Sharma et al.

Supplemental Table 1. Hematopoietic parameters and lineages of peripheral blood

Supplemental Table 1: Hematopoletic parameters and integes of perspireral blood										
	RBC,				MCV,		WBC,	MON,		
	10^{6}	HGB, g/	НСТ,	PLT,	femto-	MCH,	10^{3}	10^{3}	EOS, 10^3	BAS, 10^3
Genotype	cells/µl	deciliter	percent	10^{3}	liter	picogram	cells/µl	cells/µl	cells/µl	cells/µl
	·			cells/µl			•	•	·	·
B6 +/+	10	15	46	1220	45	15	11	0.12	0.20	0.03
(n = 17)	(± 0.3)	(± 0.7)	(± 1.5)	(± 42)	(± 0.3)	(± 1.0)	(± 0.4)	(± 0.007)	(± 0.02)	(± 0.002)
W- v /+	9.1*	15	43	1205	48†	17	9.5	$0.09 \ddagger$	0.14‡	0.03
(n = 16)	(± 0.3)	(± 0.4)	(± 1.7)	(± 60)	(± 0.5)	(± 0.5)	(± 0.5)	(± 0.007)	(± 0.01)	(± 0.002)
W-41/+	9.7	16	46	1152	48†	16	9.6	$0.09 \ddagger$	0.12‡	0.02*
(n = 16)	(± 0.2)	(± 0.2)	(± 1.2)	(± 50)	(± 0.3)	(± 0.3)	(± 0.4)	(± 0.005)	(± 0.009)	(± 0.002)
W-41/W-41	8.1†	13	38*	1001‡	51†	17	9.5	0.1	0.14‡	0.03
(n = 16)	(± 0.3)	(± 0.8)	(± 2.0)	(± 41)	(± 0.3)	(± 1.2)	(± 0.6)	(± 0.01)	(± 0.02)	(± 0.002)
W-42 /+	7.5†	14	39*	1317	52†	19*	9.3	0.1	0.14‡	0.03
(n = 16)	(± 0.4)	(± 0.5)	(± 2.6)	(± 101)	(± 0.7)	(± 1.6)	(± 0.5)	(0.008)	(± 0.01)	(± 0.003)

Data are from males and females, 3–5 months old, and were analyzed with Jmp software. RBC = red blood cells, HGB = hemoglobin, HCT = hematocrit, PLT = platelet, MCV = mean corpuscular volume, MCH = mean corpuscular height, WBC = white blood cells, MON = monocytes, EOS = eosinophils and BAS = basophils. Values significantly different from +/+ are indicated as follows: *P < 0.05, ‡P < 0.01), †P < 0.0001.

Supplemental Table 2. Kit mutant effects on cell numbers at each HSC stage of differentiation

	Differentiation Stage:										
Donor	HSC	MPP	CLP	CMP	MEP	GMP					
B6 +/+	0.02	44.5	0.04	0.08	25.3	59.5					
W-v/+	0.03	45.4	0.04	0.06	31.4	50.5					
W-42/+	0.01	53.3	0.03	0.04	32.2	51.6					
W-41/W-41	0.01	48.1	0.05	0.08	47.3	43.3					

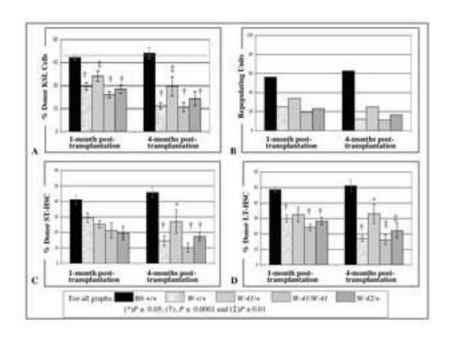
HSC include both LT and ST HSC, while the other precursor types are defined in Figure

1.

Total cell numbers in both femurs and tibias were:

$$B6 = 4.37 \times 10(7) \text{ cells/ml}$$

$$W-v/+ = 4.29 \times 10(7) \text{ cells/ml}$$


$$W-42/+ = 3.68 \times 10(7) \text{ cells/ml}$$

$$W-41/W-41 = 4.02 \times 10(7)$$
 cells

Supplemental Figure 1. Stage-specific competitive repopulation

Legend: Six million competitor and donor bone marrow cells were mixed before transplanting into each irradiated recipient. Six mice were analyzed per genotype at each time point. All data points are given as mean ± standard error (SE). RU values were calculated from mean percentages of donor and competitor cells. (A) Percentages of KSL (total HSC and MPP) cells from each donor are shown at 1 and 4 months post transplantation. The dotted line indicates the 50% mark. (B) RU values calculated from percentages of donor and competitor KSL cells in A are given. (C & D) Percentages of donor-derived ST- and LT-HSC were determined with Flk2. ST-HSC are Flk2⁺, while LT-HSC are Flk2⁻.

Supplemental Figure 1 Click here to download high resolution image

