Lévy laws and 1/ f noises:
A unified and universal explanation

Supporting Information

Iddo Eliazar* Joseph Klafterf*
May 9, 2009

*Department of Technology Management, Holon Institute of Technology, P.O. Box 305,
Holon 58102, Israel. E-mail: eliazar@post.tau.ac.il

tSchool of Chemistry, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv
69978, Isracl. E-mail: klafter@post.tau.ac.il

tFreiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79104, Freiburg,
Germany.



Throughout the supplementary material the following notation will be used:
E [¢] is the expectation of the random variable &; Cov [£1,&,] is the covariance
of the random variables &; and &,.

1 The stationary superposition model: Proofs

In this Section we set:

P ={(ar,wr)}y ; (1)
Gx (0) =1 —E[exp (i0X (0))] (2)
(0 real);
Rx (t) = Cov [X (0), X (¢)] 3)
(t real); .
Bx (6) = / R (t)exp i0r) @)
(6 real). Recall that ¢ (z) = [~ M, y)dy (x real) and ¢ (y) = [°_2*A(z,y)dx

(y > 0), and that the 51gna1 pattern X is a zero mean stationary process with
short-range correlations.

1.1 Proof of amplitudal universality

Step 1. We compute the conditional Fourier transform of the random vari-
able Y (t) (¢ being an arbitrary time point), given the amplitude-frequency pairs
P:

E[exp (i0Y () | P] ()
(using the definition of the process Y')
—E Hexp ( (Oaz) Xy (wkt)> | P (6)
(using the independence of the transmission sources)
= HE {exp ( (Oay) Xy (wkt)) | 77} (7)

(using the fact that the signal patterns transmitted by the sources are i.i.d.
copies of the generic stationary signal pattern X)

= HE [exp ( (Qar) X (0))} (8)



(using the definition of the function Gx (9))
=TI (1= Gx (6an)) - (9)
k

Step 2. We compute the Fourier transform of the random variable Y (¢) (¢
being an arbitrary time point):

E [exp (i0Y(1))] (10)

(using conditioning)
-E [E [exp (i0Y (£)) | P]] (11)

(using Step 1)
=E

E[(l—GX (Bay,) )] (12)

(using equation (3.35) in [1])

= exp (— /Z /OOO Gx (6z) A (z,y) dxdy) (13)

(using the definition of the function ¢ (z))

~ exp <— [ 0; G (02) 6 () d:n> (14)

(using the change of variables u = 0x)

eXp< |9|/ Gx (u )du) . (15)

Step 3. Equation (15) implies that the random variable Y (¢) is independent
of the signal pattern X — up to a scale factor — if and only if the function ¢ (z)
is a power-law. Specifically, if ¢(z) = ci|z|~1~< then

E [exp (i&Y(t))] = exp (—cz|0|°‘) : (16)
where
co =c1 /_Oo C;Tli? du . (17)

The function Gx (u) satisfies |Gx (u)]| < 2 and Gx (u) ~ (3Rx (0)) u? as
u — 0. Hence, the integral appearing on the right hand side of equation (17) is
convergent in the exponent range 0 < o < 2.



1.2 Proof of temporal universality

Step 1. We compute the conditional mean of the random variable Y (¢) (¢
being an arbitrary time point), given the amplitude-frequency pairs P:

E[Y(t) | Pl (18)

(using the definition of the process Y)

=E

Zaka (wkt) | 'P‘| (19)

k
= aE[Xx (wit) | P] (20)
k

(using the fact that the signal patterns transmitted by the sources are i.i.d.
copies of a generic stationary signal pattern X with zero mean)

=> aE[X(0)]=0. (21)
k

Step 2. We compute the conditional covariance of the random variables
Y (t) and Y (¢t + A)(t being an arbitrary time point; A being an arbitrary lag),
given the amplitude-frequency pairs P:

Cov[Y(),Y (t+A) | P] (22)

(using the definition of the process Y)

= Cov [, ar X (wat) , 5, 4 X; (w5 (t+4) | P]

(23)
=31 > aka;Cov [ Xy (wit) , X (w; (t+A)) | P]
(using the independence of the transmission sources)
= Z a:Cov [ Xy, (wit), Xi (wi (t+A)) | P (24)

k

(using the fact that the signal patterns transmitted by the sources are i.i.d.
copies of the generic stationary signal pattern X)

= Z a:Cov [X (0), X (wpA)] (25)
k

(using the definition of the function Ry (t))

= aiRx (wiA) . (26)
k



Step 3. We compute the covariance of the of the random variables Y (¢) and

Y (t 4+ A)(t being an arbitrary time point; A being an arbitrary lag):

Cov [Y(1),Y (t + A)]

(using conditioning)

(27)

—Cov [E[Y(1) | PLE[Y(t+A) | P)| +E [Cov[Y(1),Y (t+4) | P]] (28)

(using Steps 1 and 2)

=Cov[0,0] + E Za%Rx (wrA)

k

(using equation (3.9) in [1])

= / 2?Rx (yA) A (z,y) dedy
—o0 JO
(using the definition of the function 1 (y))

=/O°°RX(yA)w<y)dy.

Step 4. We compute the power spectrum of the output process Y:

/_Z Cov [Y (0), (&)] exp (ifA) da
(using Step 3)

= [ (Jy° Rx (yA) ¥ (y) dy) exp (ifA) dA

= Iy (5 Rx (w) exp (if ) dA) 4 (1) dy

(using the change of variables t = yA)

- /Ooo (; /_Z Rx (t) exp (ijct) dA) ¥ (y) dy

(using the definition of the function Ry (6))

-G () pwa

(using the change of variables u = f/y)

_ /Ooofzx () <i¢ ('i)) du .
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(29)

(35)



Step 5. Equation (36) implies that the power spectrum of the output process
Y is independent of the signal pattern X — up to a scale factor — if and only if
the function v (y) is a power-law. Specifically, if 1 (y) = c3y~” then

/ Cov [Y (O),Y(t)} exp (ift)dt = s | (37)
—oo £
where ~
> Rx (u)
Cy = 63/0 Wdu . (38)
And, plugging v (y) = c3y~” into equation (31) yields
Ce
Cov[Y(t),Y (t+A)] = e (39)
where ~ Ry (u)
u
Cg = C3 0 );,8 du . (40)

Since the signal pattern X has short-range correlations, the integral fooo Rx (u)du
is finite, and the function Ry (u) satisfies Ry (0) = JZ5_ Rx (t)dt (finite) and

I Rx (u)du = wRx (0) (finite). Hence, the integral appearing on the right

hand side of equation (38) is convergent in the exponent range 0 < § < 1,

and the integral appearing on the right hand side of equation (40) is conver-

gent in the exponent range 0 < # < 1. The admissible exponent range is thus

0<p<l.

2 From 1/f noise to super diffusion: Proof

In this Section we set:

Ry (t) = Cov[Y (0),Y (¢)] (41)
(t real);
Ry (6) = / Ry (t) exp (i6t) dt (42)
(0 real). We prove that if the stationary process Y has a 1/f power spectrum
then the integrated process Z — given by Z(t fo Y (¢')dt' (t > 0) — is super-
diffusive.

Step 1. We compute the mean square displacement of the integrated process
Z, in terms of the power spectrum Ry (6) of the process Y

E[Z(t)*] (43)

(using the definition of the integrated process Z)

m “ du> (1)

= E (t2)] dtrdt



(using the fact that the stationary process Y has zero mean)

:/t tCov[Y(tl),Y(tz)]dtldtz (45)
o Jo

(using the definition of the function Ry (t))

t ot
:/ / Ry (tg — t1))dt dts (46)
0 Jo
(using Fourier inversion)

= [ (% I Ry (0) exp (fi (ts — t1) 9) da) dtydt

= &[22 By (0) (Jy exp(iti6) dtr) (fy exp (~ita0) dtz ) a0

(47)
o B exp(ith)— exp(—itf)—
= 37 J 2o By (6) ( e 1) ( = 1) do
=1 [* Ry (0) =% qp
(using the change of variables u = t0)
ot [T 5 (uy 1—cos(u)
= / By (§) (48)
Step 2. If the stationary process Y is a 1/f noise then
~ cy4

Plugging the 1/f power spectrum of equation (49) into equation (48) yields

E[Z(t)?] = cst'™7 | (50)
where 5 1 (w)
— cos (u

Cy = 04;/0 Wdu . (51)

The integral appearing on the right hand side of equation (51) is convergent in
the exponent range 0 < 5 < 1.

3 The dissipative superposition model: Proofs

In this Section we set:
P ={(Tk, ar,wi)}y ; (52)

Gy (0) = (1 — E[exp (i0X (t))}) dt (53)



(0 real);

Rx (t) = /000 Cov [X (u), X (u+|t])] du (54)
(t real);
By (60) = /_ Ry (t) exp (i6t) dt (55)
(0 real). Recall that ¢ (z) = [, [n(z,y)/y] dy (z real) and v (y) = [ 22 [n(z,y)/y] dw

(y > 0), and that 51gnal pattern X is a zero mean dissipative process. We re-
quire the following conditions regarding the stochastic decay of the process X
to zero:

Condition 1 The function Gx (0) is bounded.

Condition 2 The function Rx (t) is finite at the origin (t = 0), and is inte-
grable over the real line.

An important case for which the function Gx (6) is bounded is the following:
There exists a random time Tx — with finite mean — above which the dissipative
signal pattern X vanishes. Indeed, in the aforementioned case we have (I{F}
denoting the indicator function of the event E):

|Gx O] < [y E 11— exp (i0X (¢))[]dt

= [CE[|1—exp (i6X (t))| - I {t < Tx})dt

< JSER2-I{t <Tx}dt=2 ["P(Tx >t)dt
=2E[Tx] < o0

3.1 Proof of amplitudal universality

Step 1. We compute the conditional Fourier transform of the random
variable Y (¢) (t being an arbitrary time point), given the initiation-amplitude-
frequency triplets P:

E [exp (i0Y (1)) | P] (57)
(using the definition of the process Y')

=E H exp( Gak Xk (wk (lf—Tk))) ‘,P (58)

TRt

(using the independence of the dissipative signals)

= 1 E [exp (5 6ai) X (wr (t = 71))) | P) (59)

Tt




(using the fact that the dissipative signals X are i.i.d. copies of the generic
signal pattern X)

H E[exp( (Bar) X (wi (tffk)))} . (60)

Step 2. We compute the Fourier transform of the random variable Y (¢) (¢
being an arbitrary time point):

E [exp (i0Y(1))] (61)
(using conditioning)
—E [E lexp (i0Y (£)) | 73]] (62)
(using Step 1)
—E|[[E [exp (z (Bar) X (w (t — Tk)))” (63)

(using equation (3.35) in [1])

=exp (= [ [ fy (1= Efexp (i (0) X (y (t = 5)]) m (2, ) dsdady)

— exp (— o (ffoo ( — E[exp (i (62) X (y (t — s)))]) ds) 1 (z,y) d:vdy)
(using the change of variables u =y (t — s)) (64)

e (< [ [T ([T (- Blew i 00) X)) ) a2 da)

(65)
(using the definition of the function Gx (0))

—exp( / / (GX 9x> (m,y)dxdy) (66)

(using the definition of the function ¢ (x))

— exp (— /_ " G (02) 6 () dydx) (67)

(using the change of variables u = 0x)

exp< |9|/ G (u )du> . (68)

Step 3. Equation (68) implies that the random variable Y (¢) is independent
of the signal pattern X — up to a scale factor — if and only if the function ¢ (x)
is a power-law. Specifically, if ¢(x) = c1]|z|~17* then

E {exp (i@Y(t))] = exp (702|9|O‘) , (69)



where

co=cp /OO Gx (u) du . (70)

—oo [ultte

The function G x (u) is bounded (Condition 1), and satisfies Gx (u) ~ (3Rx (0)) u?
as v — 0 (Condition 2 assures that Ry (0) is finite). Hence, the integral ap-
pearing on the right hand side of equation (69) is convergent in the exponent
range 0 < a0 < 2.

3.2 Proof of temporal universality

Step 1. We compute the conditional mean of the random variable Y (¢) (¢
being an arbitrary time point), given the initiation-amplitude-frequency triplets
P:

E[Y(t) | P] (71)

(using the definition of the process Y)
=E Zrkgt aka (wk (t - Tk)) | P
(72)
=> o<t WE X (Wi (t = 7)) | P

(using the fact that the dissipative signals X} are i.i.d. copies of the generic
signal pattern X with zero mean)

=Y aB[X (W (t—74)] =0. (73)

Step 2. We compute the conditional covariance of the random variables
Y (t) and Y (¢t + A)(¢ being an arbitrary time point; A being an arbitrary lag),
given the initiation-amplitude-frequency triplets P:

Cov[Y(t),Y (t+A) | P (74)
(using the definition of the process Y')

= Cov [, <o kX (@i (= 71)), 5y crva X (@5 L+ A =7)) | P]

=D o<t 2oy <trn @k CoV (X (wi (= 71)), X (wj (E+ A —75)) | P]
(75)
(using the independence of the dissipative signals)

= 3" afCov | Xy (wp (b= 7)), X (wr (t+ A = 74) | | (76)

TE<t

(using the fact that the dissipative signals are i.i.d. copies of the dissipative
signal pattern X)

— ¥ @lCov [X (W (= 71)) 2 X (wi (E+ A —Tk))] . (77)

TR <t
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Step 3. We compute the covariance of the of the random variables Y (¢) and
Y (t 4+ A)(t being an arbitrary time point; A being an arbitrary lag):

Cov [Y(1),Y (t + A)] (78)
(using conditioning)
— Cov [E Y(t) | PlLE[Y(t + A) | P]] +E [cov Y(1),Y (t+A) | P]] (79)

(using Steps 1 and 2)

= Cov [0, 0] +E Z azCov [X (wk (t — Tk)) ,X (wk (t + A — Tk))} (80)

TR <t
(using equation (3.9) in [1])

— [ [P T P Cov [X (y (- 9)), X (y (t+ A — )] A (2, y) dsdady

— ffooo fooo (fioo Cov[X (y(t—9),X(yt+A—29))] ds) 22\ (2,y) dody
(81)
(using the change of variables u =y (t — s))

_ / / <1/ Cov [X (1), X (u+ yA)] du> P (z,y)dedy  (82)
—0 J0 YJo
(using the definition of the function Rx (t))

/ / ( Ry yA)xQ/\(x,y)da:dy (83)

(using the definition of the function 1 (y))

_ / " Ry (Ay) () dy - (84)

Step 4. We compute the power spectrum of the output process Y:

/ ~ Cov [Y (0) ,Y(A)} exp (ifA) dA (85)

— 00

(using Step 3)
= 7. (J5° Rx (yA) ¥ (y) dy) exp (if A) dA

=I5 (U5 B (9 exp (17 2) dA ) () dy

11



(using the change of variables t = yA)

_ /0 - (; [ O:o R () exp (zit) dA> ¥ (y) dy (87)

(using the definition of the function Ry 9))

-/ = (;ﬁzx (g)) ¥ () dy (88)

(using the change of variables u = f/y)

[ e (b () ) o

Step 5. Equation (89) implies that the power spectrum of the output process
Y is independent of the signal pattern X — up to a scale factor — if and only if
the function v (y) is a power-law. Specifically, if 1 (y) = c3y~? then

/_ O:O Cov [Y 0),Y (t)} exp (ift) dt = % : (90)
where RPN
o= c3/0 Ruf_(;‘) du . (91)
And, plugging ¢ (y) = c3y~" into equation (84) yields
Cov[Y(t),Y (t+A)] = % , (92)
where -
cg = 03/0 R;;B(u) du (93)

Condition 2 implies that: The integral [;* Rx (u)du is finite; The function
Rx (u) satisfies Ry (0) = [, Rx (t)dt (finite) and [;* Rx (u)du = 7Rx (0)
(finite). Hence, the integral appearing on the right hand side of equation (91) is
convergent in the exponent range 0 < $ < 1, and the integral appearing on the
right hand side of equation (93) is convergent in the exponent range 0 < 8 < 1.
The admissible exponent range is thus 0 < 5 < 1.
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