Biophysical Journal, Volume 96

Supporting Material

Structure of a Double Transmembrane Fragment of a G Protein-Coupled Receptor in Micelles

Alexey Neumoin, Leah S. Cohen, Boris Arshava, Subramanyam Tantry, Jeffrey M. Becker, Oliver Zerbe, and Fred Naider

Supplementary Material

Figure S1: Cleavage and purification of the selectively methyl labeled Ste2p(G31-T110) peptide. Top panel: Inclusion bodies containing the fusion protein prior to cleavage with CNBr. Inset: SDS-PAGE gel of the inclusion bodies to show protein expression levels stained with Coommassie Blue (M=Marker, FP=fusion protein). The arrow indicates the protein of interest with an expected MW of ~23 kDa. Middle panel: Chromatogram of CNBr cleavage reaction after 1 hour. Lower panel: Analytical RP-HPLC of the purified Ste2p(G31-T110) after CNBr cleavage and purification on a preparative scale. Analytical reversed phase HPLC was performed with a 36-90% acetonitrile:water gradient with 10% isopropanol, 0.1% trifluoroacetic acid at 60°C on a Zorbax 300SB-C3 column.

Experiment	Data matrix size	Max. evolution times	Number of scans	
[¹⁵ N, ¹ H]-HSQC	2048(¹ H)*512(¹⁵ N)	t ₂ max 91.0ms t ₁ max 164.0ms	ns 128	
ct-[¹³ C, ¹ H]-HSQC	2048(¹ H)*370(¹³ C)	$t_2 max 109.9 ms$ $t_1 max 13.1 ms$	64	
Aromatic [¹³ C, ¹ H]-HSQC	2048(¹ H)*256(¹³ C)	$\begin{array}{c} t_2 max \ 114.0 ms \\ t_1 max \ 19.6 ms \end{array}$	32	
HNCO	2048(¹ H)*40(¹⁵ N)*128(¹³ C)	t_3 max 105ms t_2 max 14.1ms t_1 max 16.5ms	8	
HN(CA)CO	2048(¹ H)*40(¹⁵ N)*128(¹³ C)	t_3 max 105ms t_2 max 14.1ms t_1 max 16.5ms	8	
HNCA	2048(¹ H)*40(¹⁵ N)*128(¹³ C)	t_3 max 105ms t_2 max 14.1ms t_1 max 4.9ms	8	
HN(CO)CA	2048(¹ H)*40(¹⁵ N)*128(¹³ C)	t_3 max 105ms t_2 max 14.1ms t_1 max 4.9ms	8	
HNCACB	2048(¹ H)*40(¹⁵ N)*128(¹³ C)	t_3 max 105ms t_2 max 14.1ms t_1 max 4.9ms	16	
CBCA(CO)NH	2048(¹ H)*40(¹⁵ N)*128(¹³ C)	t_3 max 105ms t_2 max 14.1ms t_1 max 4.9ms	16	
(H)CCH-TOCSY	2048(¹ H)*50(¹³ C)*100(¹³ C)	t_3 max 105ms t_2 max 4.7ms t_1 max 9.5ms	16	
¹⁵ N{ ¹ H}-NOE	2048(¹ H)*600(¹⁵ N)	t_2 max 91.0ms t_1 max 248.0ms	128	
HMCMCBCANH	For Val and Ile residues 2048(¹ H)*40(¹⁵ N)*36(¹³ C) For Leu residues 2048*40(¹⁵ N)*60(¹³ C)	For Val and Ile residues $t_3max 105ms$ $t_2max 12.8ms$ $t_1max 6.8ms$ For Leu residues $t_3max 105ms, t_2max$ $12.8ms, t_1max$ 9.5ms	64	
HBCBCGCDHD	2048(¹ H)*58(¹³ C)	$t_2 max 91ms$ $t_1 max 4.1ms$	128	
¹⁵ N-resolved NOESY recorded on 700MHz at University of Zurich	2048(¹ H)*50(¹⁵ N)*180(¹ H)	t_3 max 105.0ms t_2 max 16.0ms t_1 max 13.0ms mixing time 100ms	32	
Aliphatic ¹³ C-resolved NOESY	2048(¹ H)*50(¹³ C)*100(¹ H)	$t_3 max 57.0ms$ $t_2 max 5.1ms$	16	

Table S2: Overview on spectroscopic details for the used 2D and 3D NMR experiments

recorded on 900MHz at New York Center for		t ₁ max 10.7ms mixing time 80ms	
Aromatic ¹³ C-resolved		t.max 57 0ms	
NOESY recorded on 900MHz at New York Center for Structural Biology	2048(¹ H)*50(¹³ C)*100(¹ H)	$t_3 max 57.0 ms$ $t_2 max 5.1 ms$ $t_1 max 10.7 ms$ mixing time 80 ms	16
Aliphatic-optimized ¹³ C- resolved NOESY on a selectively Me-labeled sample recorded on 900MHz at ETH, Zurich	2048(¹ H)*50(¹³ C)*100(¹ H)	t_3 max 81.2ms t_2 max 5.9ms t_1 max 20.0ms mixing time 250ms	16

Figure S3. Strips from the 3D HNCA (left) and the ¹⁵N-resolved NOESY (right) spectra of uniformly [¹⁵N,¹³C]-labeled Ste2p(G31-T110) extracted at various amide proton positions displaying the assignment and validation processes of the ¹⁵N, ¹³C and ¹H chemical shifts. The ¹⁵N and ¹H chemical shifts, at which the strips were extracted, are displayed above and below the strips, respectively.

Figure S4. Methyl region from the ct-[${}^{13}C, {}^{1}H$]-HSQC of various Ste2p(G31-T110) samples: Left – [${}^{15}N, {}^{13}C$]-labeled Ste2p(G31-T110) in the LPPG solution, recorded on a 700MHz magnet; Middle – [${}^{15}N, {}^{13}C$]-labeled Ste2p(G31-T110) in the d₃₆-LPPG solution, recorded on a 900MHz magnet; Right - [${}^{15}N, {}^{13}C, {}^{2}H, {}^{1}H$ (Methyl – Ile,Leu,Val)]-labeled Ste2p(G31-T110) in d₃₆-LPPG solution, recorded at 900MHz. The regions containing methyl groups of Ile or Leu residues are marked with boxes.

Figure S5: Values of the ¹⁵N{¹H}-NOE of Ste2p(G31-T110). The ¹⁵N{¹H}-NOEs were determined using spectra recorded at 700 MHz proton frequency. Highlighted with gray are the predicted α -helical regions of TM1-TM2. Residues, for which dihedral angle restraints calculated with TALOS were applied during the structure calculation, are marked by a symbol on top.

Figure S6. Superposition of the lowest-energy conformer of Ste2p(G31-T110) from the calculated 20-conformers bundle with the structure of the same region derived from homology modeling (Eilers *et al.*) fitted for backbone atoms of residues 49-72 and 80-103. Right and left representations differ by a 90° rotation about the bilayer normal. The red/yellow representation corresponds to the experimental structure and the pink/gray to the modeled structure.

Figure S7. Relative peak volumes of signals computed from $[^{15}N, ^{1}H]$ -HSQC spectra of $[^{15}N]$ Ste2p(G31-T110) recorded in the presence of low-power presaturation on the water resonance during the relaxation delay relative to a reference experiment without presaturation.

Distance restraints	Total	1247
	Intra-residual	439
	Sequential $(i - j = 1)$	378
	Medium $(i - j = 2, 3, 4)$	406
	Long-range	24
Dihedral angle restraints	Total	753
RMSD (Å)		
	Asp39-Ser47 backbone	0.25 ± 0.10
	Asp39-Ser47 all heavy atoms	1.32 ± 0.26
	Val49-Thr72 backbone	0.40 ± 0.13
	Val49-Thr72 all heavy atoms	1.20 ± 0.31
	Ile80-Leu103 backbone	0.57 ± 0.19
	Ile80-Leu103 all heavy atoms	1.38 ± 0.24
	Asp39-Leu103 backbone	2.36 ± 0.97
	Asp39-Leu103 all heavy atoms	3.28 ± 1.03
	× ×	
Structure check (Average %)		
Ramachandran statistics	most favored	83.9
(Gly31-Thr110)	additionally allowed	15.2
	generously allowed	0.9
	disallowed	0
NOE constraint violations	Number > 0.1 Å	5
	Maximum (Å)	0.34
Dihedral angle constraint violations	Number > 2.5 degrees	0
AMBER energies (kcal/mol)	Total	-1029.1
	Van der Waals	284.5
	Electrostatic	-1916.5

|--|