Biophysical Journal, Volume 97

Supporting Material

Interaction of oxazole yellow dyes with DNA studied with hybrid optical tweezers and fluorescence microscopy

C.U. Murade, V. Subramaniam, C. Otto and Martin L. Bennink

Supplementary information for

Interaction of oxazole yellow dyes with DNA studied with hybrid optical tweezers and fluorescence microscopy

C.U. Murade, V. Subramaniam, C. Otto and Martin L. Bennink*

Department of Biophysical Engineering and MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.

*Corresponding Author: Martin Bennink Dept. of Biophysical Engineering MESA+ Institute for Nanotechnology Faculty of Science and Technology University of Twente PO Box 217 7500 AE Enschede The Netherlands

Fig. S1 (A) Force extension curves of DNA-YOYO complex (only extension curves) pulled at 3 μ m/s in the presence of various concentrations of YOYO, gray lines presents the MWLC fit to the extension curves. Parameters resulting from the fitting are presented in Table 1 in the main text.

(B-F) Force extension of DNA-YOYO complex at 100 nM pulled at different pulling speeds (B-F: 1, 2, 3, 9 and 20 um/s). Closed and open symbols present extension and relaxation respectively. The gray line presents MWLC fit to the extension part of each curve. Fit parameters are presented in Table 1 in the main text.

Fig. S2 Exponential fit to the data presented in the Fig. 4A.

Fig. S3 Relative drop in the force as a function of the pulling speed obtained from the force relaxation experiments. In all cases the molecule has been stretched to 23.3 μ m at different pulling speeds. The relative drop in the force is the reduction in the force during the relaxation normalized to its initial value.

Fig. S4 Force extension curves of DNA-YO complexes at various YO concentrations. The gray line presents the fit to the MWLC model. Fit parameters are presented in Table 3 in the main text.

Fig. S5 Total fluorescence intensity of the DNA-YO complex as function of extension at 100 nM YO. Dotted gray line indicates the changes in slope of the total fluorescent intensity of DNA-YO complex at $18 \,\mu$ m.

Fig. S6 (A) Force as a function of time recorded as DNA molecules are pulled to preset extensions at 3μ m/s pulling speed and then kept at these extensions in the presence of

100 nM YO in the buffer. Curve a, b, c and d represent constant extensions of 18, 20, 22, and 24, μ m respectively. (B) presents the number of YO molecules on DNA as function of time; the data points presented here are derived from the Fig. S5(A) using Eq. 2.

Fig. S7. Fractional elongation of (A) DNA-YO and (B) DNA-YOYO as function of dye concentration at different forces. The data are curve fitted with McGhee-von Hippel binding isotherm.

Fig. S8. Equilibrium force extension curves of DNA-YOYO complex obtained at various concentrations. Compared with bare DNA force extension curve.