Free Energy Perturbation (FEP) Simulation on Transition States and Redesign of Butyrylcholinesterase

Wenchao Yang,^{1,2,a} Yongmei Pan,^{2,a} Fang Zheng,² Hoon Cho,² Hsin-Hsiung Tai,² and Chang-Guo Zhan^{2,*}

¹Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China ²Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, KY 40536, USA

(A) Ala to Gly

Before perturbation: Ala

After perturbation: Gly

(B) Ser to Ala

Before perturbation: Ser

After perturbation: Ala

Corresponding author. E-mail: zhan@uky.edu

(D) Phe to Ala Before perturbation: Phe After perturbation: AlaFigure S1. Structures and atom types before and after perturbations associated with (A)Ala to Gly (B) Ser to Ala (C) Glu to Asp (D) Phe to Ala.

Figure S2. Plots of the key internuclear distances vs the time in the MD-simulated TS1 structure for (-)-cocaine hydrolysis catalyzed by A199S/A328W BChE. Traces D1, D2, and D3 refer to the distances between the carbonyl oxygen of (-)-cocaine and the hydrogen of G116, G117, and S199, respectively. Trace D4 is the internuclear distance between the carbonyl oxygen of (-)-cocaine benzoyl ester and the hydroxyl hydrogen of the S199 side chain. RMSD represents the root-mean-square deviation of the simulated positions of the protein backbone atoms from those in the initial structure.

Figure S3. Plots of the key internuclear distances vs the time in the MD-simulated TS1 structure for (-)-cocaine hydrolysis catalyzed by A199S/F227A/A328W BChE. Traces D1, D2, and D3 refer to the distances between the carbonyl oxygen of (-)-cocaine and the hydrogen of G116, G117, and S199, respectively. Trace D4 is the internuclear distance between the carbonyl oxygen of (-)-cocaine benzoyl ester and the hydroxyl hydrogen of the S199 side chain. RMSD represents the root-mean-square deviation of the simulated positions of the protein backbone atoms from those in the initial structure.

Figure S4. Plots of the key internuclear distances vs the time in the MD-simulated TS1 structure for (-)-cocaine hydrolysis catalyzed by A199S/F227A/A328W/E441D BChE. Traces D1, D2, and D3 refer to the distances between the carbonyl oxygen of (-)-cocaine and the hydrogen of G116, G117, and S199, respectively. Trace D4 is the internuclear distance between the carbonyl oxygen of (-)-cocaine benzoyl ester and the hydroxyl hydrogen of the S199 side chain. RMSD represents the root-mean-square deviation of the simulated positions of the protein backbone atoms from those in the initial structure.

Figure S5. Plots of the key internuclear distances vs the time in the MD-simulated TS1 structure for (-)-cocaine hydrolysis catalyzed by A199S/F227A/S287A/A328W/E441D BChE. Traces D1, D2, and D3 refer to the distances between the carbonyl oxygen of (-)-cocaine and the hydrogen of G116, G117, and S199, respectively. Trace D4 is the internuclear distance between the carbonyl oxygen of (-)-cocaine benzoyl ester and the hydroxyl hydrogen of the S199 side chain. RMSD represents the root-mean-square deviation of the simulated positions of the protein backbone atoms from those in the initial structure.

Figure S6. Incremental changes of ΔG_E (A) and ΔG_{TS1} (B) as function of λ for mutation from the free enzyme (A) or the TS1 structure (B) of A328W to A328W/A199S. The error bars indicate the standard deviation of each partial sum of the energy changes.

Gigure S7. Incremental changes of ΔG_E (A) and $\Delta G_{TS1}(B)$ as function of λ for mutation from the free enzyme (A) or the TS1 structure (B) of A328W/A199S to A328W/A199S/F227A. The error bars indicate the standard deviation of each partial sum of the energy changes.

Figure S8. Incremental changes of ΔG_E (A) and $\Delta G_{TS1}(B)$ as function of λ for mutation from the free enzyme (A) or the TS1 structure (B) of A328W/A199S/F227A to A328W/A199S/F227/E441D. The error bars indicate the standard deviation of each partial sum of the energy changes.

Figure S9. Incremental changes of ΔG_E (A) and $\Delta G_{TS1}(B)$ as function of λ for mutation from the free enzyme (A) or the TS1 structure (B) of A328W/A199S/F227A/E441D to A328W/A199S/F227A/S287A. The error bars indicate the standard deviation of each partial sum of the energy changes.

Figure S10. Incremental changes of $\Delta G_E(A)$ and $\Delta G_{TS1}(B)$ as function of λ for mutation from the free enzyme (A) or the TS1 structure (B) of A328W/A199S/F227A/E441D/S287A to A328W/A199S/F227A/E441D/S287G. The error bars indicate the standard deviation of each partial sum of the energy changes.

Figure S11. Superimposing of the TS1 structure corresponding to the A328W/A199S mutant (before the perturbation, magenta) with that corresponding to the mutant A328W (after the perturbation, yellow). The colors of the side chain atoms in residue Ser199 (before the perturbation) or Ala199 (after the perturbation) are shown according to their atom types

Figure S12. TS1 structure with the A328W mutant after the perturbation. The colors of key atoms are shown according to their atom types. The orange ribbon indicates the backbone of the molecule. The dashed lines in yellow indicate the hydrogen bonds between (-)-cocaine and the oxyanion hole of the mutant. The simulated average distances are given for the hydrogen bonds. The dashed lines in the white refer to the transition bonds. The atoms highlighted as balls include several key H atoms (grey balls) from the oxyanion hole of the protein and the O atom (red ball) of the (-)-cocaine carbonyl group.

Figure S13. TS1 structure with the A199S/A328W mutant before the perturbation. The colors of key atoms are shown according to their atom types. The orange ribbon indicates the backbone of the molecule. The dashed lines in yellow indicate the hydrogen bonds between (-)-cocaine and the oxyanion hole of the mutant. The simulated average distances are given for the hydrogen bonds. The dashed lines in the white refer to the transition bonds. The atoms highlighted as balls include several key H atoms (grey balls) from the oxyanion hole of the protein and the O atom (red ball) of the (-)-cocaine carbonyl group.

Figure S14. Superimposing of the two TS1 structures associated with the A328W mutant (yellow) and the A328W/A199S/F227A/E441D/S287G mutant (pink). The stick structures indicate the backbone of the TS1 structures. The four mutated residues are colored. This figure reveals that the active site cavity of the A328W/A199S/F227A/E441D/S287G mutant is slightly (not dramatically) larger than that of the A328W mutant.

Details of parameter development

The lengths of the transition bonds and the partial charges of the cocaine atoms in the TS1 structure were defined and calculated based on the geometries obtained from previous *ab initio* reaction coordinate calculations on the cocaine hydrolysis catalyzed by wild-type BChE.²⁰ The atoms specific to the TS1 structure are given new atom types and the involving bond and angle parameters are defined in a separate file. In detail, for the atoms involving the transition bonds, for example the carbonyl carbon of the benzoyl ester of cocaine, which has partially formed bond with the hydroxyl oxygen of Ser198 in the TS1 structure, a new atom type is defined and the corresponding parameters are set according to the geometry calculated from *ab initio* calculation. Another two new atom types are defined for the hydroxyl hydrogen of the attacking Ser198 and the delta hydrogen of His438. Other parameters concerning the substrate and the protein are those defined by Amber.

Parameter file of TS1 structure

Parameter fi MASS	lle specifi	c to trans	sition state TS1		
cx 12.01 cocaine	0.616	5 !	carbonyl carbo	on of benzoyl ester	of
GN 1.008 His438	0.161	-	Hydrogen attac	ched to delta N in	
GO 1.008	0.135	5	Hydroxyl group	p H in Ser198	
BOND	1 250	202			
CX-OS 401.8	3 1.350 1 1.260	COG	in TC1		
CX=0 340.4	1 1 990	COG	in TC1		
cx-ca 346 5	5 1 490	COG	in TQ1		
GN-NA 434 (1.10	сос нр1	in HIS of TS1		
GN-02 434 (1 430	Adde	ed bond for TS1		
GO-OH 553.(1.120	HG	in SER of TS1		
GO-NB 553.0) 1.420	adde	ed bond		
00 112 00010	,				
ANGLE					
os-c-ca (57.662	110.765	Calculated with e	empirical approach	
CX-OS-C3	63.0	110.91	NEW_MP2/6-31G COU	Ξ.	
o -cx-os	15.4	110 765	MPZ/6-31G* COG		
os-cx-ca d	67 1	126 40	Sallie as OS-C -Ca	r	
ca-cx-o	62 0	120.40	NEW_MP2/0-31G COONEW MD2/6-31C COONEW	ד ר	
ct-OH-cx	50 5	109 50	new type for COG	and $eer197$	
CT-OH-CX	50.5	109.50	new type for COG	and ser197	
OH-CX-OS	60.5	110.02	new type reduced	force	
OH-CX-O	60.5	110.02	only bond length	important	
ca-cx-OH	50.9	120.00			
cx-OH-GO	50.9	109.06	above are for COO	E C	
cx-OH-HO	50.9	109.06	above are for COO	4	
CC-NA-GN	50.0	125.00	GN is H in his in	ı TS1	
CR-NA-GN	50.0	125.00	GN is H, his in 7	rs1	
CT-OH-GO	55.0	108.50	GO is HG in SER i	for TS1	
C -02-GN	50.1	160.00			
02-GN-NA	50.1	170.00			
OH-GO-NB	50.1	160.00			
GO-NB-CR	50.1	125.00			
GO-NB-CV	50.1	125.00			
DIHE					
X -cx-os-X	2 5.4	100 i	180.000	2.000	
X -cx-ca-X	4 14.5	500	180.000	2.000	
intrpol.bsd.	on C6H6				
X -cx-OH-X	2 0.0	000	0.000	3.000 3-fold, r	10
force					
CT-C -02-GN	2 0.0	000	180.000	2.000	
C -O2-GN-NA	2 0.0	000	180.000	2.000	
02-C -02-GN	2 0.0	000	180.000	2.000	
02-GN-NA-CC	2 0.0	000	180.000	2.000	
02-GN-NA-CR	2 0.0	000	180.000	2.000	
CT-OH-GO-NB	2 0.0	000	180.000	2.000	
OH-GO-NB-CR	2 0.0	000	180.000	2.000	

OH-GO-NB-CV cx-OH-GO-NB	2 2	0.000 0.000	180.000 180.000	2.000 2.000	
IMPROPER					
c3-o -c -os value		1.1	180.0	2.0	Using default
ca-o -c -os value		1.1	180.0	2.0	Using default
c -ca-ca-ca value		1.1	180.0	2.0	Using default
ca-ca-ca-ha value		1.1	180.0	2.0	Using default
c3-o -cx-os value		1.1	180.0	2.0	Using default
ca-o -cx-os value		1.1	180.0	2.0	Using default
cx-ca-ca-ca value		1.1	180.0	2.0	Using default

NONBON

CX	1.9080	0.0860	OPLS (c type)
GN	0.6000	0.0157	Hydrogen on N
GO	0.0000	0.0000	Hydroxyl H

Partial charges on cocaine atoms in TS1 structure

Atom	atom type	charge
C1	с3	-0.082
Н2	h1	0.122
Н3	h1	0.122
H4	hl	0.122
05	os	-0.335
CG	С	0.665
07	0	-0.573
C8	с3	-0.021
Н9	hc	0.073
C10	с3	-0.018
N20	n4	-0.020
C22	c3	-0.263
H23	hx	0.146
H24	hx	0.146
Н25	hx	0.146
H21	hn	0.394
H11	hx	0.104
C12	c3	-0.067
H13	hc	0.069
H14	hc	0.076
C15	c3	-0.101
H16	hc	0.077
H17	hc	0.078
C18	c3	0.023
H19	hx	0.106
C26	c3	-0.144
H27	hc	0.079
H28	hc	0.102
C29	c3	0.111
Н30	hl	0.152

031	OS	-0.349
C32	CX	0.580
033	0	-0.625
C34	ca	-0.036
C35	ca	-0.098
Н3б	ha	0.154
C37	ca	-0.147
H38	ha	0.154
C39	ca	-0.093
H40	ha	0.157
C41	ca	-0.150
H42	ha	0.154
C43	ca	-0.119
H44	ha	0.129

Force field parameters for perturbed residues

Perturbed	Gly f	rom Ala	a	
MASS		0 0		
DH 0.00		0.0	1	
BOND				
H1-DH 34	0.0	1.09		
		2.02		
ANGLE				
DH-H1-DH	35.0		109.50	
DH-H1-CT	50		109.50	
DIHE				
H1-CT-C-N	1	0.0	0.	4.
H1-CT-C-N	1	0.0	0.	2.
C-N-CT-H1	1	0.0	0.	1.
C-N-CT-H1	1	0.0	0.	3.
C-N-CT-H1	1	0.0	0.	4.
C-N-CT-H1	1	0.0	0.	2.
C-N-CT-CT	1	0.0	0.	2.
C-N-CT-CT	1	0.0	0.	1.
C-N-CT-CT	1	0.0	0.	3.
C-N-CI-CI	1	0.0	0.	4.
DH-HI-CI-N	⊥ 1 1	0.0	0.	3. 2
	1	0.0	0.	J.
0 - C - CT - CT	1	0.0	0.	2.
0-C-CT-H1	1	0.0	0.	2.
O-C-CT-H1	1	0.0	0.	1.
O-C-CT-H1	1	0.0	0.	3
O-C-CT-CT	1	0.0	0.	3.
C-CT-H1-DH	1	0.0	0.	3.
IMPROPER				
H1-DH-DH-D	H	0	.0	0.
CT-DH-HC-D	H	0	.0	0.0
NONBON	0 0	0 0 0		
DH	0.0	0.0		

2 2.

Perturbed Ala from Ser

MASS DH 0.00 0.0 !

BOND

HC-DH 553.0 0.96

ANGLE

СТ-НС-DH 55.0 108.50

DIHE

DH-HC-CT-HC	1	0.00	0.0	3.
CT-CT-HC-DH	1	0.00	0.0	3.0
CT-CT-HC-DH	1	0.00	0.0	2.0
CT-CT-HC-DH	1	0.0	0.	1
H1-CT-C-N	1	0.0	0.	4
CT-CT-OH-HO	1	0.0	0.	1
СТ-СТ-ОН-НО	1	0.0	0.	2
CT-CT-OH-HO	1	0.0	0.	3
H1-CT-OH-HO	1	0.0	0.	2
H1-CT-OH-HO	1	0.0	0.	3
H1-CT-OH-HO	1	0.0	0.	2
H1-CT-CT-HC	1	0.0	0.	1
H1-CT-CT-HC	1	0.0	0.	3
H1-CT-CT-HC	1	0.0	0.	3
H1-CT-CT-OH	1	0.0	0.	3
H1-CT-CT-OH	1	0.0	0.	1
H1-CT-CT-H1	1	0.0	0.	1
H1-CT-CT-H1	1	0.0	0.	3
H1-CT-C-N	1	0.0	0.	2
HC-CT-HC-DH	1	0.0	0.	2.
C-CT-H1-DH	1	0.0	0.	3.
C-N-CT-H1	1	0.0	0.	1
C-N-CT-H1	1	0.0	0.	4
C-N-CT-H1	1	0.0	0.	3
C-N-CT-H1	1	0.0	0.	2
C-N-CT-CT	1	0.0	0.	1
C-N-CT-CT	1	0.0	0.	2
C-N-CT-CT	1	0.0	0.	3
C-N-CT-CT	1	0.0	0.	4
O-C-CT-CT	1	0.0	0.	1
O-C-CT-CT	1	0.0	0.	3
O-C-CT-CT	1	0.0	0.	2
O-C-CT-H1	1	0.0	0.	2
O-C-CT-H1	1	0.0	0.	1
O-C-CT-H1	1	0.0	0.	3
H1-CT-OH-HO	1	0.0	0.	1.
HC-CT-HC-DH	1	0.0	0.	1.
HC-CT-HC-DH	1	0.0	0.	2
HC-CT-HC-DH	1	0.0	0.	3.
IMPROPER				
NA-CA-CN-CB		0.0	0.	2.
NONBON				
DH	0.00	0.0		

Perturbed Asp from MASS	om Glu	
DC 0.00 DH 0.00	0.0 ! 0.0	gamma C of Glu
BOND DC-DH 340.0 CT-DC 317.0 DC-C 310.0	1.090 0.76 0.76	
ANGLE CT-DC-C 63.0 DC-CT-CT 40.0 DC-C-O2 70.0 DH-DC-DH 35.0 DH-DC-C 50.0 DH-DC-CT 50.0 HC-CT-DC 50.0	180.00 180.0 117.00 109.50 60.0 60.0 109.50	
DIHE DH-DC-C-O2 1 DH-DC-CT-C 1 DC-CT-CT-C 1 DC-CT-CT-C 1 HC-CT-DC-DH 1 HC-CT-DC-CH 1 HC-CT-DC-C 1 HC-CT-DC-C 1 HC-CT-DC-CH 1 CT-DC-CO2 1 CT-CT-DC-DH 1 CT-CT-DC-DH 1 CT-CT-DC-DH 1 CT-CT-DC-DH 1 CT-CT-DC-CH 1 HC-CT-CT-DC-DH 1 HC-CT-CT-DC-DH 1 HC-CT-CT-DC-DH 1 HC-CT-CT-DC-C 1 HC-CT-CT-CT-HC 1 HC-CT-CT-CO2 1 CT-CT-CT-CT-C 1 CT-CT-CT-CT-C 1 CT-CT-CT-CT-C 1 HC-CT-CT-CT-C 1 CT-CT-CT-CT-C 1 CT-CT-CT-CT-C 1 CT-CT-CT-CT-C 1 CT-CT-CT-CT-C 1 CT-CT-CT-CT-C 1 CT-CT-CT-CT-C 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2. 3. 3. 2. 3. 3. 2. 3. 3. 2. 3. 3. 2. 3. 3. 2. 3. 3. 2. 3. 3. 2. 3. 3. 2. 3. 3. 2. 3. 3. 2. 3. 3. 2. 3. 3. 2. 3. 3. 2. 3. 3. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3
IMPROPER CT-DH-DC-C CT-DH-DC-C DH-DH-DC-C CT-HC-CT-DC CT-HC-CT-DC HC-HC-CT-DC CT-DH-DC-DH CT-HC-CT-HC	0.0 0. 2 0.0 0. 3 0.0 0. 2 0.0 0. 2 0.0 0. 2 0.0 0. 2 0.0 0. 2 0.0 0. 2 0.0 0. 2 0.0 0. 2 0.0 0. 2 0.0 0. 2	· · · · · · · · · · · · · · · · · · ·

CT-HC-CT-C CT-HC-CT-C CT-HC-CT-CT CT-HC-CT-CT HC-HC-CT-CT HC-HC-CT-C		0.0 0.0 0.0 0.0 0.0 0.0	0. 0. 0. 0. 0.	2. 3. 2. 3. 2. 2.				
NONBON DC DH	0.00	0.0 0.0						
Perturbed A	la fr	om Phe						
MASS DH 0.00 DC 0.00		0.0	!		aromatic	carbon	of Pł	ne
BOND DC-DH 367 HC-DC 469 DC-DC 469	.0 .0 .0	1.08 1.40 1.40						
ANGLE DC-DC-DH HC-DC-DC HC-DC-DH CT-HC-DC DC-DC-DC DC-HC-DC	50.0 53.0 50.0 70.0 53.0 53.0	1 1 1 1 1	20.00 20.00 20.0 20.0 20.0 20.0					
$\begin{array}{l} \text{DIHE} \\ \text{DH-HC-CT-HC} \\ \text{CB-HC-CT-CT} \\ \text{CT-CT-HC-DH} \\ \text{CT-CT-HC-DH} \\ \text{CT-CT-HC-DH} \\ \text{DC-HC-CT-HC} \\ \text{HC-CT-HC-DC} \\ \text{CT-CT-HC-DC} \\ \text{CT-CT-HC-DC} \\ \text{CT-CT-HC-DC} \\ \text{CT-CT-HC-DC} \\ \text{HC-CT-HC-DC} \\ \text{HC-CT-HC-DC} \\ \text{HC-CT-HC-DC} \\ \text{HC-DC-DC-DH} \\ \text{CT-DC-HC-DC} \\ \end{array}$	1 1 1 1 6 6 6 4 4	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$		$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$		3. 1 3.0 2.0 1 1 2. 2 1 3 2 3 2 2 2		
IMPROPER CT-DH-HC-DH HC-DH-DC-DC DC-DH-DC-DC DC-DH-DC-DC HC-DC-DC-DH CT-DC-HC-DC		0.0 0.0 0.0 0.0 0.0 0.0		0 0 0 0 0	0 0 0 0 0	2. 2. 2. 2. 2. 2.		
NONBON DH DC	0.00	0.0						