TTGAAGTGGC<br>CGTGATCTGA<br>GAGCACGTTA<br>CACtGGTACG |
| 54nvp                       | 230 bp | AGAACCTTCT<br>GtGCtTTAgg<br>GCCCGACGTT<br>TGCCCAAGGT<br>GAACACACTA | ACATACGCTT<br>gCGTATAAgG<br>GTCAAACGGG<br>TGCGTGCGTA<br>GTGCGTACCT | AGGGTGACGC<br>AAGGTGCCAG<br>CGGCGATCTC<br>CCaTGAAGTC<br>cCCGCTTACg  | ACTCCTCAtT<br>TCTCGTAGTG<br>TCTTGGCCGT<br>TTTTTATTGA         | TCTGAGCCTC<br>TTATAAGCGC<br>GGTGTTTATT<br>CTCACCCAAC |
| 5nvp                        | 231 bp | GGCTAACTAG<br>AACAGTGCTT<br>TGCGGATGCT<br>TTGCCCAAGG<br>TGGGGACTCA | GCATCATTAG<br>AGCCACACCG<br>TATGGCGAAT<br>CGTACTGAGG<br>GGAGTCTTTG | GTTGTGTGTGT<br>CTGGTGCCAG<br>TCCCTACTGG<br>GTATCGACAG<br>CGAAAGACTA | TTAGGCCTCT<br>TGCAGCACTT<br>AGATCCCTCA<br>CACCACGTAA<br>G    | CCCAGCGTCT<br>TACGATACAA<br>CTACTTGCAG<br>AATTTTCCAG |
| 602nvp_rev_rev <sup>#</sup> | 232 bp | GGCAAGGTCG<br>CCTGGAGACT<br>gCGTACGTgc<br>CCTCGGCACC<br>agGGATGAAC | CTGTTCAATA<br>AgGAAGTAAT<br>GTTTAAGCGG<br>gGGATTCTcC<br>TCGGTGTGAA | CATGCACAGG<br>cCCCTTGGCG<br>TGCTAGAGCT<br>AGGACGGcCG<br>GAATCATGCT  | GTGTATGTAT<br>GTTAAAATGC<br>gtCTAcGACC<br>CGTATAGGGT<br>TT   | CCGACaCGtG<br>gGGGGACAGC<br>AATTGAGCGG<br>cCATCACATA |
| 603nvp                      | 234 bp | CGagacATAC<br>AcgcGTAAAa<br>CCGTGTGAAG<br>gggcaaTCCA<br>TCctTATTAC | ACGaATatgG<br>TAATCGACAC<br>TCGTCACTCG<br>AGGCTAACCA<br>TTCaAGTcCC | CgTTTTCCTA<br>TCTCGGGTGC<br>GGCTTCtAAG<br>CCGTGCATCG<br>TGGGgTACCG  | GTACAAaTCA<br>CCAGTTCGCG<br>TACgcTTAGg<br>ATGTTGaAAG<br>TTtc | CCCCAGCGTG<br>CGCCCaCCTA<br>cCACggTAGA<br>AGGcCCTccG |
| 604rnvp                     | 233 bp | GTCGTCTGCA<br>GGCgGCACTC<br>AtcCTGTCTC<br>TCACCCCAAG<br>AGACATAGCA | CAAATACGGA<br>TAACTAGGCT<br>TTGACTTGŁC<br>GCGATCTTGT<br>kCCAATAGGC | ACCTTTGGty<br>TAAGGTGCCG<br>TCGGGCTAAA<br>TTGTAGTcCC<br>ATGATGAATA  | CGgTTTTGCT<br>TAAAGCCGAT<br>GTTGACTcGA<br>CCGTsTATCG<br>GTC  | CTAAGACACG<br>TCTGAGTATA<br>TGtCGTGACA<br>TGGGGCCGCG |
| 605nvp                      | 231 bp | TACTGGTTGG<br>TTCGGACgac<br>GGTCTAGATA<br>CGcCCAAGGG<br>ACCgTcACGA | TGTGACAGAT<br>GCGGGATATg<br>CGCTTAAACG<br>TATTCAAGcT<br>CCATATTAAT | GCTCTAGATG<br>GGGTGCCTAT<br>ACGTTACAAC<br>CGACGCTAAT<br>AgGACACgCC  | GCGATasmGA<br>cGCACATTGA<br>CCTAGcCCCG<br>CACCTATTGA<br>G    | CAGGTCAAGG<br>GTgcgaGACC<br>TCGTTTTAGC<br>GCCGGTATCC |
| 607nvp_rev_rev              | 227 bp | CTTTGGCGGA<br>ACACCcgGAG<br>cGTTAGCgTG<br>CgGGCACCGt<br>CTAAGGCgAG | GAATGCGTAG<br>CCTAACGaGC<br>gTTTAGAGGG<br>TCgGAcCCTg<br>GATGcCTATT | GTGAGTGttt<br>GCCTTGGtAt<br>gCAAAgGAAC<br>GTTAGTcCAG<br>AGaAAGG     | tgGAgACGgg<br>cCGGaacggg<br>ATCTttcccC<br>TGCTACTGCC         | aAgGCATaaA<br>tTCTAGTACC<br>CCCCGAGATA<br>GGTTCCTAGC |

| 609nvp                    | 230 bp | TAATCTTAGC  | CGGTGTGCAT  | TACAAGCACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ACAGTGACGG  | ATGATCTCTA  |
|---------------------------|--------|-------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|
| *                         | •      | TGCGGATCTT  | TCAATCATGC  | GGGTGCCGAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TAgcGTgCcG  | CaGTTGATGG  |
|                           |        | TTCAgCCGAC  | GAAGCAGGCg  | GAAcCCACTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CTAACGATGC  | CCACTACTAT  |
|                           |        | CCTCCAAGGG  | GCTCTATACC  | CCTTTAAAgt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GctGCGCTGG  | GCATTGGCTC  |
|                           |        | CgTTTTCCCC  | TGTCTTCCAC  | CGTGCAGTAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |             |
|                           |        | -           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |             |
| 611nvp <sup>#†</sup>      | 232 bp | GaACGCaAAT  | CTCAGATgGT  | gAGTAgGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CAGTTGAgGG  | GCTTGGTCTG  |
| -                         | -      | TGTTTAACGC  | GCTTCTTCAg  | GGCCTTGGAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CTCTCTCTTG  | AGCTTGCTGA  |
|                           |        | GCAAtcgTCG  | ACATTAGCtT  | TCTGCGTGAg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CGGCGTCATT  | AGTGAGAATG  |
|                           |        | CCAAGGCACC  | GGCATTGCGC  | gTGAgATGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CTAGGCaaCG  | cgCTAAGcgt  |
|                           |        | ATCTaGAACg  | CGCTACGAAA  | CATACGCAtG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ТТ          |             |
|                           |        |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |             |
| 613nvp                    | 232 bp | TAACTAGCAT  | GGACCCGATT  | GTACGCCGTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ACACTCGCGC  | TCGGTGTACC  |
|                           |        | TTAGTCCTAG  | TATAGGCGTA  | TTGGTGCCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TTGCGCcgAG  | CgTTGtaGCC  |
|                           |        | GtGGagtGtc  | GttGtCGtAT  | GGGGGCTCTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GATGTGCTTA  | AACGGGTGGG  |
|                           |        | TsGcCCAAGG  | CctgCattat  | TGCGGAGTAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GGCCACGcTT  | CCGTGCCGCT  |
|                           |        | CCcTAGTCcG  | ACCcTtcACA  | CTCTCACTCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CG          |             |
|                           |        |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |             |
| 615fnvp                   | 229 bp | ACACTTGTAC  | AACAGGACGC  | CGTTATCTTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CCCTCCAGTC  | GGGACCGGCT  |
|                           |        | CTCCAACCaT  | GCCAAGCGAG  | CGGTGCCAGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AAGGATTCGG  | TCTCTACGTG  |
|                           |        | CATCTAAGAC  | CCCTTAGAGT  | GCTCTAcTCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CTCTcGCTAG  | CTCCGCGAGA  |
|                           |        | ACCAAGGCCG  | GATTaATTGG  | CACGGGAGGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TTCTACaaCC  | GCACTACGTC  |
|                           |        | TGCTGACGTT  | CGAgCCCCCT  | CAAACATGt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |             |
|                           |        |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |             |
| 618nvp_rev_rev            | 232 bp | CgGACTAAAC  | GAACGCGtTc  | GtTTACAtTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TGCgaAgGGG  | Attggcgttc  |
|                           |        | TACGACAAtt  | tCtgGGAACA  | GCCCTTGGTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GCTCTAGGgA  | GCTCTAGATG  |
|                           |        | AGCTTAGCgG  | TCTGTAGACg  | CAATTCTGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CATTTCCGCT  | CGTCTGGatC  |
|                           |        | tGTAGGCACC  | tGCTCGGTCA  | gGTACaACtT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TgaAAAGGCG  | CCAGTTATGA  |
|                           |        | GCcgGTATCG  | TgGGCTTTgG  | GTAgcCCAcc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CC          |             |
| <b>(2</b> 0) <sup>†</sup> | 0011   |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |             |
| 620nvp_rev_rev*           | 231 bp | GggACCcAGC  | GTGCCcAGCG  | gTCTCTAGaT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AcgcttaAAG  | TACTCTACGC  |
|                           |        | ACTAAAaGAG  | GcAGCTTGgc  | CGGGTGCCGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GCAGTGTAAA  | GTGgATACgc  |
|                           |        | tGGGccTGAC  | GTATCCGAGG  | ACgCTCGCgT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GTCACTCTTT  | GCcTTCGCCC  |
|                           |        | CCCCCAAGGA  | GAAGCCTGAT  | ACAAacCCAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TCTGCCCGCG  | AGTCAGTCCG  |
|                           |        | GTCAGaGTGA  | TACGGCGACC  | GgtAGATCTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | С           |             |
| (01                       | 222.1  |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |             |
| 621mvp                    | 232 bp | TACAGGGCGG  | TTCCCTAGCT  | GI'I'GCA'I'AAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GGCCGGTGGT  | TCGTCGCCCC  |
|                           |        | CCCTTAAAGA  | TAATCCTGCG  | TAGGTGCCCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TGGAGCCGTT  | CTATTGACCC  |
|                           |        | TTTACGATCG  | TTTAAAGGGG  | TCTAGAGCTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GCTAGCTTGT  | TCAGTCTAGC  |
|                           |        | CCCACCAAGG  | ACTgGTgGCG  | TATCAGTTCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CGgcCTCCcg  | GGTgGTCgGG  |
|                           |        | TACtTTAgGA  | ATATCCcgtT  | TACATCCGAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | АТ          |             |
| 624hnyn <sup>#</sup>      | 231 hn |             | 00000-00-0  | CACHACCASA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |             |
| 024011vp                  | 231 Up | ACTCTAGCAA  |             | GACTEGGGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CGATTAGGTT  | GCAATCCTAG  |
|                           |        | CAMPROMACT  | AGALTGCACT  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CARAGECCUG  |             |
|                           |        | GATITCIAGT  | CECCAGICT   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GAAGCUCUAT  |             |
|                           |        | GCCAGGCACC  | GTGCAAAACG  | TCCAGAGTGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gerereerar  | CGTTTTAAGCG |
|                           |        | GTCCTAGAGC  | CTTCTAAGCT  | TGCAACCACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | А           |             |
| 626nvn                    | 230 hn | XXXXXCCm/CC | ᠿ᠔᠔ᡎᡎᡎᢈᢙᡕᡒᢈ | <u> </u> Δ.Ψτωτ <u></u> <u></u> <u></u> <u></u> α.Ψτωτ <u></u> <u></u> <u></u> <u></u> α.Ψτωτ <u></u> <u></u> <u></u> <u></u> α.Ψτωτ <u></u> <u></u> α.Ψτωτ <u></u> <u></u> α.Ψτωτ <u></u> | ͲϹϹϪϹϹϪ·ͷϹϹ | ርሞሞርሞራርሮሞር  |
| 02011 P                   | 200 op |             | AGAGTCGACC  | GGTGCCaGGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | СССТТСАСТС  |
|                           |        | TGGAATG     | ТСТАССТАСС  | acmaaccacm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |             |
|                           |        | 10011110000 | TOTHOUTHOC  | acturiocuci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TT TUONOICC | TOTOCOURI   |

CTCCAAGGAT AGtGCCTATA AATCGTCCAC CTGTgGCATT ATcCGGTGCC

CTTTCgGgAC gTGCTTTTTA GTGTCgGGTG

| 232 bp | TGCGGTTGGG                                                                                                 | CTAATCGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GCTTGGCGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TAAACCTACC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GTTCCGACAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _      | CTGTTCAAAG                                                                                                 | TTTCTGACCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GTGGTGCCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GTCTCTGAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TGCTGTAGAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | AGGCCTAGAC                                                                                                 | gTGCTTAGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TGCAGTAGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CCGATTCTAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ACCGTTTTGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | GACGCCAAGG                                                                                                 | GTTAATGCGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ATAGgccgTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GCATGGCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TTGCTCAAGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | CGGCTGCCAA                                                                                                 | CCAGGGCCAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AGTCTCCGTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 231 bp | TCgCAtCcac                                                                                                 | CCTGTgAAGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gGAGGGTCGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CGTTAAtTTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CCATaccCCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | CATAACACGT                                                                                                 | CACGGCTAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AGGTGCCAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CTCCTCGGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AGAATATCAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | GatCGcgtTA                                                                                                 | cCGCACgGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GGAGCTCTAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AGTGGCTTAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ACGACCGCAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | acGCCAAGGG                                                                                                 | GAACAGGCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cAGGAGGTgG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CCGgGACtCt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tcctgCgATC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | GAACGCtCtC                                                                                                 | ttGTAGAATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GGATCCTCgG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 232 bp | TGGACACTTT                                                                                                 | TATGTGTTTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CTCGACCTTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CTCAAACCtC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GCCTTGGGCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | GACTCGAATT                                                                                                 | TTCCAGGCTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CAGGTGCCGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TGGAGCCTCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AGGTGTGCTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | AGAGGACGGT                                                                                                 | AGAGCCCGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TCTAGTGCTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TCCCGGGTAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TATGTCGCCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | TCCCCCAAGG                                                                                                 | GACGGCGCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GTTCCACACG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AGCAACGCAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ATCTGGGTCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | TGATCACTCG                                                                                                 | AAAGCCGTCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CTTCCCATAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 230 bp | GAGAGAGCTG                                                                                                 | ATAGGCacGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ggacTCACgt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GGGTCCCTCt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TACGGTGGTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | GCAGGAGGGC                                                                                                 | TAGGATGATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GTAGGTGCCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CTAAGTGTGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TTAAAACgaT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | cCACGGACcG                                                                                                 | CTcCTGTCgG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TTTCTACACG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tgtcggactt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AATCAAAGCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | CACTACCAAG                                                                                                 | GGCgGCgACG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TAGccgaTAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CCGCaAAACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ACCATgaGTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | GgCAgCctCc                                                                                                 | GcGcGaCtcc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gGGATCTgGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 233 bp | GCACCTGCGT                                                                                                 | CCCAGCCTTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TCCAGATGAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TTTCCACAGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GTCCCTCAGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _      | TTCACGCTTA                                                                                                 | AAATGCTGCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TTCGGTGCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CTGCGTGTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AGGCACTACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | AGAGCATTCC                                                                                                 | ACGGCTTTCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TTTACACTTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ATGGTCTACG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CTCTTACGTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | CCATGCCAAG                                                                                                 | GACTGAGGCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TAGCACGATC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TAGCcTCtCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CGTGCTGCCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | GGAAAATACG                                                                                                 | CGTCCATCGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TGCTCTTTCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ТСТ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 228 bp | ATGCGGATAC                                                                                                 | AGCAACGGAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GGATCGGGAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AGCCAATCGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TGCCTCCCGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _      | GGGAGTAAAT                                                                                                 | CGACAGGCAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ACCCTTGGAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CCCGCGTCTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CCCGGTGCTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | TGAAACggcC                                                                                                 | CCAAATGCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TGTAAgGCAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CCTAAGCATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CTCCTGCGAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | aCTAGGCACC                                                                                                 | TATGGAAGAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TGGAGTGGGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GTCGGACAGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TCATTTAGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | CAacGGGAGA                                                                                                 | CCCGgcCGCt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WAGCCCTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | <ul> <li>232 bp</li> <li>231 bp</li> <li>232 bp</li> <li>230 bp</li> <li>233 bp</li> <li>228 bp</li> </ul> | <ul> <li>232 bp</li> <li>TGCGGTTGGG<br/>CTGTTCAAAG<br/>AGGCCTAGAC<br/>GACGCCAAGG<br/>CGGCTGCCAA</li> <li>231 bp</li> <li>TCgCAtCcac<br/>CATAACACGT<br/>GatCGcgtTA<br/>acGCCAAGG<br/>GAACGCtCtC</li> <li>232 bp</li> <li>TGGACACTTT<br/>GACTCGAATT<br/>AGAGGACGGT<br/>TCCCCCAAGG<br/>TGATCACTCG</li> <li>230 bp</li> <li>GAGAGAGGCC<br/>CCACGGACGG<br/>CACTACCAAG<br/>GGCAGCAGCCC</li> <li>233 bp</li> <li>GCACCTGCGT<br/>TTCACGCTTA<br/>AGAGCATTCC<br/>CCATGCCAAG<br/>GGAAAATACG</li> <li>228 bp</li> <li>ATGCGGATAC<br/>GGGAGTAAAT<br/>TGAAACGGCACC<br/>CACGGCACC</li> </ul> | <ul> <li>232 bp</li> <li>TGCGGTTGGG CTAATCGGGG CTGTTCAAAG TTTCTGACCA AGGCCTAGAC GTGCTTAGCG GACGCCAAG GTTAATGCGC CGGCTGCCAA CCAGGGCCAAG CGGCGCCAA CCAGGGCTAAC GATCGCACGGG GAACAGGCTG GAACGCtCtC ttGTAGAATT</li> <li>232 bp</li> <li>TGGACACTTT TATGTGTTTA GACTCGAAG GACGGCGCAAG GAACAGGCTG AGAGGACGGT AGAGCCCGAA TGATCACTCG AAAGCCGCAA TGATCACTCG AAAGCCGTCG</li> <li>230 bp</li> <li>GAGAGAGCTG ATAGGCACGC GCAGGAGGC TAGGATGATT CCACGGACG TAGGATGATT</li> <li>232 bp</li> <li>GAGAGAGCTG ATAGGCACGC GCAGGAGGCC TAGGATGATT CCACGGACGG CTGCTGTCGG</li> <li>230 bp</li> <li>GAGAGAGCTG ATAGGCACGC GCAGGAGGC TAGGATGATT CCACGGACG CTCCTGTCGG CACGAGAGGC TAGGATGATT CCACGGACGC GCAGGAGGC CACGACGCG GGCAGCGC GGCAGCCG CACTACCAAG GGCGGCGACG</li> <li>233 bp</li> <li>GCACCTGCGT CCCAGCCTTC TTCACGCTTA AAATGCTGCT AGAGCATTCC ACGGCTTCT CCATGCCAAG GACTGAGGCC GGAAAATACG CGTCCATCGT</li> <li>228 bp</li> <li>ATGCGGATAC AGCAACGGAT GGGAGTAAT CGACAGGCAT CGACAGGCAC TATGAAGGCC CAATGAGGCC GACAAGGAT CGACAGGAT CGACAGGAT CGACAGGATAC CAACGGAAA CGACGGAGA CCCGGCCGct</li> </ul> | <ul> <li>232 bp</li> <li>TGCGGTTGGG CTAATCGGGG GCTTGGCGCG CTGTTCAAAG TTTCTGACCA GTGGTGCCTG AGGCCTAGA GTGCTTAGCG TGCAGTAGAA GACGCCAAGG GTTAATGCGC ATAGgecgTT CGGCTGCCAA CCAGGGCCAA CCAGGGCCAA AGGTGCCAAT GatCGcgtTA CCGCACGGG GGAGCTCTAG acGCCAAGG GAACAGGCTG CAGGAGGTGG GAACGCtCtC ttGTAGAATT GGATCCTCGG</li> <li>232 bp</li> <li>TGGACACTTT TATGTGTTTA CTCGACCTTC GACTCGAATT TTCCAGGCTG CAGGAGGTGG AGAGGCCGAA GTTCCACACG TGATCACTCG AAGGCGCCAA GTCCCACACG TGATCACTCG AAAGCCGTCG CTTCCCATAG</li> <li>230 bp</li> <li>GAGAGAGGCTG ATAGGCAGCC ggacTCACGt GCAGGAGGGC TAGGATGGT GTAGGTGCCT CCCCCAAGG GACGCGCAA GTTCCACACG TGATCACTCG AAAGCCGTCG CTTCCCATAG</li> <li>230 bp</li> <li>GAGAGAGGCTG ATAGGCAGCC ggacTCACGt GCAGGAGGGC TAGGATGATT GTAGGTGCCT CCACGGACGC CTCCTGTCGG TTTCTACACG CACTACCAAG GGCGGCGACG TAGGATGATT GTAGGTGCCT CCACGGACCC GCGCGACCC GGGATCTGGA</li> <li>233 bp</li> <li>GCACCTGCGT CCCAGCCTTC TCCAGATGAG TTCACGCCAGGACGCC AGGCACTCC ACGGCTTCT TTTACACTTG CAAGGCATTCC ACGGCTTCT TTTACACTTG GAAGCACTCC AGGCATTCC AGGACTACG TGCACGAAC GGAAATACG CGTCCATCGT TGCTCTTCC</li> <li>228 bp</li> <li>ATGCGGATAC AGCAACGGAT GGATCGGAC TGAAAGGCC TAGGAGGAC TAGCAGGAT ACCCTTGGAG TGAAACGCC TAGGAAGAT TGAAGGCAT ACCCTTGGAG TGAAACGGCC TATGGAAGAT TGAAGGGCA ACCCTTGGAG TGAAACGGCC TATGGAAGAT TGAAGGGAC TAGGAGGGGT CAAGGGAA CCCGGCCC TGTAAGGCAT ACCACTGGAG TGAAACGGCC TATGGAAGAT TGGAGTGGGT CAACGGGAA CCCGGCCCC TGTAAGGCAT ACTAGGCACC TATGGAAGAT TGGAGTGGGT CAACGGGAA CCCGGCCCC TGTAAGGCAT ACTAGGCACC TATGGAAGAT TGGAGTGGGT CAACGGGAA CCCGGCCCC TATGGAAGAT TGGAGTGGGT CAACGGGAA CCCGGCCCC TGTAAGGCAT ACTAGGCACC TATGGAAGAT TGGAGTGGGT CAACGGGAA CCCGGCCCCACCC TATGGAGTGGGT CAACGGGAA CCCGGCCCCACGCCC TGTAAGGCAT ACTAGGCACC TATGGAAGAAT TGGAGTGGGT CAACGGGAA CCCGGCCCCACCCACCCCCACCCCA</li></ul> | <ul> <li>232 bp</li> <li>TGCGGTTGGG CTAATCGGGG GCTTGGCGCG TAAACCTACC<br/>CTGTTCAAAG TTTCTGACCA GTGGTGCCTG GTCTCTGAAC<br/>AGGCCTAGAC gTGCTTAGCG TGCAGTAGAA CCGATTCTAA<br/>GACGCCAAG GTTAATGCGC ATAGGCGTT GCATGGCCCC<br/>CGGCTGCCAA CCAGGGCAG AGTCTCCGTT TG</li> <li>231 bp</li> <li>TCGCAtCcac CCTGTGAAGT GGAGGGTCGA CGTTAATTTA<br/>CATAACACGT CACGCCTAAC AGGTGCCAA CGTTAATTTA<br/>acGCCAAGG GAACAGGCTG CAGGAGGTGG CCGGGACtCt<br/>GACCGCACGG GAACAGGCTG CAGGAGGTGG CCGGGACtCt<br/>GACCGCAAGG GAACAGCTG CAGGAGGTGG CCGGGACtCt<br/>GACGCCACG AGGACGCGG TGGAGCCTCT<br/>AGAGGACGGT AGAGCCCGAA TCTAGTGCTC TCCCGGGTAT<br/>TCCCCCCAAG GACCGCGCA GTTCCACACG AGCAACGCAG<br/>TGATCACTCG AAAGCCGTCG CTTCCCATAG AC</li> <li>230 bp</li> <li>GAGAGAGCTG ATAGCCGCG GGGCCCCT CTCAGGTGCC<br/>CCACGGACGC TAGGATGATT GTAGGTCCC CTAAGTGC<br/>CCACGGACGC CTCCTGTCGG TTTCCACACG AGCAACGCAG<br/>GGCAGCGCC CTCCTGTCGG TTTCCACACG AGCAACGCAG<br/>GCACGGACGC CTCCTGTCGG TTTCCACACG GGTCCCTCt<br/>GCAGGAGGGC TAGGATGATT GTAGGTGCC CTAAGTGTGC<br/>CCACGGACCG CTCCTGTCGG TTTCCACACG TGCGACTT<br/>CACTACCAAG GGCGGCACG TAGCGCAT TTCCACAGG TTCCACAGG<br/>GCAGCTCC ACGGCCTCC TCCAGGTGAC TTCCACAGGT<br/>GCAGGACGC CCCAGCCTC TCCAGATGAG TTTCCACAGT<br/>TTCACGCTTA AAATGCTGCT TTCGGTGCCC CTGCGTGTT<br/>AGAGCATTCC ACGGCTTCT TTTACACTG ATGGTCTACG<br/>CCATGCCAAG GACTGAGGCC TAGCACGATC TAGCCTCCC<br/>GGAAAATACG CGTCCATCGT TGCTCTTCC TCT</li> <li>228 bp</li> <li>ATGCGGATAC AGCACGGAT GGATCGGGAC AGCCAATCGG<br/>GGGAGTAAAT CGACAGGCAT ACCCTTGGAG CCCGCGCTCA<br/>TGAAACgGCC CCAAATCGG TGCAGGCAT CTAGCACTC<br/>CCATGCCAAG ACCCAGGCAT TGCACGGAC AGCCAATCGG<br/>GGGAGTAAAT CGACAGGCAT ACCCTTGGAG CCCGCGCTA<br/>TGAAACgGCC CCAAATGCC TGTAAGCATC AGCACAGT<br/>ACTAGCACC TATGGAAGAAT TGGACTGGG CCCGCGCTA</li> </ul> |

\* Single and double underlined sequences are restriction fragment sequences used to ligate segments extracted in selection experiments.
# Reverse complement of restriction fragments.
\* Restriction fragment sequences overlap with reverse complements.
\* Chain contains second restriction fragment.
\* Sequence of reverse complement is identical to original sequence.

#### (iv) High-resolution positioning sequences<sup>†</sup>

#### Crystallographic DNA sequence

Davey, C.A., Sargent, D.F., Luger, K., Mäder, A.W. & Richmond, T.J. (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. *J. Mol. Biol.* 319, 1087-1113.

| pd0285 | 146 bp | ATCAATATCC | ACCTGCAGAT | тстассаааа | GTGTATTTGG | AAACTGCTCC |
|--------|--------|------------|------------|------------|------------|------------|
|        |        | ATCAAAAGGC | ATGTTCAGCT | GAATTCAGCT | GAACATGCCT | TTTGATGGAG |
|        |        | CAGTTTCCAA | ATACACTTTT | GGTAGAATCT | GCAGGTGGAT | ATTGAT     |
| pd0286 | 146 bp | АТСТССАААТ | ATCCCTTGCG | GATCGTAGAA | AAAGTGTGTC | AAACTGCGCT |
| I      | F      | ATCAAAGGGA | AACTTCAACT | GAATTCAGTT | GAAGTTTCCC | TTTGATAGCG |
|        |        | CAGTTTGACA | CACTTTTTCT | ACGATCCGCA | AGGGATATTT | GGAGAT     |
| pd0287 | 147 bp | ATCAATATCC | ACCTGCAGAT | АСТАССАААА | GTGTATTTGG | AAACTGCTCC |
| 1      | I      | ATCAAAAGGC | ATGTTCAGCT | GGAATCCAGC | TGAACATGCC | TTTTGATGGA |
|        |        | GCAGTTTCCA | AATACACTTT | TGGTAGTATC | TGCAGGTGGA | TATTGAT    |
|        |        |            |            |            |            |            |

Bao, Y., White, C.L. & Luger, K. (2006) Nucleosome core particles containing a poly(dA·dT) sequence element exhibit a locally distorted DNA structure. J. Mol. Biol. 361, 617-624.

pd0755 147 bp атсаататсс асстдеасат тетассаала дтдтеалала алалалала атсатдатал детаатттдд стдаетсаде тдаасатдее ттттдатдда деадтттеса алтаеасттт тддтадтате тдеаддтдда таттдат

#### TG-pentamer

Shrader, T. E. & Crothers, D. M. (1989) Artificial nucleosome positioning sequences. *Proc. Natl. Acad. Sci., USA* 86, 7418-7422.

TG-pentamer 190 bp tcggtgttag agcctgtaac tcggtgttag agcctgtaac tcggtgttag agcctgtaac tcggtgttag gcctgaact cggtgttag gcctgaactc ggtgttaga gcctgaactc ggtgttaga gcctgaactc tgaactcg tgtagagcc tgaactcg tgtagagcc tgaactcg tgtagagcct gaactcggtgttag tagagcctg

#### pGUB

An, W., Leuba, S.H., van Holde, K. & Zlatanova, J. (1998) Linker histone protects linker DNA on only one side of the core particle and in a sequence-dependent manner. *Proc. Natl. Acad. Sci., USA* 95, 3396-3401.
Kassabov, S.R., N.M. Henry, M. Zofall, T. Tsukiyama & Bartholomew, B. (2002) High-resolution mapping of changes in histone-DNA contacts of nucleosomes remodeled by ISW2. *Mol. Cell. Biol.* 22, 7524-7534.

pGUB 183 bp gatcctctag acggaggaca gtcctccggt taccttcgaa ccacgtggcc gtctagatgc tgactcattg tcgacacgcg tagatctgct agcatcgatc catggactag tctcgagtt aaagatatcc agctgcccgg gaggccttcg cgaaatattg gtacccatg gaatcgagg atc

### Table S3. Properties of DNA base-pair steps used in knowledge-based potentials

| Step    | Olson <i>et al.</i> <sup>*</sup> | A+B+AB       | B+AB | В    | B+AB+TA | B+TA |
|---------|----------------------------------|--------------|------|------|---------|------|
|         |                                  |              |      |      |         |      |
| CG      | 88                               | 160          | 160  | 118  | 160     | 118  |
| CA      | 110                              | 177          | 166  | 143  | 166     | 143  |
| TA      | 134                              | 236          | 232  | 212  | 238     | 218  |
|         |                                  |              |      |      |         |      |
| AG      | 106                              | 168          | 157  | 133  | 157     | 133  |
| GG      | 97                               | 146          | 139  | 95   | 139     | 95   |
| AA      | 129                              | 169          | 169  | 166  | 181     | 178  |
| GA      | 117                              | 175          | 173  | 146  | 173     | 146  |
|         |                                  |              |      |      |         |      |
| AT      | 140                              | 236          | 230  | 202  | 234     | 202  |
| AC      | 137                              | 189          | 188  | 168  | 188     | 168  |
| GC      | 86                               | 182          | 164  | 140  | 164     | 140  |
| 30      | 00                               | - <b>- -</b> | 101  | 110  | 201     | 110  |
| Generic | 1840                             | 2862         | 2770 | 2374 | 2798    | 2402 |

(i) Number of base-pair steps included in derived 'energy' functions<sup> $\dagger$ </sup>

<sup>†</sup>Counts exclude terminal dimer units and steps with single-stranded nicks and mismatches within the selected sets of high-resolution structures.

(ii) Average values and dispersion of Tilt,  $\langle \theta_1 \rangle \pm (\sigma_{\theta_1})$ , in protein-bound DNA dimers

| Step    | Olson <i>et al.</i> * | A+B+AB               | B+AB                 | В                    | B+AB+TA              | B+TA                 |
|---------|-----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|         |                       |                      |                      |                      |                      |                      |
| CG      | $0.0_{(4.2)}$         | $0.0_{(3.9)}$        | $0.0_{(3.9)}$        | $0.0_{(3.2)}$        | $0.0_{(3.9)}$        | $0.0_{(3.2)}$        |
| CA      | $0.5_{(3.7)}$         | $0.1_{(3.1)}$        | $0.2_{(3.2)}$        | $-0.3_{(3.2)}$       | $0.2_{(3.2)}$        | $-0.3_{(3.2)}$       |
| TA      | 0.0(2.7)              | 0.0(2.7)             | 0.0(2.7)             | 0.0(2.8)             | 0.0(2.7)             | 0.0(2.8)             |
| AG      | -1.7(3.3)             | -1.1(25)             | -1.0(2.5)            | -1.0(2.5)            | -1.0(2.5)            | -1.0(2.5)            |
| GG      | $-0.1_{(3,7)}$        | $0.7_{(3.6)}$        | $0.6_{(3.5)}$        | 0.4(3.6)             | $0.6_{(3.5)}$        | $0.4_{(3.6)}$        |
| AA      | $-1.4_{(3.3)}$        | $-1.1_{(2.5)}$       | $-1.1_{(2.5)}$       | $-1.1_{(2.5)}$       | $-0.9_{(2.6)}$       | $-0.9_{(2.6)}$       |
| GA      | $-1.5_{(3.8)}$        | $-1.5_{(2.8)}$       | $-1.6_{(2.8)}$       | $-1.4_{(2.8)}$       | $-1.6_{(2.8)}$       | $-1.4_{(2.8)}$       |
| АТ      | 0.0(2.5)              | 0.0(2.4)             | 0.0(2.5)             | 0.0(23)              | 0.0(2.4)             | 0.0(2.3)             |
| AC      | $-0.1_{(3,1)}$        | $0.6_{(2.9)}$        | $0.6_{(2.9)}$        | $0.7_{(2.9)}$        | $0.6_{(2.9)}$        | $0.7_{(2.9)}$        |
| GC      | $0.0_{(3.9)}$         | $0.0_{(3.6)}$        | 0.0(3.8)             | $0.0_{(3.9)}$        | $0.0_{(3.8)}$        | $0.0_{(3.9)}$        |
| Generic | 0.0(3.6)              | 0.0 <sub>(3.1)</sub> |

| Step    | Olson <i>et al.</i> <sup>*</sup> | A+B+AB        | B+AB          | В             | B+AB+TA       | B+TA          |
|---------|----------------------------------|---------------|---------------|---------------|---------------|---------------|
| `       |                                  |               |               |               |               |               |
| CG      | $5.4_{(5.2)}$                    | $5.5_{(5.7)}$ | $5.5_{(5.7)}$ | $6.0_{(5.8)}$ | $5.5_{(5.7)}$ | $6.0_{(5.8)}$ |
| CA      | $4.7_{(5.1)}$                    | $5.1_{(5.0)}$ | $5.2_{(4.9)}$ | $4.9_{(4.9)}$ | $5.2_{(4.9)}$ | $4.9_{(4.9)}$ |
| TA      | 3.3(6.6)                         | 2.5(5.8)      | 2.4(5.8)      | 2.6(5.7)      | 2.7(6.1)      | 3.0(6.0)      |
| AG      | $4.5_{(3.4)}$                    | $4.1_{(3.7)}$ | $4.2_{(3.5)}$ | $4.2_{(3.4)}$ | $4.2_{(3.5)}$ | $4.2_{(3.4)}$ |
| GG      | $3.6_{(4.5)}$                    | $5.0_{(4.6)}$ | $4.8_{(4.6)}$ | $5.0_{(4.7)}$ | $4.8_{(4.6)}$ | $5.0_{(4.7)}$ |
| AA      | $0.7_{(5.4)}$                    | $0.7_{(4.5)}$ | $0.7_{(4.5)}$ | 0.7(4.5)      | 1.7(5.7)      | $1.7_{(5.7)}$ |
| GA      | 1.9(5.3)                         | 1.9(5.4)      | 1.8(5.4)      | $2.6_{(3.9)}$ | 1.8(5.4)      | 2.6(3.9)      |
| AT      | $1.1_{(49)}$                     | $1.0_{(3,7)}$ | $1.0_{(3.6)}$ | $0.9_{(37)}$  | $1.0_{(3.6)}$ | $0.9_{(37)}$  |
| AC      | $0.7_{(3.9)}$                    | $1.6_{(3,3)}$ | $1.5_{(3,3)}$ | $1.5_{(3,4)}$ | $1.5_{(3.3)}$ | $1.5_{(3,4)}$ |
| GC      | 0.3(4.6)                         | $1.2_{(4.6)}$ | $0.4_{(4.0)}$ | 0.7(3.7)      | 0.4(4.0)      | 0.7(3.7)      |
| Generic | 2.7(5.2)                         | $2.9_{(4.9)}$ | $2.9_{(4.9)}$ | 3.0(4.7)      | 3.0(5.0)      | 3.1(4.8)      |

(iii) Average values and dispersion of Roll,  $\langle \theta_2 \rangle \pm (\sigma_{\theta_2})$ , in protein-bound DNA dimers

(iv) Average values and dispersion of Twist,  $\langle \theta_3 \rangle \pm (\sigma_{\theta_3})$ , in protein-bound DNA dimers

| Step    | Olson <i>et al.</i> * | A+B+AB                | B+AB                  | В                     | B+AB+TA               | B+TA                  |
|---------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|         |                       |                       |                       |                       |                       |                       |
| CG      | $36.1_{(5.5)}$        | $34.4_{(3.7)}$        | $34.4_{(3.7)}$        | $33.9_{(3.7)}$        | $34.4_{(3.7)}$        | $33.9_{(3.7)}$        |
| CA      | $37.3_{(6.5)}$        | 35.0(4.9)             | $35.5_{(4.6)}$        | 35.8(4.6)             | $35.5_{(4.6)}$        | 35.8(4.6)             |
| TA      | 37.8(5.5)             | 37.4(7.3)             | 37.5(7.3)             | 37.6(7.5)             | 37.1(7.7)             | 37.1(7.9)             |
|         |                       |                       |                       |                       |                       |                       |
| AG      | $31.9_{(4.5)}$        | $32.5_{(4.6)}$        | $32.6_{(4.6)}$        | $32.3_{(4.5)}$        | $32.6_{(4.6)}$        | $32.3_{(4.5)}$        |
| GG      | $32.9_{(5.2)}$        | $33.3_{(4.5)}$        | $33.4_{(4.5)}$        | $32.7_{(3.9)}$        | $33.4_{(4.5)}$        | $32.7_{(3.9)}$        |
| AA      | $35.1_{(3.9)}$        | $35.1_{(3.9)}$        | $35.1_{(3.9)}$        | $35.1_{(3.9)}$        | $34.3_{(4.8)}$        | $34.3_{(4.8)}$        |
| GA      | 36.3 <sub>(4.4)</sub> | 35.5 <sub>(4.2)</sub> | 35.7 <sub>(4.1)</sub> | 35.5 <sub>(4.2)</sub> | 35.7 <sub>(4.1)</sub> | 35.5 <sub>(4.2)</sub> |
|         |                       |                       |                       |                       |                       |                       |
| AT      | $29.3_{(4.5)}$        | $29.8_{(4.0)}$        | $29.8_{(4.0)}$        | $29.8_{(4.2)}$        | $29.5_{(4.4)}$        | $29.8_{(4.2)}$        |
| AC      | $31.5_{(4.2)}$        | $31.7_{(3.7)}$        | $31.7_{(3.7)}$        | $31.5_{(3.6)}$        | $31.7_{(3.7)}$        | $31.5_{(3.6)}$        |
| GC      | 33.6(4.7)             | 33.7(5.0)             | 34.3(4.6)             | 33.5 <sub>(4.4)</sub> | 34.3(4.6)             | 33.5 <sub>(4.4)</sub> |
| Generic | 34.2(5.5)             | 33.8(4.9)             | 34.0(4.9)             | 33.8(4.8)             | 33.8(5.0)             | 33.6(4.9)             |

| Step    | Olson <i>et al.</i> <sup>*</sup> | A+B+AB           | B+AB             | В                | B+AB+TA          | B+TA             |
|---------|----------------------------------|------------------|------------------|------------------|------------------|------------------|
|         |                                  |                  |                  |                  |                  |                  |
| CG      | $0.00_{(0.87)}$                  | $0.00_{(0.79)}$  | $0.00_{(0.79)}$  | $0.00_{(0.75)}$  | $0.00_{(0.79)}$  | $0.00_{(0.75)}$  |
| CA      | $0.09_{(0.55)}$                  | $-0.05_{(0.67)}$ | $-0.08_{(0.67)}$ | $-0.15_{(0.67)}$ | $-0.08_{(0.67)}$ | $-0.15_{(0.67)}$ |
| TA      | 0.00(0.52)                       | 0.00(0.58)       | 0.00(0.58)       | 0.00(0.55)       | 0.00(0.58)       | 0.00(0.54)       |
|         |                                  |                  |                  |                  |                  |                  |
| AG      | $0.09_{(0.69)}$                  | $0.19_{(0.64)}$  | $0.20_{(0.65)}$  | $0.20_{(0.65)}$  | $0.20_{(0.65)}$  | $0.20_{(0.65)}$  |
| GG      | $0.05_{(0.76)}$                  | $0.02_{(0.67)}$  | $0.01_{(0.68)}$  | $0.02_{(0.73)}$  | $0.01_{(0.68)}$  | $0.02_{(0.73)}$  |
| AA      | $-0.03_{(0.57)}$                 | $0.08_{(0.35)}$  | $0.08_{(0.35)}$  | $0.08_{(0.35)}$  | $0.10_{(0.35)}$  | $0.10_{(0.35)}$  |
| GA      | $-0.28_{(0.46)}$                 | $-0.21_{(0.49)}$ | $-0.22_{(0.49)}$ | $-0.21_{(0.50)}$ | $-0.22_{(0.49)}$ | $-0.21_{(0.50)}$ |
| ۸T      | 0.00                             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             |
| AI      | 0.00(0.57)                       | $0.00_{(0.54)}$  | $0.00_{(0.54)}$  | $0.00_{(0.55)}$  | $0.00_{(0.55)}$  | $0.00_{(0.55)}$  |
| AC      | $0.13_{(0.59)}$                  | $0.22_{(0.55)}$  | $0.22_{(0.55)}$  | $0.21_{(0.57)}$  | $0.22_{(0.55)}$  | $0.21_{(0.57)}$  |
| GC      | $0.00_{(0.61)}$                  | $0.00_{(0.70)}$  | $0.00_{(0.72)}$  | $0.00_{(0.74)}$  | $0.00_{(0.72)}$  | $0.00_{(0.74)}$  |
| Conorio | 0.00                             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             |
| Generic | $0.00_{(0.64)}$                  | $0.00_{(0.61)}$  | $0.00_{(0.61)}$  | $0.00_{(0.62)}$  | $0.00_{(0.61)}$  | $0.00_{(0.62)}$  |

(v) Average values and dispersion of Shift,  $\langle \theta_4 \rangle \pm (\sigma_{\theta_4})$ , in protein-bound DNA dimers

(vi) Average values and dispersion of Slide,  $\langle \theta_5 \rangle \pm (\sigma_{\theta_5})$ , in protein-bound DNA dimers

|         | *                   |                  |                  |                  |                  |                  |
|---------|---------------------|------------------|------------------|------------------|------------------|------------------|
| Step    | Olson <i>et al.</i> | A+B+AB           | B+AB             | В                | B+AB+TA          | B+TA             |
|         |                     |                  |                  |                  |                  |                  |
| CG      | $0.41_{(0.56)}$     | 0.36(0.57)       | 0.36(0.57)       | $0.55_{(0.40)}$  | 0.36(0.57)       | $0.55_{(0.40)}$  |
| CA      | $0.53_{(0.89)}$     | $0.22_{(0.91)}$  | $0.33_{(0.81)}$  | $0.50_{(0.75)}$  | $0.33_{(0.81)}$  | $0.50_{(0.75)}$  |
| TA      | $0.05_{(0.71)}$     | 0.37(0.93)       | 0.39(0.92)       | 0.46(0.93)       | 0.43(0.95)       | 0.50(0.95)       |
|         |                     |                  |                  |                  |                  |                  |
| AG      | $-0.25_{(0.41)}$    | $-0.32_{(0.45)}$ | $-0.27_{(0.41)}$ | $-0.22_{(0.40)}$ | $-0.27_{(0.41)}$ | $-0.22_{(0.40)}$ |
| GG      | $-0.22_{(0.64)}$    | $-0.52_{(0.62)}$ | $-0.45_{(0.54)}$ | $-0.27_{(0.50)}$ | $-0.45_{(0.54)}$ | $-0.27_{(0.50)}$ |
| AA      | $-0.08_{(0.45)}$    | $-0.16_{(0.33)}$ | $-0.16_{(0,33)}$ | $-0.15_{(0.33)}$ | $-0.11_{(0.38)}$ | $-0.11_{(0.38)}$ |
| GA      | $0.09_{(0.70)}$     | $-0.12_{(0.53)}$ | $-0.10_{(0.51)}$ | $-0.02_{(0.48)}$ | $-0.10_{(0.51)}$ | $-0.02_{(0.48)}$ |
|         |                     |                  |                  |                  |                  |                  |
| AT      | $-0.59_{(0.31)}$    | $-0.66_{(0.33)}$ | $-0.64_{(0.32)}$ | $-0.58_{(0.28)}$ | $-0.64_{(0.32)}$ | $-0.58_{(0.28)}$ |
| AC      | $-0.58_{(0.41)}$    | $-0.63_{(0.32)}$ | $-0.62_{(0.32)}$ | $-0.58_{(0.37)}$ | $-0.62_{(0.32)}$ | $-0.58_{(0.37)}$ |
| GC      | $-0.38_{(0.56)}$    | $-0.33_{(0.55)}$ | $-0.21_{(0.41)}$ | $-0.15_{(0.39)}$ | $-0.21_{(0.41)}$ | $-0.15_{(0.39)}$ |
| - ·     | 0.00                | 0.01             | - <b>- -</b>     | • • <b>-</b>     | 0.4.6            | ~ ~ <b>-</b>     |
| Generic | $-0.09_{(0.69)}$    | $-0.21_{(0.67)}$ | $-0.17_{(0.64)}$ | $-0.07_{(0.63)}$ | $-0.16_{(0.65)}$ | $-0.07_{(0.64)}$ |

| Step    | Olson <i>et al.</i> * | A+B+AB          | B+AB            | В                      | B+AB+TA         | B+TA            |
|---------|-----------------------|-----------------|-----------------|------------------------|-----------------|-----------------|
|         |                       |                 |                 |                        |                 |                 |
| CG      | $3.39_{(0.27)}$       | $3.41_{(0.22)}$ | $3.41_{(0.22)}$ | $3.38_{(0.23)}$        | $3.41_{(0.22)}$ | $3.38_{(0.23)}$ |
| CA      | $3.33_{(0.26)}$       | $3.38_{(0.26)}$ | $3.37_{(0.23)}$ | $3.35_{(0.22)}$        | $3.37_{(0.23)}$ | $3.35_{(0.22)}$ |
| TA      | $3.42_{(0.24)}$       | 3.32(0.21)      | 3.33(0.21)      | 3.30(0.19)             | 3.33(0.21)      | $3.31_{(0.19)}$ |
| AG      | $3.34_{(0.23)}$       | $3.35_{(0.23)}$ | $3.35_{(0.23)}$ | $3.35_{(0.23)}$        | $3.35_{(0,23)}$ | $3.35_{(0.23)}$ |
| GG      | $3.42_{(0.24)}$       | $3.45_{(0.24)}$ | $3.45_{(0.24)}$ | 3.38(0.20)             | $3.45_{(0.24)}$ | 3.38(0.20)      |
| AA      | $3.27_{(0.22)}$       | $3.25_{(0.17)}$ | $3.25_{(0.17)}$ | $3.25_{(0.16)}$        | 3.26(0.17)      | $3.25_{(0.16)}$ |
| GA      | 3.37(0.26)            | 3.32(0.20)      | 3.32(0.21)      | 3.27(0.17)             | 3.32(0.21)      | 3.27(0.17)      |
| AT      | $3.31_{(0,21)}$       | $3.24_{(0.17)}$ | $3.24_{(0.17)}$ | $3.24_{(0.17)}$        | $3.24_{(0.16)}$ | $3.24_{(0,17)}$ |
| AC      | 3.36(0.23)            | $3.27_{(0.20)}$ | $3.27_{(0.20)}$ | $3.27_{(0,21)}$        | 3.27(0.20)      | $3.27_{(0.21)}$ |
| GC      | 3.40(0.24)            | 3.36(0.24)      | 3.33(0.24)      | 3.29(0.22)             | 3.33(0.24)      | 3.29(0.22)      |
| Generic | 3.36(0.25)            | 3.34(0.23)      | 3.33(0.22)      | 3.31 <sub>(0.21)</sub> | 3.33(0.22)      | 3.31(0.21)      |

(vii) Average values and dispersion of Rise,  $\langle \theta_6 \rangle \pm (\sigma_{\theta_6})$ , in protein-bound DNA dimers

(viii) Relative base-pair flexibility V of protein-bound DNA dimers<sup>†</sup>

| Step    | Olson <i>et al</i> .* | A+B+AB | B+AB | В   | B+AB+TA | B+TA |
|---------|-----------------------|--------|------|-----|---------|------|
|         |                       |        |      |     |         |      |
| CG      | 12.1                  | 4.9    | 4.9  | 2.3 | 4.9     | 2.3  |
| CA      | 9.8                   | 7.1    | 5.1  | 4.7 | 5.1     | 4.7  |
| TA      | 6.3                   | 7.6    | 7.5  | 6.1 | 8.4     | 6.8  |
| AG      | 2.1                   | 1.6    | 1.3  | 1.1 | 1.3     | 1.1  |
| GG      | 6.1                   | 4.1    | 3.6  | 2.6 | 3.6     | 2.6  |
| AA      | 2.9                   | 0.6    | 0.6  | 0.6 | 0.8     | 0.8  |
| GA      | 4.5                   | 1.9    | 1.8  | 1.0 | 1.8     | 1.0  |
| AT      | 1.6                   | 0.9    | 0.8  | 0.7 | 0.9     | 0.7  |
| AC      | 2.3                   | 0.9    | 0.9  | 1.1 | 0.9     | 1.1  |
| GC      | 4.0                   | 3.5    | 2.2  | 1.8 | 2.2     | 1.8  |
| Generic | 9.2                   | 5.2    | 4.8  | 4.2 | 5.1     | 4.5  |

<sup>†</sup>Deformability values, in units of  $(Å^{\circ})^3$  given by the products of the eigenvalues of the covariance matrix of the averages and products of the six step parameters.

<sup>\*</sup>W.K. Olson, A.A. Gorin, X.-J. Lu, L.M. Hock & V.B. Zhurkin (1998) DNA sequence-dependent deformability deduced from protein-DNA crystal complexes, *Proc. Natl. Acad. Sci., USA* **95**, 11163-11168.

# Table S4.Comparative 'cost' of nucleosomal deformation of individual base-pair steps with knowledge-<br/>based functions based on different subsets of observed protein-bound DNA conformations<sup>†</sup>

| Score                 | Olson <i>et al.</i> * | A+B+AB | B+AB | В    | B+AB+TA | B+TA |
|-----------------------|-----------------------|--------|------|------|---------|------|
| $\langle E \rangle$   | 7.4                   | 4.5    | 4.5  | 6.4  | 4.5     | 6.4  |
| $E_{0}$               | 0.8                   | 0.4    | 0.4  | 0.7  | 0.4     | 0.7  |
| $E^{\dagger}$         | 24.8                  | 13.0   | 13.0 | 18.8 | 13.0    | 18.8 |
|                       |                       |        |      |      |         |      |
| $SH_0$                | -2.4                  | -2.4   | -2.4 | -2.4 | -2.4    | -2.4 |
| $\mathrm{SH}^\dagger$ | -1.7                  | 1.5    | 1.5  | 1.5  | 1.5     | 1.5  |

(i) Pyrimidine-purine (YR) base-pair steps

| CG |  |
|----|--|
| 00 |  |

CA

| Score                 | Olson <i>et al</i> .* | A+B+AB | B+AB | В    | B+AB+TA | B+TA |
|-----------------------|-----------------------|--------|------|------|---------|------|
| $\langle E \rangle$   | 8.6                   | 4.0    | 4.4  | 4.4  | 4.4     | 4.4  |
| $E_0$                 | 1.3                   | 0.4    | 0.4  | 0.6  | 0.4     | 0.6  |
| $E^{\dagger}$         | 30.6                  | 13.8   | 14.9 | 14.6 | 14.9    | 14.6 |
|                       |                       |        |      |      |         |      |
| $SH_0$                | -2.4                  | 0.1    | -1.0 | -1.0 | -1.0    | -1.0 |
| $\mathrm{SH}^\dagger$ | -2.0                  | -2.0   | -2.0 | -1.5 | -2.0    | -1.5 |

# Pyrimidine-purine (YR) base-pair steps (continued)

# TG

| Score                 | Olson <i>et al.</i> * | A+B+AB | B+AB | В    | B+AB+TA | B+TA |
|-----------------------|-----------------------|--------|------|------|---------|------|
| $\langle E \rangle$   | 8.2                   | 3.8    | 4.2  | 4.2  | 4.2     | 4.2  |
| $E_0$                 | 1.0                   | 0.4    | 0.5  | 0.7  | 0.5     | 0.7  |
| $E^{\dagger}$         | 29.1                  | 13.1   | 14.5 | 14.3 | 14.5    | 14.3 |
| SН                    | 0.1                   | 2.4    | 2.4  | 1.0  | 2.4     | 1.0  |
| 5110                  | 0.1                   | -2.4   | -2.4 | -1.0 | -2.4    | -1.0 |
| $\mathrm{SH}^\dagger$ | -1.7                  | -1.7   | -1.7 | -1.9 | -1.7    | -1.9 |

TA

| ScoreOlson et al.*A+B+ABB+ABBB+AB+TAB+TA $\langle E \rangle$ 8.74.34.34.74.64.8 $E_0$ 1.00.60.70.80.70.8 $E^+$ 26.614.814.819.116.919.4SH_0-2.40.10.10.10.10.1                                                                                    |                       |                       |        |      |      |         |      |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|--------|------|------|---------|------|--|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                           | Score                 | Olson <i>et al.</i> * | A+B+AB | B+AB | В    | B+AB+TA | B+TA |  |
| $E_0$ 1.0         0.6         0.7         0.8         0.7         0.8 $E^{\dagger}$ 26.6         14.8         14.8         19.1         16.9         19.4           SH_0         -2.4         0.1         0.1         0.1         0.1         0.1 | $\langle E \rangle$   | 8.7                   | 4.3    | 4.3  | 4.7  | 4.6     | 4.8  |  |
| $E^{\dagger}$ 26.614.814.819.116.919.4 $SH_0$ -2.40.10.10.10.10.1                                                                                                                                                                                 | $E_0$                 | 1.0                   | 0.6    | 0.7  | 0.8  | 0.7     | 0.8  |  |
| SH <sub>0</sub> -2.4 0.1 0.1 0.1 0.1 0.1                                                                                                                                                                                                          | $E^{\dagger}$         | 26.6                  | 14.8   | 14.8 | 19.1 | 16.9    | 19.4 |  |
| $SH_0$ -2.4 0.1 0.1 0.1 0.1 0.1                                                                                                                                                                                                                   |                       |                       |        |      |      |         |      |  |
| U U U U U U U U U U U U U U U U U U U                                                                                                                                                                                                             | $SH_0$                | -2.4                  | 0.1    | 0.1  | 0.1  | 0.1     | 0.1  |  |
| SH <sup>†</sup> -1.9 -1.5 -1.5 -1.5 -1.5 -1.5                                                                                                                                                                                                     | $\mathrm{SH}^\dagger$ | -1.9                  | -1.5   | -1.5 | -1.5 | -1.5    | -1.5 |  |

(ii) Purine-purine and pyrimidine-pyrimidine (RR, YY) base-pair steps

AG

| Score                 | Olson <i>et al.</i> * | A+B+AB | B+AB | В    | B+AB+TA | B+TA |
|-----------------------|-----------------------|--------|------|------|---------|------|
| $\langle E \rangle$   | 18.1                  | 9.4    | 10.7 | 11.1 | 10.7    | 11.1 |
| $E_0$                 | 1.0                   | 0.8    | 0.8  | 0.9  | 0.8     | 0.9  |
| $E^{\dagger}$         | 67.1                  | 33.4   | 41.8 | 44.0 | 41.9    | 44.0 |
|                       |                       |        |      |      |         |      |
| $\mathrm{SH}_{0}$     | 1.0                   | -0.1   | -0.1 | -0.1 | -0.1    | -0.1 |
| $\mathrm{SH}^\dagger$ | 1.5                   | 1.5    | 1.5  | 1.5  | 1.5     | 1.5  |

CT

| Score                 | Olson <i>et al.</i> * | A+B+AB | B+AB | В    | B+AB+TA | B+TA |
|-----------------------|-----------------------|--------|------|------|---------|------|
| $\langle E \rangle$   | 19.4                  | 10.2   | 11.5 | 12.0 | 11.5    | 12.0 |
| $E_0$                 | 0.6                   | 0.2    | 0.2  | 0.2  | 0.2     | 0.2  |
| $E^{\dagger}$         | 59.4                  | 31.4   | 39.0 | 40.7 | 39.0    | 40.7 |
| сц                    | 0.1                   | 0.1    | 0.1  | 0.1  | 0.1     | 0.1  |
| 511 <sub>0</sub>      | 0.1                   | 0.1    | 0.1  | 0.1  | 0.1     | 0.1  |
| $\mathrm{SH}^\dagger$ | 1.5                   | 1.5    | 1.5  | 1.5  | 1.5     | 1.5  |

Purine-purine and pyrimidine-pyrimidine (RR, YY) base-pair steps (continued)

GG

| Score                 | Olson <i>et al.</i> * | A+B+AB | B+AB | В    | B+AB+TA | B+TA |
|-----------------------|-----------------------|--------|------|------|---------|------|
| $\langle E \rangle$   | 10.3                  | 5.4    | 5.9  | 5.7  | 5.9     | 5.7  |
| $E_0$                 | 0.9                   | 0.5    | 0.4  | 0.3  | 0.4     | 0.3  |
| $E^\dagger$           | 44.4                  | 17.9   | 18.5 | 18.9 | 18.4    | 18.9 |
|                       |                       |        |      |      |         |      |
| $\mathrm{SH}_{0}$     | 0.1                   | 0.1    | 0.1  | 0.1  | 0.1     | 0.1  |
| $\mathrm{SH}^\dagger$ | -2.0                  | -2.0   | -2.0 | -2.0 | -2.0    | -2.0 |

CC

| Score                 | Olson <i>et al.</i> * | A+B+AB | B+AB | В    | B+AB+TA | B+TA |
|-----------------------|-----------------------|--------|------|------|---------|------|
| $\langle E \rangle$   | 11.4                  | 6.0    | 6.5  | 6.6  | 6.5     | 6.6  |
| $E_0$                 | 0.7                   | 0.5    | 0.5  | 0.3  | 0.5     | 0.3  |
| $E^{\dagger}$         | 39.0                  | 18.2   | 18.9 | 17.8 | 18.9    | 17.8 |
|                       |                       |        |      |      |         |      |
| $SH_0$                | 0.1                   | 0.1    | 0.1  | 0.1  | 0.1     | 0.1  |
| $\mathrm{SH}^\dagger$ | -2.0                  | -2.0   | -2.0 | -1.9 | -2.0    | -1.9 |

Purine-purine and pyrimidine-pyrimidine (RR, YY) base-pair steps (continued)

| Score                 | Olson <i>et al.</i> * | A+B+AB | B+AB | В    | B+AB+TA | B+TA |
|-----------------------|-----------------------|--------|------|------|---------|------|
| $\langle E \rangle$   | 13.8                  | 12.3   | 12.3 | 12.2 | 11.5    | 11.6 |
| $E_0$                 | 1.4                   | 1.2    | 1.2  | 1.2  | 0.9     | 0.9  |
| $E^{\dagger}$         | 50.7                  | 39.2   | 39.2 | 38.6 | 39.0    | 39.1 |
| SH                    | 17                    | 17     | 17   | 17   | 17      | 17   |
| 5110                  | 1.7                   | 1./    | 1.7  | 1./  | 1./     | 1./  |
| $\mathrm{SH}^\dagger$ | 1.5                   | 1.5    | 1.5  | 1.5  | 1.5     | 1.5  |

TT

| ScoreOlson et al.*A+B+ABB+ABBB+AB+TAB+T $\langle E \rangle$ 14.512.812.812.812.112.8 |    |
|--------------------------------------------------------------------------------------|----|
| $\langle E \rangle$ 14.5 12.8 12.8 12.8 12.1 12.                                     | ГА |
|                                                                                      | .1 |
| $E_0$ 1.8 1.2 1.2 1.1 0.8 0.3                                                        | 8  |
| $E^{\dagger}$ 45.8 37.5 37.5 37.4 37.7 38                                            | .4 |
|                                                                                      |    |
| $SH_0 = 0.1 = 0.1 = 0.1 = 0.1 = 0.1 = 0.1 = 0.1$                                     | 1  |
| SH <sup>†</sup> -1.6 -1.6 -1.6 -1.6 -1.6 -1.6                                        | .6 |

Purine-purine and pyrimidine-pyrimidine (RR, YY) base-pair steps (continued)

GA

| Score                 | Olson <i>et al.</i> * | A+B+AB | B+AB | В    | B+AB+TA | B+TA |
|-----------------------|-----------------------|--------|------|------|---------|------|
| $\langle E \rangle$   | 12.3                  | 7.5    | 7.5  | 8.7  | 7.5     | 8.7  |
| $E_0$                 | 1.0                   | 0.7    | 0.7  | 0.9  | 0.7     | 0.9  |
| $E^{\dagger}$         | 47.3                  | 24.6   | 24.4 | 31.7 | 24.4    | 31.7 |
| $\mathrm{SH}_{0}$     | -0.1                  | -0.1   | -0.1 | -0.1 | -0.1    | -0.1 |
| $\mathrm{SH}^\dagger$ | -1.7                  | -1.5   | -1.5 | -1.5 | -1.5    | -1.5 |

TC

| Score                 | Olson <i>et al.</i> * | A+B+AB | B+AB | В    | B+AB+TA | B+TA |  |
|-----------------------|-----------------------|--------|------|------|---------|------|--|
| $\langle E \rangle$   | 13.5                  | 8.0    | 8.1  | 9.4  | 8.1     | 9.4  |  |
| $E_{0}$               | 2.0                   | 1.1    | 1.2  | 1.3  | 1.2     | 1.3  |  |
| $E^{\dagger}$         | 45.7                  | 25.7   | 25.8 | 30.4 | 25.8    | 30.4 |  |
|                       |                       |        |      |      |         |      |  |
| $SH_0$                | -0.9                  | 0.1    | 0.1  | -0.9 | 0.1     | -0.9 |  |
| $\mathrm{SH}^\dagger$ | 2.5                   | -1.6   | -1.6 | -1.6 | -1.6    | -1.6 |  |

# (iii) Purine-pyrimidine (RY) base-pair steps

# AT

| Score                 | Olson <i>et al.</i> * | A+B+AB | B+AB | В    | B+AB+TA | B+TA |
|-----------------------|-----------------------|--------|------|------|---------|------|
| $\langle E \rangle$   | 26.0                  | 15.6   | 16.6 | 18.4 | 16.5    | 18.4 |
| $E_0$                 | 0.6                   | 0.3    | 0.3  | 0.2  | 0.3     | 0.2  |
| $E^{\dagger}$         | 79.0                  | 45.4   | 49.8 | 56.0 | 50.7    | 56.0 |
| SН                    | 1.2                   | 1.2    | 1 2  | 1 2  | 1.2     | 1.2  |
| $\mathbf{SII}_0$      | 1.2                   | 1.2    | 1.2  | 1.2  | 1.2     | 1.2  |
| $\mathrm{SH}^\dagger$ | 1.5                   | -2.0   | -2.0 | 1.5  | -2.0    | 1.5  |

AC

| Scor                | re Olson <i>et al.</i> * | A+B+AB | B+AB | В    | B+AB+TA | B+TA |  |
|---------------------|--------------------------|--------|------|------|---------|------|--|
| $\langle E \rangle$ |                          | 15.8   | 15.7 | 12.7 | 15.7    | 12.7 |  |
| $E_0$               | 1.0                      | 0.8    | 0.7  | 0.6  | 0.8     | 0.6  |  |
| $E^{\dagger}$       | 62.5                     | 51.9   | 51.5 | 44.9 | 51.5    | 44.9 |  |
|                     |                          |        |      |      |         |      |  |
| SH                  | 0 1.2                    | 1.2    | 1.2  | 1.2  | 1.2     | 1.2  |  |
| SH                  | <sup>†</sup> -2.0        | -2.0   | -2.0 | -2.0 | -2.0    | -2.0 |  |
|                     |                          |        |      |      |         |      |  |

#### Purine-pyrimidine (RY) base-pair steps (continued)

#### GT

| Score                 | Olson <i>et al.</i> * | A+B+AB | B+AB | В    | B+AB+TA | B+TA |
|-----------------------|-----------------------|--------|------|------|---------|------|
| $\langle E \rangle$   | 20.3                  | 15.6   | 15.6 | 12.5 | 15.6    | 12.5 |
| $E_0$                 | 1.1                   | 0.9    | 0.9  | 0.7  | 0.9     | 0.7  |
| $E^{\dagger}$         | 62.4                  | 44.1   | 44.1 | 38.4 | 44.1    | 38.4 |
| 011                   | 1.0                   | 1.0    | 1.0  | 1.0  | 1.0     | 1.0  |
| $SH_0$                | 1.2                   | 1.2    | 1.2  | 1.2  | 1.2     | 1.2  |
| $\mathrm{SH}^\dagger$ | -2.0                  | 1.5    | 1.5  | -2.0 | 1.5     | -2.0 |

GC

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                 |                       |                       |        |      |      |         |      |  |
|--------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|--------|------|------|---------|------|--|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                 | Score                 | Olson <i>et al.</i> * | A+B+AB | B+AB | В    | B+AB+TA | B+TA |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                  | $\langle E \rangle$   | 15.7                  | 7.1    | 8.8  | 7.1  | 8.8     | 7.1  |  |
| $E^{\dagger}$ 89.839.847.132.047.132.0 $SH_0$ 1.21.21.2-2.31.2-2.3 $SH^{\dagger}$ -2.0-2.0-2.0-2.0-2.0 | $E_0$                 | 1.9                   | 1.0    | 1.1  | -1.9 | 1.1     | -1.9 |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                  | $E^{\dagger}$         | 89.8                  | 39.8   | 47.1 | 32.0 | 47.1    | 32.0 |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                   |                       |                       |        |      |      |         |      |  |
| SH <sup>†</sup> -2.0 -2.0 -2.0 -2.0 -2.0 -2.0                                                          | $SH_0$                | 1.2                   | 1.2    | 1.2  | -2.3 | 1.2     | -2.3 |  |
|                                                                                                        | $\mathrm{SH}^\dagger$ | -2.0                  | -2.0   | -2.0 | -2.0 | -2.0    | -2.0 |  |

<sup>†</sup> Knowledge-based scores — average cost  $\langle E \rangle$  over the central 60 base-pair steps of the best-resolved nucleosome core particle structure (2) and the least and most costly values,  $E_0$  and  $E^{\dagger}$  — derived from the base-pair step parameters of DNA dimers of different conformational types from high-resolution protein-DNA structures. Locations SH<sub>0</sub> and SH<sup> $\dagger$ </sup> of the least and most costly steps are expressed in terms of superhelical position, *i.e.*, number of helical turns with respect to the structural dyad. See text and legend to Table 1

<sup>\*</sup>W.K. Olson, A.A. Gorin, X.-J. Lu, L.M. Hock & V.B. Zhurkin (1998) DNA sequence-dependent deformability deduced from protein-DNA crystal complexes, Proc. Natl. Acad. Sci., USA 95, 11163-11168.

Table S5.Threading scores of known nucleosome binding and antiselection sequences on the central 60<br/>base-pair steps of the 147-bp nucleosome core-particle structure (NDB\_ID pd0287) (2) and an<br/>ideal 61-bp superhelical template with the same average global structure.§

|             | Ст                  | rystallogra   | phic temple | ate           | Smoo                | oth superh    | helical temp | olate         |
|-------------|---------------------|---------------|-------------|---------------|---------------------|---------------|--------------|---------------|
| Sequence_ID | $\langle U \rangle$ | $\sigma_{_U}$ | $U_{0}$     | $U^{\dagger}$ | $\langle U \rangle$ | $\sigma_{_U}$ | $U_{_0}$     | $U^{\dagger}$ |
|             | Nu                  | ıcleosome     | -binding se | quences from  | the mouse genon     | ne            |              |               |
| A-tracts 1  |                     |               |             |               |                     |               |              |               |
| phcn4       | 501                 | 43            | 415         | 633           | 146                 | 3             | 140          | 152           |
| phcn8       | 511                 | 42            | 431         | 618           | 147                 | 3             | 142          | 153           |
| phcn12      | 510                 | 42            | 408         | 632           | 146                 | 4             | 139          | 158           |
| phcn14      | 507                 | 41            | 421         | 649           | 146                 | 3             | 141          | 154           |
| phcn17      | 511                 | 42            | 430         | 594           | 145                 | 3             | 139          | 152           |
| phcn18      | 500                 | 51            | 396         | 629           | 148                 | 3             | 140          | 154           |
| phcn21      | 499                 | 45            | 393         | 638           | 145                 | 3             | 138          | 152           |
| phcn22      | 495                 | 42            | 412         | 615           | 143                 | 3             | 137          | 148           |
| phcn23      | 498                 | 45            | 391         | 635           | 144                 | 4             | 139          | 155           |
| phcn24      | 493                 | 45            | 382         | 620           | 141                 | 2             | 137          | 146           |
| phcn26      | 499                 | 45            | 387         | 637           | 144                 | 2             | 140          | 149           |
| phcn29      | 501                 | 47            | 378         | 640           | 144                 | 3             | 138          | 150           |
| phen39      | 494                 | 44            | 400         | 640           | 144                 | 3             | 137          | 150           |
| phcn43      | 490                 | 37            | 423         | 625           | 141                 | 3             | 135          | 149           |
| phcn46      | 502                 | 41            | 414         | 618           | 146                 | 4             | 136          | 154           |
| phcn47      | 506                 | 41            | 409         | 619           | 145                 | 3             | 137          | 152           |
| phen50      | 494                 | 40            | 406         | 607           | 142                 | 2             | 138          | 147           |
| phwn12      | 501                 | 41            | 408         | 592           | 146                 | 2             | 143          | 152           |
| A-tracts 2  |                     |               |             |               |                     |               |              |               |
| phcn2       | 503                 | 44            | 408         | 598           | 144                 | 2             | 137          | 148           |
| phcn10      | 499                 | 41            | 401         | 604           | 143                 | 3             | 136          | 148           |
| phen13      | 491                 | 45            | 382         | 635           | 145                 | 3             | 139          | 151           |
| phcn20      | 506                 | 43            | 410         | 593           | 146                 | 3             | 139          | 151           |
| phen30      | 494                 | 40            | 397         | 597           | 144                 | 5             | 133          | 153           |
| phcn42      | 509                 | 43            | 416         | 601           | 146                 | 3             | 141          | 153           |
| phwn8       | 517                 | 45            | 418         | 606           | 145                 | 3             | 140          | 150           |
| phwn26      | 500                 | 45            | 410         | 607           | 145                 | 3             | 140          | 152           |

| Crystallographic template |                     |               |         | Smoo          | oth superi          | helical temp    | olate   |               |
|---------------------------|---------------------|---------------|---------|---------------|---------------------|-----------------|---------|---------------|
| Sequence_ID               | $\langle U \rangle$ | $\sigma_{_U}$ | $U_{0}$ | $U^{\dagger}$ | $\langle U \rangle$ | $\sigma_{_{U}}$ | $U_{0}$ | $U^{\dagger}$ |
| phwn27                    | 511                 | 44            | 410     | 595           | 145                 | 3               | 138     | 152           |
| A-tracts 3                |                     |               |         |               |                     |                 |         |               |
| phcn3                     | 501                 | 39            | 393     | 607           | 144                 | 3               | 136     | 150           |
| phcn7                     | 493                 | 47            | 381     | 614           | 143                 | 2               | 139     | 148           |
| phcn9                     | 510                 | 43            | 403     | 597           | 146                 | 5               | 135     | 154           |
| phen11                    | 510                 | 49            | 414     | 616           | 144                 | 4               | 137     | 151           |
| phen19                    | 494                 | 43            | 399     | 587           | 143                 | 3               | 136     | 149           |
| phcn28                    | 500                 | 39            | 393     | 600           | 144                 | 2               | 141     | 149           |
| phen37                    | 497                 | 46            | 389     | 638           | 144                 | 2               | 139     | 150           |
| phcn44                    | 500                 | 46            | 387     | 636           | 143                 | 2               | 139     | 149           |
| phwn11                    | 496                 | 42            | 386     | 615           | 143                 | 3               | 137     | 148           |
| phwn29                    | 509                 | 44            | 401     | 597           | 146                 | 5               | 135     | 153           |
| phwn36                    | 513                 | 41            | 419     | 596           | 146                 | 4               | 137     | 153           |
| TG/CTG runs               |                     |               |         |               |                     |                 |         |               |
| phen31                    | 531                 | 40            | 446     | 619           | 161                 | 5               | 150     | 170           |
| phen32                    | 535                 | 58            | 417     | 623           | 163                 | 4               | 151     | 171           |
| phen33                    | 550                 | 47            | 452     | 621           | 168                 | 4               | 161     | 176           |
| phcn40                    | 527                 | 32            | 458     | 642           | 155                 | 6               | 144     | 168           |
| phwn2                     | 496                 | 42            | 416     | 589           | 148                 | 4               | 140     | 158           |
| phwn3                     | 518                 | 36            | 449     | 622           | 151                 | 5               | 140     | 162           |
| phwn4                     | 498                 | 42            | 421     | 590           | 149                 | 3               | 141     | 157           |
| phwn7                     | 461                 | 33            | 380     | 555           | 137                 | 5               | 128     | 148           |
| phwn10                    | 525                 | 50            | 427     | 609           | 154                 | 3               | 147     | 162           |
| phwn13                    | 536                 | 58            | 414     | 644           | 161                 | 3               | 156     | 167           |
| phwn14                    | 527                 | 51            | 381     | 611           | 156                 | 7               | 136     | 166           |
| phwn15                    | 560                 | 50            | 457     | 656           | 169                 | 2               | 163     | 176           |
| phwn16                    | 499                 | 43            | 422     | 614           | 145                 | 5               | 134     | 155           |
| phwn17                    | 502                 | 39            | 396     | 584           | 150                 | 6               | 136     | 163           |
| phwn18                    | 495                 | 50            | 401     | 602           | 144                 | 4               | 134     | 152           |
| phwn20                    | 495                 | 41            | 409     | 589           | 143                 | 3               | 135     | 151           |
| phwn22                    | 508                 | 33            | 430     | 595           | 151                 | 5               | 141     | 162           |
| phwn23                    | 528                 | 43            | 427     | 650           | 159                 | 4               | 152     | 169           |
| phwn24                    | 507                 | 37            | 432     | 615           | 147                 | 6               | 136     | 162           |

p. 47

|              | $C_{i}$             | rystallogra   | phic templo | ate           | Smo                 | oth superi    | helical temp | olate         |
|--------------|---------------------|---------------|-------------|---------------|---------------------|---------------|--------------|---------------|
| Sequence_ID  | $\langle U \rangle$ | $\sigma_{_U}$ | $U_{0}$     | $U^{\dagger}$ | $\langle U \rangle$ | $\sigma_{_U}$ | $U_0$        | $U^{\dagger}$ |
| phwn25       | 492                 | 44            | 385         | 581           | 145                 | 6             | 132          | 157           |
| phwn28       | 506                 | 36            | 433         | 621           | 146                 | 6             | 136          | 158           |
| phwn30       | 495                 | 36            | 409         | 597           | 147                 | 4             | 138          | 157           |
| phwn32       | 479                 | 38            | 407         | 561           | 146                 | 7             | 132          | 156           |
| Phased TATA  |                     |               |             |               |                     |               |              |               |
| phen5        | 502                 | 38            | 436         | 589           | 146                 | 13            | 127          | 173           |
| phen25       | 513                 | 36            | 431         | 582           | 147                 | 11            | 131          | 170           |
| phcn41       | 509                 | 38            | 415         | 583           | 149                 | 12            | 131          | 171           |
| phcn49       | 520                 | 41            | 430         | 610           | 152                 | 12            | 133          | 174           |
| Phased TG/CA |                     |               |             |               |                     |               |              |               |
| phen6        | 528                 | 43            | 434         | 636           | 156                 | 3             | 147          | 163           |
| phcn16       | 523                 | 47            | 405         | 622           | 155                 | 3             | 147          | 159           |
| phen27       | 530                 | 46            | 417         | 628           | 156                 | 2             | 150          | 160           |
| phcn48       | 529                 | 47            | 447         | 642           | 154                 | 2             | 148          | 158           |
| No sequence  |                     |               |             |               |                     |               |              |               |
| phcn1        | 483                 | 33            | 407         | 567           | 141                 | 4             | 132          | 149           |
| phen15       | 492                 | 39            | 420         | 574           | 142                 | 5             | 129          | 152           |
| phcn34       | 511                 | 39            | 436         | 598           | 147                 | 5             | 137          | 157           |
| phcn35       | 467                 | 35            | 371         | 581           | 133                 | 5             | 123          | 146           |
| phcn36       | 493                 | 41            | 385         | 597           | 144                 | 7             | 123          | 155           |
| phen38       | 467                 | 35            | 371         | 581           | 133                 | 5             | 123          | 146           |
| phen45       | 470                 | 38            | 382         | 593           | 134                 | 7             | 121          | 148           |
| phwn1        | 467                 | 32            | 383         | 535           | 136                 | 6             | 123          | 149           |
| phwn5        | 491                 | 43            | 410         | 582           | 141                 | 5             | 132          | 151           |
| phwn6        | 465                 | 34            | 387         | 540           | 135                 | 7             | 119          | 155           |
| phwn9        | 473                 | 40            | 397         | 566           | 136                 | 4             | 127          | 146           |
| phwn19       | 498                 | 38            | 420         | 603           | 144                 | 4             | 137          | 152           |
| phwn21       | 477                 | 39            | 379         | 562           | 134                 | 5             | 120          | 145           |
| phwn31       | 494                 | 46            | 386         | 597           | 142                 | 5             | 132          | 152           |
| phwn33       | 471                 | 38            | 394         | 584           | 141                 | 8             | 126          | 158           |
| phwn34       | 503                 | 39            | 385         | 595           | 143                 | 5             | 134          | 153           |
| phwn35       | 467                 | 36            | 386         | 560           | 131                 | 8             | 116          | 147           |
| phwn37       | 450                 | 27            | 393         | 528           | 133                 | 5             | 121          | 143           |

|                | Crystallographic template |               |             |               | Smoo                | Smooth superhelical template |       |               |  |
|----------------|---------------------------|---------------|-------------|---------------|---------------------|------------------------------|-------|---------------|--|
| Sequence_ID    | $\langle U \rangle$       | $\sigma_{_U}$ | $U_{0}$     | $U^{\dagger}$ | $\langle U \rangle$ | $\sigma_{_U}$                | $U_0$ | $U^{\dagger}$ |  |
|                |                           | Anti-sele     | ction seque | ences from th | e mouse genome      |                              |       |               |  |
| TGGA fragments |                           |               |             |               |                     |                              |       |               |  |
| 35             | 500                       | 25            | 442         | 541           | 154                 | 3                            | 148   | 158           |  |
| 19             | 492                       | 35            | 431         | 576           | 153                 | 2                            | 148   | 156           |  |
| 29             | 480                       | 39            | 397         | 566           | 149                 | 3                            | 143   | 156           |  |
| 75             | 495                       | 50            | 410         | 600           | 152                 | 2                            | 149   | 158           |  |
| 44             | 486                       | 34            | 413         | 567           | 146                 | 3                            | 140   | 154           |  |
| 81             | 482                       | 35            | 416         | 569           | 149                 | 3                            | 143   | 154           |  |
| 49             | 474                       | 31            | 426         | 528           | 147                 | 3                            | 143   | 152           |  |
| 62             | 474                       | 44            | 374         | 566           | 148                 | 2                            | 144   | 152           |  |
| 57             | 472                       | 32            | 408         | 548           | 147                 | 2                            | 143   | 152           |  |
| 47             | 480                       | 41            | 369         | 571           | 146                 | 2                            | 140   | 150           |  |
| 77             | 481                       | 40            | 404         | 566           | 149                 | 3                            | 142   | 155           |  |
| 23             | 478                       | 42            | 397         | 572           | 146                 | 3                            | 140   | 152           |  |
| 80             | 482                       | 31            | 433         | 557           | 149                 | 2                            | 146   | 153           |  |
| 86             | 463                       | 43            | 371         | 566           | 144                 | 2                            | 140   | 151           |  |
| Badsecs        |                           |               |             |               |                     |                              |       |               |  |
| 24             | 490                       | 31            | 424         | 562           | 144                 | 5                            | 133   | 154           |  |
| 26             | 498                       | 33            | 446         | 569           | 142                 | 1                            | 140   | 145           |  |
| 28             | 511                       | 51            | 418         | 653           | 148                 | 3                            | 143   | 152           |  |
| 48             | 502                       | 36            | 420         | 582           | 145                 | 6                            | 134   | 160           |  |
| 51             | 500                       | 33            | 418         | 564           | 140                 | 4                            | 133   | 148           |  |
| 78             | 503                       | 34            | 397         | 556           | 146                 | 6                            | 134   | 157           |  |
| 31             | 508                       | 41            | 432         | 571           | 147                 | 3                            | 140   | 152           |  |
| 32             | 516                       | 49            | 427         | 627           | 149                 | 3                            | 140   | 154           |  |
| 33             | 518                       | 38            | 424         | 597           | 149                 | 8                            | 129   | 163           |  |
| 52             | 494                       | 30            | 428         | 551           | 143                 | 6                            | 133   | 153           |  |
| 63             | 526                       | 36            | 433         | 595           | 147                 | 7                            | 138   | 161           |  |
| 69             | 508                       | 37            | 454         | 615           | 146                 | 4                            | 131   | 153           |  |
| 73             | 506                       | 35            | 428         | 589           | 146                 | 4                            | 139   | 156           |  |
| 76             | 493                       | 34            | 430         | 593           | 144                 | 4                            | 135   | 152           |  |
| 84             | 486                       | 27            | 433         | 544           | 144                 | 6                            | 134   | 157           |  |
| 85             | 503                       | 34            | 418         | 594           | 149                 | 4                            | 141   | 157           |  |

|                | Ci                  | rystallogra   | phic templo | ate           | Smoo                | oth superl    | nelical temp | olate         |
|----------------|---------------------|---------------|-------------|---------------|---------------------|---------------|--------------|---------------|
| Sequence_ID    | $\langle U \rangle$ | $\sigma_{_U}$ | $U_{0}$     | $U^{\dagger}$ | $\langle U \rangle$ | $\sigma_{_U}$ | $U_{_0}$     | $U^{\dagger}$ |
| 27             | 452                 | 38            | 386         | 532           | 128                 | 4             | 119          | 138           |
| 30             | 490                 | 38            | 395         | 559           | 142                 | 4             | 134          | 148           |
| 43             | 484                 | 35            | 389         | 579           | 136                 | 4             | 130          | 142           |
| 53             | 488                 | 30            | 437         | 549           | 140                 | 4             | 132          | 147           |
| 55             | 489                 | 36            | 422         | 556           | 142                 | 3             | 135          | 146           |
| 56             | 493                 | 28            | 450         | 538           | 142                 | 6             | 133          | 149           |
| 59             | 485                 | 49            | 397         | 593           | 142                 | 4             | 134          | 151           |
| 66             | 515                 | 42            | 397         | 616           | 147                 | 5             | 138          | 156           |
| 67             | 521                 | 48            | 444         | 602           | 152                 | 4             | 141          | 158           |
| 74             | 512                 | 40            | 432         | 602           | 143                 | 4             | 137          | 151           |
|                |                     |               | Synthetic   | SELEX sequ    | ences               |               |              |               |
| 10nvp          | 477                 | 32            | 407         | 561           | 136                 | 5             | 121          | 150           |
| 11nvp          | 483                 | 41            | 390         | 579           | 137                 | 5             | 126          | 149           |
| 13nvp          | 467                 | 36            | 368         | 615           | 132                 | 7             | 114          | 146           |
| 16nvp          | 488                 | 36            | 371         | 595           | 139                 | 6             | 124          | 151           |
| 18nvp          | 479                 | 40            | 362         | 611           | 138                 | 5             | 127          | 149           |
| 22nvp          | 480                 | 38            | 376         | 577           | 138                 | 6             | 124          | 153           |
| 24nvp          | 481                 | 34            | 364         | 575           | 139                 | 5             | 122          | 148           |
| 25nvp          | 479                 | 41            | 368         | 629           | 139                 | 5             | 128          | 152           |
| 26nvp          | 493                 | 38            | 397         | 589           | 141                 | 7             | 124          | 155           |
| 28nvp          | 485                 | 40            | 368         | 597           | 140                 | 7             | 124          | 155           |
| 29nvp          | 484                 | 42            | 390         | 609           | 140                 | 6             | 124          | 150           |
| 2nvp           | 490                 | 38            | 400         | 630           | 140                 | 4             | 130          | 147           |
| 30nvp          | 481                 | 31            | 416         | 572           | 138                 | 5             | 126          | 154           |
| 34nvp          | 483                 | 41            | 345         | 584           | 138                 | 4             | 128          | 148           |
| 37nvp          | 471                 | 38            | 359         | 586           | 138                 | 5             | 126          | 149           |
| 38nvp          | 471                 | 42            | 382         | 605           | 136                 | 5             | 122          | 148           |
| 40nvp          | 469                 | 41            | 345         | 601           | 134                 | 6             | 122          | 152           |
| 41nvp          | 477                 | 37            | 399         | 562           | 136                 | 4             | 125          | 150           |
| 52nvp          | 481                 | 38            | 378         | 589           | 137                 | 5             | 123          | 146           |
| 54nvp          | 484                 | 41            | 393         | 643           | 138                 | 7             | 123          | 155           |
| 5nvp           | 483                 | 38            | 394         | 599           | 140                 | 4             | 128          | 151           |
| 602nvp rev rev | 477                 | 37            | 382         | 573           | 136                 | 7             | 124          | 154           |

| Crystallographic template |                     |                 | Smoo    | oth superh    | elical temp         | olate         |         |               |
|---------------------------|---------------------|-----------------|---------|---------------|---------------------|---------------|---------|---------------|
| Sequence_ID               | $\langle U \rangle$ | $\sigma_{_{U}}$ | $U_{0}$ | $U^{\dagger}$ | $\langle U \rangle$ | $\sigma_{_U}$ | $U_{0}$ | $U^{\dagger}$ |
| 603nvp                    | 487                 | 44              | 358     | 618           | 138                 | 5             | 124     | 150           |
| 604rnvp                   | 496                 | 37              | 415     | 594           | 141                 | 5             | 129     | 154           |
| 605nvp                    | 489                 | 39              | 371     | 575           | 139                 | 5             | 126     | 153           |
| 607nvp_rev_rev            | 476                 | 39              | 347     | 571           | 135                 | 4             | 123     | 146           |
| 609nvp                    | 475                 | 41              | 381     | 587           | 136                 | 7             | 118     | 152           |
| 611nvp                    | 466                 | 37              | 361     | 585           | 132                 | 5             | 121     | 143           |
| 613nvp                    | 476                 | 41              | 372     | 583           | 138                 | 5             | 126     | 149           |
| 615fnvp                   | 475                 | 39              | 342     | 590           | 134                 | 6             | 123     | 152           |
| 618nvp_rev_rev            | 479                 | 37              | 390     | 587           | 137                 | 4             | 128     | 146           |
| 620nvp_rev_rev            | 470                 | 40              | 366     | 577           | 133                 | 5             | 121     | 146           |
| 621rnvp                   | 480                 | 36              | 390     | 565           | 137                 | 5             | 125     | 152           |
| 624bnvp                   | 481                 | 36              | 389     | 570           | 137                 | 4             | 129     | 145           |
| 626nvp                    | 488                 | 34              | 399     | 579           | 139                 | 5             | 126     | 150           |
| 628nvp_rev_rev            | 477                 | 43              | 374     | 586           | 136                 | 8             | 117     | 157           |
| 69nvp                     | 475                 | 44              | 373     | 610           | 135                 | 7             | 119     | 149           |
| 6nvp                      | 474                 | 39              | 386     | 576           | 134                 | 5             | 122     | 149           |
| 73nvp                     | 485                 | 44              | 358     | 628           | 139                 | 5             | 123     | 148           |
| 7nvp                      | 485                 | 35              | 408     | 593           | 137                 | 5             | 128     | 149           |
| 83nvp                     | 472                 | 42              | 340     | 630           | 137                 | 6             | 123     | 152           |

<sup>§</sup> Threading scores reported for individual sequences are the total dimeric scores computed with Eqn. (1) using all six step parameters and elastic constants and rest states based on the dimer steps from all conformational categories, *i.e.*, the A+B+AB dataset in Table 1. Values include the mean score  $\langle U \rangle$  and the standard deviation  $\sigma_U$  for all possible settings of each sequence on the designated templates as well as the lowest and highest scores  $U_0$  and  $U^{\dagger}$  associated with the best and worst settings of each sequence on the template.

| p. | 5 | 1 |
|----|---|---|
|----|---|---|

#### **Legends to Supplementary Figures**

- Figure S1. Collective scatter plots of the rigid-body (step) parameters found for the ten unique DNA basepair steps in the high-resolution protein-DNA crystal complexes that make up the reference database, the sequence-dependent potentials derived from these data, and the step-parameter values found in nucleosomal DNA. Small black dots correspond to the points used to derive the potentials (solid contours) and large red dots to the states that the given dimers adopt in the currently best-resolved nucleosome core particle structure (NDB\_ID pd0287, Davey *et al.* 2002. *J. Mol. Biol.* 319, 1097-1113). Ellipses are projections of the multi-dimensional potentials on the specified conformational planes obtained from the 2 × 2 covariance matrices of observed values: (a) Roll-Twist; (b) Roll-Slide; (c) Twist-Slide. Contours correspond to deviations of parameters equal to two times the combined root-mean-square deviations from the intrinsic (mean) values. Average values of step parameters are highlighted by thin (dashed) lines. The three columns show the respective deformational patterns of individual purine-purine (RR), purine-pyrimidine (RY), and pyrimidine-purine (YR) steps. Note the absence of CG steps in the nucleosomal DNA. Images kindly provided by Guohui Zheng.
- Figure S2. Comparative variation of Twist, expressed the number of base pairs that would form a complete turn of an ideal, naturally straight helix, as a function of DNA superhelical position in two 147-bp nucleosome core-particle structures: (top) the DNA pathway in the currently best-resolved nucleosome core particle structure (NDB\_ID pd0287/PDB\_ID 1kx5, Davey *et al.* 2002. *J. Mol. Biol.* 319, 1097-1113); (bottom) the pathway adopted by the same sequence in the presence of cisplatin (NDB\_ID pd1046/PDB\_ID 3b6f, Wu & Davey. 2008. *Nature Chem. Biol.* 4, 110-112). Superhelical positions correspond to the number of double-helical turns a dimeric step is displaced from the structural dyad on the central base pair (here denoted by 0). Color-coded lines denote the helical repeat in the canonical A-DNA (Franklin & Gosling. 1953. *Nature* 171, 740-741) and C-DNA (Marvin *et al.* 1958. *Nature* 182, 387-388) double helices.



Balasubramanian et al., Figure S1a



Balasubramanian et al., Figure S1b



Balasubramanian et al., Figure S1c



The presence of ciplatin appears to unwind nucleosomal DNA to more A-like states.

Balasubramanian et al., Figure S2