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Throughout the supplementary material the following notation will be used:
E [�] is the expectation of the random variable �; Cov [�1; �2] is the covariance
of the random variables �1 and �2.

1 The stationary superposition model: Proofs

In this Section we set:
P = f(ak; !k)gk ; (1)

GX (�) = 1�E [exp (i�X (0))] (2)

(� real);
RX (t) = Cov [X (0) ; X (t)] (3)

(t real); bRX (�) = Z 1

�1
RX (t) exp (i�t) dt (4)

(� real). Recall that � (x) =
R1
0
�(x; y)dy (x real) and  (y) =

R1
�1 x2�(x; y)dx

(y > 0), and that the signal pattern X is a zero mean stationary process with
short-range correlations.

1.1 Proof of amplitudal universality

Step 1. We compute the conditional Fourier transform of the random vari-
able Y (t) (t being an arbitrary time point), given the amplitude-frequency pairs
P:

E [exp (i�Y (t)) j P] (5)

(using the de�nition of the process Y )

= E

"Y
k

exp
�
i (�ak)Xk (!kt)

�
j P
#

(6)

(using the independence of the transmission sources)

=
Y
k

E
h
exp

�
i (�ak)Xk (!kt)

�
j P
i

(7)

(using the fact that the signal patterns transmitted by the sources are i.i.d.
copies of the generic stationary signal pattern X)

=
Y
k

E
h
exp

�
i (�ak)X (0)

�i
(8)
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(using the de�nition of the function GX (�))

=
Y
k

�
1�GX (�ak)

�
. (9)

Step 2. We compute the Fourier transform of the random variable Y (t) (t
being an arbitrary time point):

E [exp (i�Y (t))] (10)

(using conditioning)

= E
h
E [exp (i�Y (t)) j P]

i
(11)

(using Step 1)

= E

"Y
k

�
1�GX (�ak)

�#
(12)

(using equation (3.35) in [1])

= exp

�
�
Z 1

�1

Z 1

0

GX (�x)� (x; y) dxdy

�
(13)

(using the de�nition of the function � (x))

= exp

�
�
Z 1

�1
GX (�x)� (x) dx

�
(14)

(using the change of variables u = �x)

= exp

�
� 1

j�j

Z 1

�1
GX (u)�

�u
�

�
du

�
. (15)

Step 3. Equation (15) implies that the random variable Y (t) is independent
of the signal pattern X �up to a scale factor �if and only if the function � (x)
is a power-law. Speci�cally, if �(x) = c1jxj�1�� then

E
h
exp

�
i�Y (t)

�i
= exp

�
�c2j�j�

�
, (16)

where

c2 = c1

Z 1

�1

GX (u)

juj1+� du . (17)

The function GX (u) satis�es jGX (u) j � 2 and GX (u) �
�
1
2RX (0)

�
u2 as

u! 0. Hence, the integral appearing on the right hand side of equation (17) is
convergent in the exponent range 0 < � < 2.
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1.2 Proof of temporal universality

Step 1. We compute the conditional mean of the random variable Y (t) (t
being an arbitrary time point), given the amplitude-frequency pairs P:

E [Y (t) j P] (18)

(using the de�nition of the process Y )

= E

"X
k

akXk (!kt) j P
#

(19)

=
X
k

akE [Xk (!kt) j P] (20)

(using the fact that the signal patterns transmitted by the sources are i.i.d.
copies of a generic stationary signal pattern X with zero mean)

=
X
k

akE [X (0)] = 0 . (21)

Step 2. We compute the conditional covariance of the random variables
Y (t) and Y (t+�)(t being an arbitrary time point; � being an arbitrary lag),
given the amplitude-frequency pairs P:

Cov [Y (t); Y (t+�) j P] (22)

(using the de�nition of the process Y )

= Cov
hP

k akXk (!kt) ;
P

j ajXj (!j (t+�)) j P
i

=
P

k

P
j akajCov [Xk (!kt) ; Xj (!j (t+�)) j P]

(23)

(using the independence of the transmission sources)

=
X
k

a2kCov [Xk (!kt) ; Xk (!k (t+�)) j P] (24)

(using the fact that the signal patterns transmitted by the sources are i.i.d.
copies of the generic stationary signal pattern X)

=
X
k

a2kCov [X (0) ; X (!k�)] (25)

(using the de�nition of the function RX (t))

=
X
k

a2kRX (!k�) . (26)
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Step 3. We compute the covariance of the of the random variables Y (t) and
Y (t+�)(t being an arbitrary time point; � being an arbitrary lag):

Cov [Y (t); Y (t+�)] (27)

(using conditioning)

= Cov
h
E [Y (t) j P] ;E [Y (t+�) j P]

i
+E

h
Cov [Y (t); Y (t+�) j P]

i
(28)

(using Steps 1 and 2)

= Cov [0; 0] +E

"X
k

a2kRX (!k�)

#
(29)

(using equation (3.9) in [1])

=

Z 1

�1

Z 1

0

x2RX (y�)� (x; y) dxdy (30)

(using the de�nition of the function  (y))

=

Z 1

0

RX (y�) (y) dy . (31)

Step 4. We compute the power spectrum of the output process Y :Z 1

�1
Cov

h
Y (0) ; Y (�)

i
exp (if�) d� (32)

(using Step 3)

=
R1
�1

�R1
0
RX (y�) (y) dy

�
exp (if�) d�

=
R1
0

�R1
�1RX (y�) exp (if�) d�

�
 (y) dy

(33)

(using the change of variables t = y�)

=

Z 1

0

�
1

y

Z 1

�1
RX (t) exp

�
i
f

y
t

�
d�

�
 (y) dy (34)

(using the de�nition of the function bRX (�))
=

Z 1

0

�
1

y
bRX �f

y

��
 (y) dy (35)

(using the change of variables u = f=y)

=

Z 1

0

bRX (u)� 1
u
 

�
jf j
u

��
du . (36)
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Step 5. Equation (36) implies that the power spectrum of the output process
Y is independent of the signal pattern X �up to a scale factor �if and only if
the function  (y) is a power-law. Speci�cally, if  (y) = c3y

�� thenZ 1

�1
Cov

h
Y (0) ; Y (t)

i
exp (ift) dt =

c4
jf j� , (37)

where

c4 = c3

Z 1

0

bRX (u)
u1��

du . (38)

And, plugging  (y) = c3y
�� into equation (31) yields

Cov [Y (t); Y (t+�)] =
c6

�1��
, (39)

where

c6 = c3

Z 1

0

RX (u)

u�
du . (40)

Since the signal patternX has short-range correlations, the integral
R1
0
RX (u) du

is �nite, and the function bRX (u) satis�es bRX (0) = R1�1RX (t) dt (�nite) andR1
0
bRX (u) du = �RX (0) (�nite). Hence, the integral appearing on the right

hand side of equation (38) is convergent in the exponent range 0 < � � 1,
and the integral appearing on the right hand side of equation (40) is conver-
gent in the exponent range 0 < � < 1. The admissible exponent range is thus
0 < � < 1.

2 From 1=f noise to super di¤usion: Proof

In this Section we set:

RY (t) = Cov [Y (0) ; Y (t)] (41)

(t real); bRY (�) = Z 1

�1
RY (t) exp (i�t) dt (42)

(� real). We prove that if the stationary process Y has a 1=f power spectrum
then the integrated process Z �given by Z(t) =

R t
0
Y (t0)dt0 (t � 0) �is super-

di¤usive.
Step 1. We compute the mean square displacement of the integrated process

Z, in terms of the power spectrum bRY (�) of the process Y :
E
�
Z(t)2

�
(43)

(using the de�nition of the integrated process Z)

= E
h�R t

0
Y (t1)dt1

��R t
0
Y (t2)dt2

�i
=
R t
0

R t
0
E [Y (t1)Y (t2)] dt1dt2

(44)
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(using the fact that the stationary process Y has zero mean)

=

Z t

0

Z t

0

Cov [Y (t1); Y (t2)] dt1dt2 (45)

(using the de�nition of the function RY (t))

=

Z t

0

Z t

0

RY (t2 � t1))dt1dt2 (46)

(using Fourier inversion)

=
R t
0

R t
0

�
1
2�

R1
�1

bRY (�) exp��i (t2 � t1) �� d�� dt1dt2
= 1

2�

R1
�1

bRY (�)�R t0 exp (it1�) dt1��R t0 exp (�it2�) dt2� d�
= 1

2�

R1
�1

bRY (�)� exp(it�)�1i�

��
exp(�it�)�1

�i�

�
d�

= 1
�

R1
�1

bRY (�) 1�cos(t�)�2
d�

(47)

(using the change of variables u = t�)

=
t

�

Z 1

�1
bRY �u

t

� 1� cos (u)
u2

du . (48)

Step 2. If the stationary process Y is a 1=f noise then

bRY (�) = c4
j�j� . (49)

Plugging the 1=f power spectrum of equation (49) into equation (48) yields

E
�
Z(t)2

�
= c5t

1+� , (50)

where

c5 = c4
2

�

Z 1

0

1� cos (u)
u2+�

du . (51)

The integral appearing on the right hand side of equation (51) is convergent in
the exponent range 0 < � < 1.

3 The dissipative superposition model: Proofs

In this Section we set:
P = f(�k; ak; !k)gk ; (52)

GX (�) =

Z 1

0

�
1�E [exp (i�X (t))]

�
dt (53)
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(� real);

RX (t) =

Z 1

0

Cov [X (u) ; X (u+ jtj)] du (54)

(t real); bRX (�) = Z 1

�1
RX (t) exp (i�t) dt (55)

(� real). Recall that � (x) =
R1
0
[�(x; y)=y] dy (x real) and  (y) =

R1
�1 x2 [�(x; y)=y] dx

(y > 0), and that signal pattern X is a zero mean dissipative process. We re-
quire the following conditions regarding the stochastic decay of the process X
to zero:

Condition 1 The function GX (�) is bounded.

Condition 2 The function RX (t) is �nite at the origin (t = 0), and is inte-
grable over the real line.

An important case for which the function GX (�) is bounded is the following:
There exists a random time TX �with �nite mean �above which the dissipative
signal pattern X vanishes. Indeed, in the aforementioned case we have (IfEg
denoting the indicator function of the event E):

jGX (�)j �
R1
0
E [j1� exp (i�X (t))j]dt

=
R1
0
E [j1� exp (i�X (t))j � I ft < TXg]dt

�
R1
0
E [2 � I ft < TXg]dt = 2

R1
0
P (TX > t)dt

= 2E [TX ] <1 .

(56)

3.1 Proof of amplitudal universality

Step 1. We compute the conditional Fourier transform of the random
variable Y (t) (t being an arbitrary time point), given the initiation-amplitude-
frequency triplets P:

E [exp (i�Y (t)) j P] (57)

(using the de�nition of the process Y )

= E

24Y
�k�t

exp
�
i (�ak)Xk (!k (t� �k))

�
j P

35 (58)

(using the independence of the dissipative signals)

=
Y
�k�t

E
h
exp

�
i (�ak)Xk (!k (t� �k))

�
j P
i

(59)
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(using the fact that the dissipative signals Xk are i.i.d. copies of the generic
signal pattern X)

=
Y
�k�t

E
h
exp

�
i (�ak)X (!k (t� �k))

�i
. (60)

Step 2. We compute the Fourier transform of the random variable Y (t) (t
being an arbitrary time point):

E [exp (i�Y (t))] (61)

(using conditioning)

= E
h
E [exp (i�Y (t)) j P]

i
(62)

(using Step 1)

= E

24Y
�k�t

E
h
exp

�
i (�ak)X (!k (t� �k))

�i35 (63)

(using equation (3.35) in [1])

= exp
�
�
R t
�1

R1
�1

R1
0

�
1�E [exp (i (�x)X (y (t� s)))]

�
� (x; y) dsdxdy

�
= exp

�
�
R1
�1

R1
0

�R t
�1

�
1�E [exp (i (�x)X (y (t� s)))]

�
ds
�
� (x; y) dxdy

�
(64)

(using the change of variables u = y (t� s))

= exp

�
�
Z 1

�1

Z 1

0

�
1

y

Z 1

0

�
1�E [exp (i (�x)X(u))]

�
du

�
� (x; y) dxdy

�
(65)

(using the de�nition of the function GX (�))

= exp

�
�
Z 1

�1

Z 1

0

�
1

y
GX (�x)

�
� (x; y) dxdy

�
(66)

(using the de�nition of the function � (x))

= exp

�
�
Z 1

�1
GX (�x)� (x) dydx

�
(67)

(using the change of variables u = �x)

= exp

�
� 1

j�j

Z 1

�1
GX (u)�

�u
�

�
du

�
. (68)

Step 3. Equation (68) implies that the random variable Y (t) is independent
of the signal pattern X �up to a scale factor �if and only if the function � (x)
is a power-law. Speci�cally, if �(x) = c1jxj�1�� then

E
h
exp

�
i�Y (t)

�i
= exp

�
�c2j�j�

�
, (69)
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where

c2 = c1

Z 1

�1

GX (u)

juj1+� du . (70)

The functionGX (u) is bounded (Condition 1), and satis�esGX (u) �
�
1
2RX (0)

�
u2

as u ! 0 (Condition 2 assures that RX (0) is �nite). Hence, the integral ap-
pearing on the right hand side of equation (69) is convergent in the exponent
range 0 < � < 2.

3.2 Proof of temporal universality

Step 1. We compute the conditional mean of the random variable Y (t) (t
being an arbitrary time point), given the initiation-amplitude-frequency triplets
P:

E [Y (t) j P] (71)

(using the de�nition of the process Y )

= E
hP

�k�t akXk (!k (t� �k)) j P
i

=
P

�k�t akE [Xk (!k (t� �k)) j P]
(72)

(using the fact that the dissipative signals Xk are i.i.d. copies of the generic
signal pattern X with zero mean)

=
X
�k�t

akE [X (!k (t� �k))] = 0 . (73)

Step 2. We compute the conditional covariance of the random variables
Y (t) and Y (t+�)(t being an arbitrary time point; � being an arbitrary lag),
given the initiation-amplitude-frequency triplets P:

Cov [Y (t); Y (t+�) j P] (74)

(using the de�nition of the process Y )

= Cov
hP

�k�t akXk (!k (t� �k)) ;
P

�j�t+� ajXj (!j (t+�� � j)) j P
i

=
P

�k�t
P

�j�t+� akajCov [Xk (!k (t� �k)) ; Xj (!j (t+�� � j)) j P]
(75)

(using the independence of the dissipative signals)

=
X
�k�t

a2kCov
h
Xk (!k (t� �k)) ; Xk (!k (t+�� �k)) j P

i
(76)

(using the fact that the dissipative signals are i.i.d. copies of the dissipative
signal pattern X)

=
X
�k�t

a2kCov
h
X (!k (t� �k)) ; X (!k (t+�� �k))

i
. (77)
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Step 3. We compute the covariance of the of the random variables Y (t) and
Y (t+�)(t being an arbitrary time point; � being an arbitrary lag):

Cov [Y (t); Y (t+�)] (78)

(using conditioning)

= Cov
h
E [Y (t) j P] ;E [Y (t+�) j P]

i
+E

h
Cov [Y (t); Y (t+�) j P]

i
(79)

(using Steps 1 and 2)

= Cov [0; 0] +E

24X
�k�t

a2kCov
h
X (!k (t� �k)) ; X (!k (t+�� �k))

i35 (80)

(using equation (3.9) in [1])

=
R t
�1

R1
�1

R1
0
x2Cov [X (y (t� s)) ; X (y (t+�� s))]� (x; y) dsdxdy

=
R1
�1

R1
0

�R t
�1Cov [X (y (t� s)) ; X (y (t+�� s))] ds

�
x2� (x; y) dxdy

(81)
(using the change of variables u = y (t� s))

=

Z 1

�1

Z 1

0

�
1

y

Z 1

0

Cov [X (u) ; X (u+ y�)] du

�
x2� (x; y) dxdy (82)

(using the de�nition of the function RX (t))

=

Z 1

�1

Z 1

0

�
1

y
RX (y�)

�
x2� (x; y) dxdy (83)

(using the de�nition of the function  (y))

=

Z 1

0

RX (�y) (y) dy . (84)

Step 4. We compute the power spectrum of the output process Y :Z 1

�1
Cov

h
Y (0) ; Y (�)

i
exp (if�) d� (85)

(using Step 3)

=
R1
�1

�R1
0
RX (y�) (y) dy

�
exp (if�) d�

=
R1
0

�R1
�1RX (y�) exp (if�) d�

�
 (y) dy

(86)
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(using the change of variables t = y�)

=

Z 1

0

�
1

y

Z 1

�1
RX (t) exp

�
i
f

y
t

�
d�

�
 (y) dy (87)

(using the de�nition of the function bRX (�))
=

Z 1

0

�
1

y
bRX �f

y

��
 (y) dy (88)

(using the change of variables u = f=y)

=

Z 1

0

bRX (u)� 1
u
 

�
jf j
u

��
du . (89)

Step 5. Equation (89) implies that the power spectrum of the output process
Y is independent of the signal pattern X �up to a scale factor �if and only if
the function  (y) is a power-law. Speci�cally, if  (y) = c3y

�� thenZ 1

�1
Cov

h
Y (0) ; Y (t)

i
exp (ift) dt =

c4
jf j� , (90)

where

c4 = c3

Z 1

0

bRX (u)
u1��

du . (91)

And, plugging  (y) = c3y
�� into equation (84) yields

Cov [Y (t); Y (t+�)] =
c6

�1��
, (92)

where

c6 = c3

Z 1

0

RX (u)

u�
du (93)

Condition 2 implies that: The integral
R1
0
RX (u) du is �nite; The functionbRX (u) satis�es bRX (0) = R1

�1RX (t) dt (�nite) and
R1
0
bRX (u) du = �RX (0)

(�nite). Hence, the integral appearing on the right hand side of equation (91) is
convergent in the exponent range 0 < � � 1, and the integral appearing on the
right hand side of equation (93) is convergent in the exponent range 0 < � < 1.
The admissible exponent range is thus 0 < � < 1.
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