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|. Derivation of the single-molecule kinetics of the structural dynamics of HJIC2

A.FreeHJC2

The structural dynamics of a HJ, if measured at the single-molecule level at tens of
milliseconds time resolution, follows a two-state kinetics effectively:
Ky

Ky
where | denotes conf-l1 and |1 denotes conf-I1 (see aso Figure 1 in the main text). The waiting
time 7 in the Errer trgjectories is the time needed to complete | — 11 transition; the waiting time
7 isto complete II — | transition; both are simple one-step kinetic reactions. The probability

density functions for 7 and 7, fi(7) and f(7), are both single-exponential functions, with f,(7) =
kiexp(—ki7) and f;(7) = kiexp(—k 17). The inverse of the average waiting times, <z',>71 and

<r”>_1, which represent the time-averaged single-molecule rates of | — Il and Il — | transitions
respectively, are:

(z, T w; =k, (A1)
jo #,(r)dr

<T|| >_l = m; = k—l (A2)
jo #, (r)dr

B. Apo-CueR and HJC2 interactions

The kinetic mechanism of apo-CueR interactions with HJC2 is shown in Figure 5A. The
kinetic processes happening during 7 are the following kinetic steps:
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The corresponding single-molecule rate equations are:

dPII (t)/dt= k1F)| (t) (B1)
dR, (t)/dt = —(k, + k,[P])P, () + k_,Pp, (1)  (B2)
dR,, (t)/dt = K,[P]R (t) —k_,Pp, (t) (B3)

where P(t)’ s are the probabilities of finding HIC2 in the corresponding states at timet and k's are
the rate constants for the transitions. At the on-set of each 7, , i.e,, right after all — | transition,
the first state that HIJC2 reaches is |; so the initial conditions for solving the above differential
equations are: B, (0) =1, R,(0)=0, P,,(0) =0, wheret = 0 being the on-set of each 7,. And at
any time, P (t)+ B, (t)+ P, (t) =1.

We can then evaluate the probability density function of z,, f,(z). The probability of
finding aparticular 7 is f, (z)Az, which is equal to the probability for HIC2 to switch from | to Il
between 7 and 7+Az, AR, (7) (1, 2). Therefore, f,(7)Az=AR, (7). In the limit of
infinitesimal Az, f,(z) is equa to dP, (r)/dz. Solving for B, (7) using equations B1-B3 by
Laplace transform, the probability density function of 7, is:
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where o = —\/%(k1 A, 4K [P)? — Kok, and B=— T k-22+ KolP) Tpen

ko

1+[P]/K,,

where K., =k ,/k, is the dissociation constant for the apo-CueR—conf-I complex. This
equation isgiven as Eq. 1 in the main text.
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The kinetic processes happening during 7 are the following kinetic steps:
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The corresponding single-molecule rate equations are:

dP (t)/dt =k, R, (1) + ksPp., (1) (B4)
dP“ (t)/dt = _(k—l + k4[P])P|| O+ k—4PP-II ®) (BY)
dP..,, () /dt = k,[P]R, (t) — (k_s + ks + ks[P]) P, (£) + k5P, (1) (B6)
dPP2-|| O/ dt =ks[P]Ps, (1) — k_5PP2_” t) (B7)

The initial conditions for solving above equations are: B, (0) =1, R(0)=0,P,,(0)=0, and
P, (0)=0.Andat any time, R (t)+ PR, (t)+ R, () + P, , () =1. Smilarly, f, () =dR(z)/dz.
Using equations B4-B7 to solvefor P(z), wecanobtain f,(z). Then,

k—l + ke[P]/ K|I3-||
1+[P]/K|;‘-|| +[P]2/(KII3—IIKP2-II)
whereK,, = (k_, +kq)/k, andK, _, =k /ks . Thisequation is given as Eq 2 in the main text.

(7a) " =1 [ o, ()de =

C. Holo-CueR and HJC2 interactions.

The kinetic mechanism for holo-CueR—HJC2 interactions is shown in Figure 5B. The
kinetic processes happening during 7 are:

The corresponding single-molecule rate equations are:

dR, (t)/dt = kR (t) + ksPp, (1) (C1)
dPI (t)/dt = _(kl + kz[P])P| 0+ k—ZPP-I (t) (C2)
dRs, () /dt = K,[PIR (1) — (k_, + k3) P, (1) (C3)

The initial conditions are P (0)=1, P,(0)=0 and F,,(0)=0 and a any time,
Rt)+PR,t)+P.,(t)=1. Similarly, f,(z)=dP,(7)/dz, and solving equations C1-C3 for P, (7) ,
we can obtain f, (z) , and
K, +[Plks / Kp,
1+[P/K,,
where K., = (k_, +k;)/k, . Thisequation is given as Eq. 3 in the main text.

(z)" =1/ j:ﬁl (r)dr =

The kinetic processes happening during 7, are:



The corresponding single-molecule rate equations are:

db (t)/dt =k B, (t) + ks P,y (1) + k7PP2-II ®) (C4)
dP“ (t)/dt = _(k—l + k4[F)])F)|| (t) + k—4PP-II (t) (CH)
dP,., (t)/dt = K, [PIR, (1) = (K + ks + Ks[P)Py (1) + KsPp, . (1) (Ce)
dPPZ-II (t)/dt =k, [P]pru (t) - (ks +k;) PPZ-II ®) (C7)

The initial conditions for solving above equations are: B,(0)=1, R (0)=0,P,,(0)=0, and
P, (0)=0.Andat any time, P (t)+ P, (t) + B, (t) + B, (t) =1. Similarly, f,(z)=dR(7)/dz.
Using equations C4-C7 to solve for P(z), we can obtain f, (r)and (z,)" for holo-CueR-HJC2
interactions.

Inconveniently, the expressions of the solutions to equations C4-C7 are so tediously
complex to hamper their physical understanding. To get a clean analytical expression for <rl,>’l,
we arbitrarily set k4 = 0 and get:

LT HIPIK ke 106K )+ K /K )+ [Py M K1)
! 1+ [PI(K, /(KoK 1) +1/ Koy )+ [P (K Ko )
where K., =ks/k, and K, = (ks +k;)/ks . This equation is given as Eq. 4 in the main text.

As this equation can satisfactorily interpret the [holo-CueR] dependence of (r,,)‘l, we use it to
fit the holo-CueR datain Figure 4B to obtain other relevant kinetic parameters.
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Supporting Figures
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Figure S1. Histograms of HIC2 Errer trajectories in the absence (A) and presence of 1.0 uM
apo-PbrR691 (B). Bin size: 0.01. Each histogram is compiled from more than 100 trajectories
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Figure S2. Histograms of HJC2 Egrer trajectoriesin the presence of 0.5 uM apo-CueR (A) and
3 uM apo-CueR (B). Bin size: 0.005.
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Figure S3. Histograms of Econi.i of HIC2 (A) in the presence of 1 uM apo-CueR (B) and 1 uM
holo-CueR (C). Solid lines are Gaussian fits centered at 0.59 + 0.01 (A), 0.63 + 0.01 (B), and

0.64 + 0.01 (C).
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Figure $4. Fluorescence anisotropy experiment on Cy-3 labeled double-strand DNA containing
only half of the dyad-symmetric sequence (5-TGACCTTCCCCTTGCTTGGCTTGTT-3, the
half sequence is underlined) titrated with apo-CueR. The solid line is the fit using Eq. 5 which

gaveaKp ~ 0.7 uM.
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Figure S5. Datafrom Fig. 7 plotted against free protein concentrations.
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Figure S6. Fluorescence anisotropy experiment on Cy3-labeled HJC2 titrated with apo-CueR.

The solid line is thefit using Eq. 5 giving aKp ~ 0.5 uM which is in between the affinity of apo-
CueR to conf-I and to conf-1l of HIC2 determined from single-mol ecule measurements.

S/



