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Here we extend our derivation of RENS to allow for stochastic updates in the system’s evolution. For specificity,
we assume that our dynamics are given by Eq. 13 of the paper, in conjunction with the Andersen thermostat. For
these dynamics we define reduced work by Eq. A-8 below, and we argue that with this definition detailed balance is
satisfied, i.e. that RA and RB sample their respective equilibrium distributions.

In the Andersen thermostating scheme, the momenta of randomly selected particles are re-assigned from a Maxwell-
Boltmann distribution. To keep our analysis simple, we will at first assume a single Andersen update at time t = s
during the work simulation, and we will use the notation

γA : x0 −→ xs=⇒x′s −→ xτ (A-1)

to denote a work simulation in replica A. The notation is interpreted as follows. The trajectory evolves deterministi-
cally (Eq. 13) from t = 0 to t = s. Then the momentum of the i’th particle (selected randomly) is replaced by a new
momentum sampled from the Maxwell-Boltzmann distribution: pi ⇒ p′i, where pMB(p′i;λ

A
s ) ∝ exp[−p′2i /2mikBTλA

s
].

Finally, deterministic evolution continues from t = s to t = τ . In replica B we generate a trajectory

γB : yτ ←− y′τ−s⇐=yτ−s ←− y0 , (A-2)

with a similar interpretation. Since the protocols for varying λ in the two replicas are related by time-reversal,
λAt = λBτ−t, the Andersen updates in Eqs. A-1 and A-2 occur at the same value of work parameter, which we will
denote λ∗.

The probability to generate a particular trajectory γA in RA, conditioned on the initial state x0, can be written as

πA[γA] = πA(x0 → xs) · πA(xs ⇒ x′s) · πA(x′s → xτ ) . (A-3)

The first and third factors are analogous to Eq. 7a, and describe evolution during the two deterministic intervals; and

πA(xs ⇒ x′s) ∝ exp(−p′2i /2mikBTλ∗) . (A-4)

Similar expressions hold for πB [γB ].
Now consider a particular trajectory γA in RA (Eq. A-1), along with the time-reversed version of that trajectory,

which we denote

γ̄B : x̄0 ←− x̄s⇐=x̄′s ←− x̄τ . (A-5)

The conditional probabilities for these two trajectories are related as follows:

πA[γA] =
πB [γ̄B ]
JA

πA(xs ⇒ x′s)
πB(x̄s ⇐ x̄′s)

= πB [γ̄B ] e−qA[γA] , (A-6)

where

qA[γA] = h(x′s;λ
∗)− h(xs;λ∗) + ln JA (A-7)

and JA = (TB/TA)N/2. In Eq. A-6, the factor πB [γ̄B ]/JA was obtained as in Eq. 10a; and the remaining factor was
evaluated using Eq. A-4. Here N denotes the number of degrees of freedom in the system, not the number of particles.

The quantity h(x′s;λ
∗) − h(xs;λ∗) in Eq. A-7 is the change in h that accompanies the Andersen update pi ⇒ p′i.

Interpreting qA[γA] as the reduced heat absorbed by the system during the trajectory γA, we define the reduced work:

wA[γA] = h(xτ ;λτ )− h(x0;λ0)− qA[γA]. (A-8)

Eqs. A-6 and A-8 are analogues of Eqs. 10 and 4 of the main text, and Eq. A-6 is equivalent to Crooks’s result,
Eq. 9 of Ref. [18]. With these equations – and similar ones for a trajectory γB generated in RB (Eq. A-2) – we now
establish detailed balance for the joint transition (x, y)→ (y′, x′), in a manner analogous to Eq. 12 of the main text:

P (y′, x′|x, y) = πA[γA]πB [γB ]α[γA, γB ]

= πB [γ̄B ]πA[γ̄A] e−qA[γA]−qB [γB ] α[γ̄A, γ̄B ] e−wA[γA]−wB [γB ]

= P (x̄, ȳ|ȳ′, x̄′) e−hA(y′)−hB(x′)+hA(x)+hB(y) . (A-9)
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Here, γA is the unique trajectory that starts at x0 and ends at xτ , and similarly for γB ; and α = min{1, e−w} where
w = wA + wB .

In obtaining this result we have made the simplifying assumptions that (i) only a single Andersen update is made
during the work simulation, and (ii) Eq. 13 gives the deterministic portion of the dynamics. We now sketch a derivation
for the more general case in which K Andersen updates are performed, at times s1, · · · sK , and the evolution between
these updates is deterministic and time-reversal symmetric (in the sense discussed in the text), but otherwise quite
general. Under these assumptions we can obtain the following expression for the relative probabilities of generating
γA in RA and its time-reverse γ̄B in RB :

πA[γA] = πB [γ̄B ] e−qA[γA] , (A-10)

where

qA[γA] = ln JA[γA] +
K∑
k=1

[
h(x′sk

;λAsk
)− h(xsk

;λAsk
)
]

(A-11)

and JA is the product of Jacobians along the deterministic intervals of the trajectory:

JA[γA] =
∣∣∣∣ ∂xτ∂x′sK

∣∣∣∣ ·
∣∣∣∣∣ ∂xsK

∂x′sK−1

∣∣∣∣∣ · · ·
∣∣∣∣∂xs1∂x0

∣∣∣∣ . (A-12)

(As with Eqs. 10 and A-6, Eq. A-10 corresponds to Eq. 9 of Ref. [18].) We then define reduced work as in Eq. A-8.
Since there now exist multiple trajectories that that connect given initial and final points, the transition probability

P will be given by an integral over all intermediate points:

P (y′, x′|x, y) =
∫
D′γA

∫
D′γB πA[γA]πB [γB ]α[γA, γB ] (A-13)

where
∫
D′γA =

∫
dxs1

∫
dx′s1 · · ·

∫
dxsK

∫
dx′sK

, and γA begins and ends in the fixed configurations x0 = x and
xτ = x′. Analogous comments apply to

∫
D′γB .

Eq. A-13 is a path-integral expression for the transition probability for the trial move (x, y)→ (y′, x′). Writing the
corresponding expression for the reverse trial move, (x̄, ȳ)← (ȳ′, x̄′), we get

P (x̄, ȳ|ȳ′, x̄′) =
∫
D′γ̄A

∫
D′γ̄B πA[γ̄A]πB [γ̄B ]α[γ̄A, γ̄B ]

=
∫
D′γA

∫
D′γB πB [γB ]πA[γA] eqA[γA]+qB [γB ] α[γA, γB ] ewA[γA]+wB [γB ]

= ehA(y′)+hB(x′)−hA(x)−hB(y)

∫
D′γA

∫
D′γB πB [γB ]πA[γA]α[γA, γB ]

= ehA(y′)+hB(x′)−hA(x)−hB(y) P (y′, x′|x, y) (A-14)

Here we have used Eqs. A-8 and A-10, along with the correspondence between a trajectory and its time-reversed twin
(D′γ̄A = D′γB , etc.).

This derivation can be generalized further by replacing the Andersen updates with any stochastic moves that satisfy
detailed balance (for instance Metropolis Monte Carlo moves). Eqs. A-10 - A-14 remain unchanged under these quite
general conditions, and therefore RENS remains valid.


