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Derivation of the fractional diffusion equation with reactive
boundary condition (Eqs. (5) and (7) in the main text)

To describe the particle exchange with the reactive boundary we establish a
system of master equations, each of which describes the probability to find a
particle at a given site. Let Ai(t) be the probability that the particle is at a
bulk site i = 1, 2, . . .. Similarly, let A0(t) be the probability that the particle is
at the exchange site i = 0. Our notation is meant as a reminder of the difference
between a bulk site and the exchange site: namely, a particle at a bulk site only
jumps whereas a particle at the exchange site either jumps or binds. We write

d

dt
Ai(t) = I+

i (t) − I−i (t), (S1a)

d

dt
A0(t) = I+

0 (t) − I−0 (t) − κA0(t) + jrelease(t). (S1b)

Here I±i (t) are the gain and loss at site i due to jumping from and to adjacent
sites i ± 1, and κA0(t) is the loss at site 0 due to binding, see also below.
Although we do not require exact knowledge of jrelease(t), it must be chosen
such that probability is conserved.

If a particle jumps from site i at time t, then it must have been there to
begin with or arrived there at some time t′ (0 < t′ < t). We have

I−i (t) = ψ(t)Ai(0) +

∫ t

0

ψ(t− t′)I+
i (t′)dt′, (S2a)

I−0 (t) = ψκ(t)A0(0) +

∫ t

0

ψκ(t− t′)
[

I+
0 (t′) + jrelease(t

′)
]

dt′. (S2b)

The first term in each of Eqs. (S2) corresponds to a particle, initially at site i,
that jumps away at time t. Let us denote the Laplace transform of a function
f(t) by explicit dependence on the argument:

f(u) ≡

∫ ∞

0

f(t)e−ut dt. (S3)

Then the Laplace transforms of Eqs. (S1) are

uAi(u) −Ai(t = 0) = I+
i (u) − I−i (u), (S4a)

uA(u)0 −A0(t = 0) = I+
0 (u) − I−0 (u) − κA0(u) + jrelease(u), (S4b)

due to the differentiation theorem of the Laplace transformation, L
{

d
dtf(t)

}

=
uf(u) − f(t = 0). Likewise, by virtue of the convolution theorem, the Laplace
transforms of Eqs. (S2) read

I−i (u) = ψ(u)Ai(0) + ψ(u)I+
i (u), (S5a)

I−0 (u) = ψκ(u)A0(0) + ψκ(u)
[

I+
0 (u) + jrelease(u)

]

. (S5b)
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Note that, by the definition (Eq. (4) in the main text), we have ψκ(u) = ψ(u+κ).
Solving the former equations for I+

i (u) and substituting this expression into the
latter equations, we find the solution for the I−i as Laplace convolutions

I−i (t) =

∫ t

0

Φ(t− t′)Ai(t
′)dt′, (S6a)

I−0 (t) =

∫ t

0

Φκ(t− t′)A0(t
′)dt′, (S6b)

after transforming back to the time domain. The kernel Φ(t) is defined by its
Laplace transform

Φ(u) =
uψ(u)

1 − ψ(u)
; (S7)

and we have Φκ(u) = Φ(u + κ). Assuming that the particle is equally likely to
jump in either direction, the gain is

I+
i (t) = I−i−1(t)/2 + I−i+1(t)/2, (S8a)

I+
0 (t) = I−0 (t)/2 + I−1 (t)/2. (S8b)

Note that the particle returns to the exchange site if it attempts to jump toward
the boundary from that site (an unsuccessful binding attempt) while the actual
adsorption process is defined in Eq. (S1b) by the term κA0(t). This definition
will let us take a consistent continuum limit.

For convenience, we now introduce a transformation to the new time-dependent
quantity A0(t) by

∫ t

0

Φ(t− t′)A0(t
′)dt′ ≡

∫ t

0

Φκ(t− t′)A0(t
′)dt′, (S9)

which corresponds to A0(u) = Φκ(u)A0(u)/Φ(u). This allows us to write

dAi(t)

dt
=

∫ t

0

Φ(t− t′)
Ai−1(t

′) − 2Ai(t
′) +Ai+1(t

′)

2
dt′ (S10)

for i ≥ 1 and therefore puts the probability to be at the exchange site on equal
footing with the probabilities at the bulk sites by compensating the temporal
change with the rate κ. Taking A(x = ai, t) = Ai(t)/a with the lattice spacing
a, we obtain

∂A(x, t)

∂t
=
a2

2

∫ t

0

Φ(t− t′)
∂2A(x, t′)

∂x2
dt′ (S11)

in the continuum limit a→ 0. Since uτ ≪ 1 in the long time limit and we infer
the relation ψ(u) ∼ 1 − (uτ)α by use of Tauberian theorems [1, 2], we have

Φ(u) ∼ u1−ατ−α (S12)
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to leading order. With the Laplace pair u−α ↔ tα−1/Γ(α), we can perform the
Laplace inversion of Eq. (S11) using the fractional Riemann-Liouville operator
[3, 4]

0D
1−α
t A(x, t) =

1

Γ(α)

∂

∂t

∫ t

0

A(x, t′)

(t− t′)1−α
dt′. (S13)

Namely, together with the anomalous diffusion coefficient Kα = a2/[2τα], we
find that Eq. (S11) is equivalent to the fractional diffusion equation

∂A(x, t)

∂t
= Kα 0D

1−α
t

∂2A(x, t)

∂x2
(S14)

for x > 0 [3, 4]. Similarly, Eq. (S1b) can be recast into the form

dA0(t)

dt
+ κ

∫ t

0

(Φ−1
κ Φ)(t− t′)A0(t

′)dt′ − jrelease(t)

=

∫ t

0

Φ(t− t′)
A1(t

′) −A0(t
′)

2
dt′, (S15)

where (Φ−1
κ Φ)(t) is defined via the inverse Laplace transform of the ratio Φ(u)/Φκ(u).

In the continuum limit, we recover the following expression

− δ(t)A0(0) +

∫ t

0

Ψ(t− t′)A(0, t′)dt′ − jrelease(t)

=
a2

2

∫ t

0

Φ(t− t′)
∂A(x, t′)

∂x

∣

∣

∣

∣

x=0

dt′ (S16)

with

Ψ(u) = a(u+ κ)
Φ(u)

Φκ(u)
. (S17)

The value of A0(0) is 1 if the particle is initially at the exchange site and 0
otherwise (see below). The reaction rate for binding at the boundary is, self-
consistently,

jreact(t) = aκ

∫ t

0

(Φ−1
κ Φ)(t− t′)A(0, t′)dt′. (S18)

The right-hand side of Eq. (S16) represents the flux into x = 0 from positive
x. We expand Eq. (S16) at u = 0 in the Laplace domain (note that u ≪ κ),
producing the sought for reactive boundary condition

Kα 0D
−α
t

∂A(x, t)

∂x

∣

∣

∣

∣

x=0

= −A0(0) + k 0D
−α
t A(0, t) −

∫ t

0

jrelease(t
′)dt′. (S19)

The parameter
k = 2κKα/[aΦκ(u = 0)] ∼ aκα (S20)

because κτ → 0. We held Kα and k constant in the above derivation, which
implies that

τ ≃ a2/α and κ ≃ a−1/α. (S21)

Eqs. (S14) and (S19) are quoted as Eqs. (5) and (7) in the main text.

3



References

[1] Feller, W. 1971. An Introduction to Probability Theory and its Applica-
tions, Volume 2. (New York, NY: John Wiley and Sons).

[2] Hughes, B. D. 1995. Random Walks and Random Environments, Volume
1:Random Walks. (Oxford, UK: Oxford University Press).

[3] Metzler, R., and J. Klafter. 2000. The random walk’s guide to anomalous
diffusion: a fractional dynamics approach. Phys. Rep. 339, 1-77.

[4] Metzler, R., and J. Klafter. 2004. The restaurant at the end of the random
walk: Recent developments in the description of anomalous transport by
fractional dynamics. J. Phys. A 37, R161-R208.

4


