Supplementary Material for:

PARACEST Properties of a Dinuclear Neodymium (III) Complex Bound to DNA or Carbonate

Kido Nwe, Christopher M. Andolina, Ching-Hui Huang and Janet R. Morrow* Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260

Figure S1. CEST spectra of Nd₂(1) (5.0 mM complex, 10 mM HEPES, 50 mM NaNO₃) as a function of irradiation time (•) 3s (\circ), (Δ) 5s and (∇) 7s. $B_1 = 1,000$ Hz, T = 25°C

Figure S2. ¹H NMR spectra of 5 mM Nd₂(1) in H₂O (top) and D₂O (bottom) pH 7.4 (pD 7.0), 10 mM HEPES and 25°C. Note the lack of a proton resonance corresponding to the CEST peak for the amide protons at 16-17 ppm.

Figure S3. Top: CEST spectra of Nd₂(**11**) (5.0 mM complex, 10 mM hepes, 50 mM NaNO₃) at pH 6.5 (●), 7.0 (○), 7.5 (♥) and 8.0 (△). $B_1 = 1,500$ Hz, T = 25°C. shift water to zero

Figure S4. CEST spectra of 10 mM Nd₂(**1**) (○), and 10 mM of Eu₂(**1**)(◀) at pH 7.0, 10 mM Hepes buffer, 50 mM NaNO₃, 25 °C, $B_1 = 1,500$ Hz.

Figure S5. CEST spectra of Nd₂(1) 5.0 mM (\bullet) titrated with 0 mM DEP (\bullet), 5.0 mM DEP (\circ) at pH 7.0, 10 mM HEPES, 50 mM NaNO₃, 25 °C.

Figure S6. The CEST effect of Nd₂(1) is decreased upon addition of carbonate. CEST spectra of Nd₂(1) (5.0 mM complex, 10 mM HEPES, 50 mM NaNO₃) (•), addition of 5mM NaHCO₃ (\circ), carbonate removed by treatment with Pb(NO₃)₂ ($\mathbf{\nabla}$), T = 25°C.

Figure S7. ${}^{7}F_{0} \rightarrow {}^{5}D_{0}$ excitation spectra (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ emission) of solutions of 25 µM Eu₂(1) (•) titrated with **HP2** DNA at pH = 7.0, 20 mM HEPES, 50 mM NaNO₃. Binding isotherm is fit to eq. 3 with a K_d of 4.2 µM (n=12).

Figure S8. ${}^{7}F_{0} \rightarrow {}^{5}D_{0}$ excitation spectra (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ emission) of solutions of 25 μ M Eu₂(1) (•) titrated with double stranded **GGCCGGCC** DNA at pH = 7.0, 20 mM HEPES, 50 mM NaNO₃. Binding isotherm is fit to eq. 3 with K_d of 28 μ M (n=6.9).

Figure S9. ${}^{7}F_{0} \rightarrow {}^{5}D_{0}$ excitation spectra (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ emission) of solutions of 100 µM Eu₂(1) titrated with **HP1** DNA at pH = 7.0, 20 mM HEPES, 50 mM NaNO₃. Binding isotherm is fit a linear equation.

Figure S10. ${}^{7}F_{0} \rightarrow {}^{5}D_{0}$ excitation spectra (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ emission) of solutions of 20 µM Eu₂(1) carbonate complex (•) titrated with 2 µM (\circ), 4 µM (\blacktriangledown), 6 µM (Δ) and 8 µM (•) **HP1** DNA at pH = 7.0, 20 mM HEPES, 50 mM NaNO₃. b) Deconvoluted ${}^{7}F_{0} \rightarrow {}^{5}D_{0}$ excitation spectra of Eu₂(1) (20 µM) in the presence of 8 µM of **HP1** DNA. Peaks centered at 580.20 and 580.45 nm are attributed to carbonate complex. The peak that grows in at 578.82 nm is the Eu₂(1) complex with **HP1**.