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Detailed Materials and Methods

1. Plant materials

Twenty rice varieties were chosen for re-sequencing (Table S1). These varieties

included 17 of those considered previously (1) and 3 additional nominations - Tainung

67, Minghui 63, and Zhenshan 97B. Each variety was purified by one round of single

seed descent (SSD) wherein a single representative plant from each variety was chosen,

its panicles were bagged at flowering, and seed collected from those panicles. SSD seed

were planted in multiple pots in the IRRI screenhouse under irrigated conditions. These

plants were used for collection of young leaf tissue, and at flowering, panicles were

bagged with the resulting seed bulked. This generation was planted in the field for

further increase of seed stocks.

2. DNA isolation

From 50 to 100 g of young leaf tissue was harvested from the plants grown in the IRRI

screenhouse, frozen in liquid N2, and ground to a fine powder using a mortar and pestle.

Genomic DNAs were extracted by the CTAB/Sarkosyl extraction procedure (2)

modified for use as a large scale preparation. Genomic DNAs were dissolved in TE

buffer and treated with RNAse, and subjected to CsCl2-ethidium bromide density

gradient ultracentrifugation (3). Ethidium bromide was removed from the genomic

DNAs by extraction against phenol::CHCL3 (one time) followed by extraction against

CHCl3 (two times). Traces of phenol/CHCl3 were removed by ether extraction. These

DNA solutions were subjected to two rounds of precipitation against ethanol to remove

CsCl2. DNA pellets after the final precipitation step were dissolved in TE. DNA

concentrations were estimated by Picogreen QuantIt assay (Invitrogen) followed by

normalization of concentrations to 500 μg/ml.

3. Reference genome masking and target selection.
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Build 4 of the rice genome sequence from the International Rice Genome Sequencing

Project site (http://rgp.dna.affrc.go.jp/E/IRGSP/Build4/build4.html) sequences was used

for the array design. The genome sequence was repeat masked using repeat databases

from both The Institute for Genome Research(4), and the rice transposable elements

database (5). Masking was done through the Integrated Transposable Element

Annotation System (ITEAS) analysis pipeline developed by the Bureau Lab at McGill

University (5, 6). After masking, perl scripts were used to extract the unmasked regions

and save them as FASTA records. The unmasked region amounted to 240 Mb. To

ensure uniqueness of the regions, each of these sequences were compared against each

other using the basic local alignment tool (BLAST) (7). The sequences were then

classified based on the number of hits they acquired. Those sequences classified as

unique (no hits or a single hit, 91.6 Mb), and with 2 to ten hits (77.6 Mb) were chosen

for oligo design.

Primers for long-range PCR amplicons spanning from 3-10 kb of the target

sequence regions were designed by Oligo 6 using high quality thresholds with overlap

of neighboring amplicons for continuity of coverage. Amplicons were scored and

ranked by genic (coding) content, using Rice Annotation Project release 2 (RAP2) (8),

and TIGR annotations (9). Each basepair in a curated RAP2 gene annotation contributed

2 points to the score of an amplicon, while the presence of a basepair in a predicted

RAP2 or TIGR gene prediction contributed one point to the score. Through this ranking,

7,852 amplicons, including the 76 amplicons used for the development phase, with high

genic content were selected. These amplicons covered 60.3 Mbp of nonrepetitive

(unmasked) sequence, including the 345 kb of the development phase. This cut-off was

selected to balance genic content of the final sequence selection with even distribution

across the whole genome. An additional 5,730 amplicons with lower rankings were

selected to amplify areas underrepresented in the previous step, covering 39.7 Mbp of
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nonrepetitive (unmasked) sequence. The largest remaining gap (excluding large

unsequenced regions) was 494 Kb.

4. Array design, sample preparation, and hybridization.

The 13,582 selected LR-PCR amplicons span 11,343 non-overlapping sequence

fragments and cover 117,834,417 bp of unmasked genomic sequence, this fraction of

the genome was used as the reference sequence for high-density oligonucleotide array

design. Six resequencing arrays were designed such that 100,104,806 bp of the

reference sequence were queried using a tiling strategy previously described (10-12)

and includes short stretches of < 60 repetitive bases. The arrays were synthesized by

Affymetrix using light-directed photolithography in conjunction with chemical coupling

to direct the synthesis of 25-mer oligonucleotides.

Purified genomic DNA for 20 rice strains were adjusted to OD260. Singleplex PCR

reactions for each of the 13,586 LR-PCR amplicons were performed as follows (per

reaction): 15 ng of genomic DNA from one of the 20 strains was amplified using 0.5

µM of each LR-PCR primer, 0.3 U MasterAmp extra long Taq polymerase (Epicentre

Technologies), 17 µg/ml TaqStart Antibody (Clontech), 0.1 X TaqStart Antibody buffer

(Clontech), 0.4 mM dNTPs, 23 mM Tricine, 3% DMSO, 45 mM Trizma, 2.4 mM

MgCl2, 12.6 mM (NH4)SO4, 2.5X MasterAmp PCR Enhancer with Betaine (Epicentre

Technologies), in a volume of 6 µl. The reactions were performed using a Perkin-Elmer

9700 thermocycler as follows: initial denaturation for 3 min at 95 ºC; 10 cycles at 94 ºC

for 2 s and 64 ºC for 15 min; 28 cycles starting at 94 ºC for 2 s and 64 ºC for 15 min

with a 20 s increase per cycle, and a final extension of 60 min at 62 ºC.

Amplicons from one strain to be hybridized together on the array were combined

into one tube (~8 Mb), purified and fragmented as previously described (11). The

fragmentation reactions were then labeled with either biotin or digoxigenin for 90 min
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at 37 ºC in 1X One-Phor-All Buffer PLUS (Amersham), 13600 U recombinant TdT

(Roche Applied Science), and either 0.1 mM each of biotin-16-ddUTP and biotin-16-

dUTP (Roche Applied Science) or 0.1 mM each of digoxigenin-11-ddUTP and

digoxigenin-11-dUTP (Roche Applied Science).

The arrays, each containing ~20 Mb of tiled sequence, were physically segmented

into three chambers. Each chamber was hybridized with a different DNA/hybridization

mixture containing labeled target DNAs at ~8 Mb complexity. The labeled target DNA

was prepared for hybridization by combining biotin-labeled amplicons from one strain

and digoxygenin-labeled amplicons from another strain, and then added to hybridization

buffer to give a final solution of 0.1 mg/ml herring sperm DNA (Promega), 0.01 mg/ml

human Cot-1 DNA (Invitrogen) 2.7 M TMACL, 56 mM MES, 5% DMSO, 2.5X

Denhardt’s solution, 5.8 mM EDTA, 0.01% Tween-20, 0.04 nM b-948 biotin control

oligo (Sigma-Aldrich), and 0.04 nM dig-948 digoxigenin control oligo (Sigma-Aldrich).

The hybridization mixture was denatured for 10 min at 99 ºC and then cooled to 50 ºC.

Hybridization of the target DNA to the microarrays took place at 52 ºC for 18-20 h with

constant rotation.

After hybridization, the arrays were rinsed with 6X SSPE and stained for

detection of the biotin- and digoxigenin-labeled hybridized targets by 20 min

incubations at room temperature using the following series of 4 stain reagents (each of

which was in 6X SSPE, 1X Denhardt’s solution, and 0.01% Tween-20): Stain 1 with

2.5 µg/ml Anti-Digoxigenin Ab, clone 1.71.256, mouse IgG1 (Roche Applied Science)

plus 5 µg/ml streptavidin (Invitrogen); Stain 2 with 5 µg/ml anti-streptavidin (Rabbit)

Biotin Conjugated (Rockland Immunochemicals); Stain 3 with 5 µg/ml Alexa Fluor

647–R phycoerythrin goat anti-mouse IgG (Invitrogen) plus 1 µg/ml streptavidin Alexa

Fluor 488 conjugate; and Stain 4 with 9 µg/ml AffiniPure Mouse Anti-Goat IgG (H+

L). To enhance the digoxygenin signal, the arrays were then incubated further with
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Stain 3 followed by Stain 4. The arrays were rinsed with 6X SSPE, 0.01% Tween-20

between incubations, and washed at high stringency in 0.2X SSPE, 0.01% Tween-20 for

60 min at 37 ºC after the completion of staining. After rinsing with 1X MES, the arrays

were then scanned using custom-built confocal scanners.

5. Base-calling and SNP detection.

We used the same pattern recognition (model-based or MB) algorithms for analysis of

the resequencing data that had previously been described for human and mouse genomic

resequencing and SNP discovery (11, 12). For this project, a strict base call is made for

a sequence position when the ratio of the brightest to next-brightest feature is greater

than a threshold of 1.3 for biotin-labeled DNA and 1.1 for digoxigenin-labeled DNA,

and the conformance around that position is at least 0.80 on both strands. A relaxed base

call is made if these criteria are met for just one strand and the other strand is

ambiguous (that is, it did not pass either the intensity ratio or conformance

requirements). For alternate base calls that do not match the reference sequence, we also

require that there are no brighter alternate calls meeting these criteria within +5 or -5

bases.

6. Trace files and quality scores.

Trace files for each contiguous fragment of tiled sequence for each of the strand

orientations were created and quality scores for each assigned base were determined

using algorithms previously described (11). These trace files have been uploaded to the

NCBI Trace File Archive at (http://www.ncbi.nlm.nih.gov/Traces/).

7. Annotation of Repetitive Probe Sets in the Reference Genome
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The special design of SNP detection arrays, with eight probes for each site in the target

DNA, increases the chance of cross-hybridization and therefore unspecific signals.

Cross-hybridization of repetitive sequences can either suppress a true SNP signal and

thus reduce sensitivity, or generate an incorrect SNP signal, decreasing specificity. For

rice, approximately three fourths of the genome is repetitive, which further contributes

to the problem of cross-hybridization. Because repetitive sequences were not

completely excluded from the ~100 Mb interrogated with the arrays, it was important to

identify oligomers occurring more than once, such that repetitive sites could be treated

separately in subsequent analyses.

Repetitive probes were annotated by identifying oligomers that match at least to

one other 25-mer in the target DNA, allowing for some degree of degeneracy. Because

all four possible nucleotides were represented at the central position of each 25-mer, we

allowed mismatches at the center base in addition to peripheral mismatches. The same

mismatch criteria were used as in the A. thaliana resequencing project (10),

distinguishing between the three match types exact, inexact and short 25-mer matches

(see (10), Supporting Online Material, p. S4/5). Additionally, we included bulged

mismatches. Bulges in hybridizing oligomers are formed when one or more nucleotides

remain unpaired (13). The definition of bulged 25-mer matches is restricted to a one-

base bulge that is located only on one of the strands (14). Bulged 25-mer matches are

then matches between an oligomer of length 25 and an oligomer of length 26 in which

the longer one of the pairing strands contains a bulge of exactly one nucleotide,

tolerating mismatches at the center position. The first and last positions were not

included in this analysis as they are not real bulges, but dangling ends, which are

covered by the definition of short 25-mer matches. Note that the definitions of the four

match types are exclusive, i.e. the described sets are disjoint.
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We generated a list of all 25-mers contained in both the probe DNA, i.e. the DNA

that was used for tiling and immobilization on the arrays, and the amplified target

reference. To each 25-mer, its genomic position and affiliation either to a wafer or

amplicon were assigned. The list was then sorted to obtain a lexicographically ordered

25-mer list, allowing certain mismatches. Finally, the sorted list was linearly traversed

to report all 25-mer occurring more than once, restricted to matches only between tiled

and target DNA 25-mers. We processed the bulged 25-mer data such that only match

pairs with distance of at least 25 bp in the genome were included in statistics and further

analyses. This filter strategy was motivated by the observation that poly(N)-regions in

the reference genome sequence contribute heavily to the number of bulged 25-mer

matches.

In total, 5,160,864 positions were annotated as repetitive, making up 5.16% of all

positions used for tiling. False positives are most likely to be observed, and of

consequence, at positions where the counts of the nucleotide at the center position of the

repetitive 25-mers exceeds the counts of matches supporting the reference nucleotide.

We identified these so-called dominating 25-mer positions as a subset of the positions

with repetitive 25-mers. Information on both the repetitive and dominating 25-mer

positions was used in the machine learning algorithm described later.

8. Dideoxy resequencing for quality assessment.

Supervised learning methods – as used for SNP discovery from the resequencing data –

require labeled examples both for training and error evaluation. The A. thaliana

resequencing project benefited from a data set previously sampled by dideoxy

sequencing (15). For the rice resequencing project, such a curated data set of

polymorphisms was not previously available. We therefore used dideoxy sequencing of

a series of fragments to enable compilation of a set of true SNP and non-SNP positions.
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A subset of the Perlegen tiled regions were chosen for dideoxy-based

resequencing by randomly selecting fragments to ensure a representative evaluation

(14). For each candidate resequencing region, the program Primer3 was used to pick

primer pairs that would amplify products averaging 600 bp (16), and the standard M13

forward and reverse primer sequences were added to the ends of the sequence-specific

primers. A total of 1,440 PCR products were amplified from a randomly assigned

cultivar. An additional 1,536 PCR products were each amplified from three randomly

assigned cultivars. A total of 6,048 PCR products were sequenced with M13 forward

and reverse primers on an ABI 3730. Raw sequences were trimmed for quality (17) and

assembled by phrap (18). ClustalW (19) was applied to align the consensus sequence to

the reference sequence.

From these alignments, we parsed the information on single nucleotide

substitutions, insertions and deletions. We excluded fragments for which the alignment

to the reference sequence resulted in an unrealistically high (more than 50) number of

SNPs. After the preprocessing step, the dideoxy sequencing set comprised 1,755,395

positions across all varieties of which 9,499 positions were assigned to be polymorphic.

A summary of the number of SNPs detected by dideoxy sequencing and their

distribution over the different genomic regions is given in a table at

http://www.OryzaSNP.org.

9. Experimental inputs for the Machine Learning algorithm

The hybridization intensities, denoted by I, were mean fluorescence measurements for

each of the four bases A, C, G and T on each of the forward and reverse strand.

Furthermore, a raw base call B referred to the base for which the hybridization intensity

was highest within a probe quartet. Additionally, quality scores QS, estimating the error

probability of calling a certain base, were used.
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Normalization of hybridization data allowed for the correction of between-array

variation and to obtain comparability of the data generated by multiple array

experiments. The hybridization data were quantile-normalized (20) on the level of

amplicon pools across all varieties (14). Because the quantile-normalization algorithm

required identical batch sizes, but the amplicon pools did not all contain the same

number of probes, each pool was filled up with sham intensities to the identical

maximal pool size. The sham intensities were sampled from the observed distributions.

We excluded data from pool 0 on wafer 0 (developmental array), as the number of

probes in this pool was 13-fold lower than in the other 15 pools. The intensities from

pool 0 were normalized by averaging the outcomes when sorting according to the

normalized intensities from five pools randomly selected from the 15 other pools.

10. A Machine Learning (ML) method for SNP identification

We applied a two-layered approach based on Support Vector Machines (SVMs) (21, 22)

to predict SNPs from the hybridization data similar to the approach used in the A.

thaliana resequencing project (10). In a first step, SVMs were trained using information

comprising the array data, sequence characteristics and repetitiveness of the genome

based on the results of the annotation of repetitive 25-mers. Since the hybridization had

been normalized beforehand, we were able to train machines across all varieties instead

of using a separate machine for each variety as was done for A. thaliana. After whole

genome SNP predictions had been made independently for each variety in the first step,

we trained a second layer of SVMs, which were able to integrate information across

varieties, as they were provided with results from layer 1 for all varieties as input.

Specifically, we re-examined all positions for which in at least one other variety a SNP

had been predicted with the layer 1 SVM. We applied the trained SVMs of the second

layer for final genome-wide predictions.
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Each layer was divided into several subtasks. First, we generated input vectors for

positions that had passed certain filter criteria. After model selection in a cross-

validation procedure, SVMs were retrained with the optimal model parameters to obtain

predictions for the filtered positions across all varieties. Finally, each prediction was

assigned a confidence value reflecting the posterior likelihood of a true SNP prediction.

To train the SVMs and to evaluate the performance of the classifier, the data set of

known polymorphic sites was utilized.

a. Layer 1 SVM:

Filter criteria. By applying a filter prior to the training step, we intended to

increase the fraction of true polymorphic sites, leading to a more balanced set of

training examples, which is less challenging for accurate discrimination. Indeed, a large

fraction of the non-polymorphic sites could be discarded using the following filter

criteria, and this resulted in a significantly smaller data set, which also reduced

computational time in both training and prediction. Specifically, we excluded positions

that were identical to the reference with high probability as well as positions where the

corresponding array data gave inconsistent information on the called base.

The first criterion was met for a given position p in the target variety t if the raw

base call ( )tB p+

 and ( )tB p−

 of the forward and reverse strand were identical, but

different from the base RS(p) of the reference sequence. Secondly, the reference raw

base calls of both strands ( )refB p+

 and ( )refB p−

 had to be consistent to each other and to

RS(p). To discard regions of amplicon failures, we also excluded positions with

hybridization quality scores ( )
t

pQS  less than or equal to 5, averaged over a 100 bp

window.
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Taking these criteria together, we can describe all positions P that passed the filter

as the set:

{ a given target variety}

where { ( ) ( ) ( ) ( ) ( ) ( )

( ) 5}

t

t t t ref ref

t

P p t

p p B p B p RS p B p B p RS p

pQS

+ − + −

= |

= | = ≠ ∧ = =

∧ >

Input generation. To be able to train SVMs on the given data set, we had to

generate an input vector 
1
px  for each position p that had passed the filter in layer 1. Each

1
px  includes measurements at this position and neighboring positions within ±4 bp

around p: Both maximal intensities Imax of each of two quartets and averages of the non-

maximal intensities Isec of each of the quartets at each position in the 9 bp window were

included. As the machine learning method was found to be most accurate for SNPs

separated by 7 to 30 bp compared to the model based approach on the A. thaliana

resequencing data, we chose a window size of 9 bp to obtain predictions that were

complementary to a high degree to the SNP calls made by the model based method.

Moreover, we added ratios of the maximal intensities at p and its neighboring

positions (Q1) and ratios of the maximal intensities at p of the target and the reference

variety (Q2). Using these quotients as input features was motivated by the shape of a

typical SNP signal reflected in the intensity pattern. 
1
px  also contains sequence

characteristics such as mismatches M between raw base calls and the reference sequence

within the window, the reference base RS, frequencies f of each base (A, C, G, T) within

the 25-mer and the sequence entropy H of the 25-mer. Furthermore, we used the results

from the 25-mer repeat analysis to include occurrence counts k of repetitive 25-mers at

p.
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As we used the same SVM predictor for all varieties, we additionally included

information on the variety of which the intensities were taken, denoted as v. Table S2

describes all inputs in detail.

The input vectors were normalized on the training set to mean 0 and standard

deviation 1 per input dimension. Additionally, each input example was normalized

using 

1

1
p

p|| ||

x

x  for all positions p. The normalized input vectors were then used to train

SVMs with an RBF kernel (21) using the SHOGUN toolbox (http://www.shogun-

toolbox.org/) (23), which allows a fast and efficient training.

Model selection in a cross-validation procedure. Cross-validation is a procedure

in which a given data set is partitioned into subsets to have disjoint sets for training and

performance evaluation in permuted order, and is also important for model selection.

We randomly split our data set of labeled positions into five equally-sized disjoint

subsets 1 5S … S, ,  with respect to a uniform distribution of positives per variety. Training

and model selection was performed on five different folds in a nested cross-validation

scheme: At each of the five iterations a different subset iS  served as test set iT . The set

that was used for model selection was then defined as { }i jX S j i= | ≠ . Thus, the set iX

at iteration step i  consisted of 80% of all labeled positions, whereas the remaining

positions belonged to iT . For parameter tuning, each set iX , 1 5i …= , ,  was in turn

partitioned into five subsets ijS , 1 5j …= , , , four of them served as training set ijX  at

each iteration step. The prediction and evaluation was done on the omitted subset for

each model k , i.e. for each combination of the model parameters. The parameters to be

tuned comprised the width σ  of the RBF kernel (
1 0 5 0 0 5 1[10 10 10 10 10 ]σ − − . .= , , , , ) and the

penalty for using slack variables (
2 1 0 1[10 10 10 10 ]γ − −= , , , ). Thus, 20 models were tested

on each subset ijS .
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To find the best model, we applied a measurement based on the area under the

curve (AUC) of the receiver operating characteristic (ROC). ROC curves and their

AUCs are commonly used for the performance assessment of a binary classifier. In a

ROC curve, the false positive rate (sensitivity) is plotted against the true positive rate

(1 specificity− ). The higher the AUC value is, the more accurate the classifier. In our

case, we only wanted to maximize the area limited to a maximal ratio of true positives

to false positives (i.e., the AUC for a set of classifiers with a limited FDR), as we were

interested in a classifier optimal up to this FDR. We therefore determined the number of

true positives as a function of the number of false positives. The area aikj between this

curve and the line showing one false positive at five true positives was then calculated

corresponding to FDRs below 
1
6 . The optimal model for each split was determined by

the model k  for which the average of the areas aikj, 1 5j …= , ,  was maximal. Thereafter,

a SVM on the whole set iX  was trained with its best model parameters and predictions

were calculated for the hold-out set iT .

Prediction and output transformation. The prediction for each position that

passed the filter was made by the SVM of layer 1 for which this position was not used

in training or parameter selection. For all other positions, we could use any of the

trained SVM. Thus, we randomly chose one of the five layer 1 SVMs for prediction.

As we used outputs from five different SVMs, the predictions were not directly

comparable. To be able to employ these predictions as an input to the layer 2 SVMs and

for further analyses, each prediction was transformed into a posterior probability for

being a true positive. For this purpose, the conditional likelihood of the true label being

positive for a given output value was estimated.

This was done by means of estimating a monotonic piecewise linear

transformation on the corresponding test set. The SVM predictions were divided into 40
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quantiles of which each was represented by a supporting point ( )x q , 1 40q …= , ,  to

ensure a robust estimation of the piecewise linear function. The probability ( )y q  of

being a true positive was estimated as

( )( )
( )

TPn qy q
n q

=

where ( )TPn q  is the number of true positives, i.e. the number of

known SNP positions, with prediction values V in the range and n(q) the number of all

labeled positions with prediction values in that range. Analogous estimations were made

for definition of a cumulative yc by omitting the upper bound. To obtain smooth and

monotonically increasing estimates, a technique described in (24) was used.

Each prediction value V was transformed into a confidence c by:

  

c =

y(1) V ≤ x(1)
y(q +1) ⋅ (V − x(q)) + y(q) ⋅ (x(q +1) − V )

x(q +1) − x(q)
x(q) ≤ V ≤ x(q +1)

y(40) V ≥ x(40)

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

Details of layer 1 SVMs are given in Table S3.

b. Layer 2 SVM

Filter criteria. In the second step, we exploited information from layer 1

predictions across all varieties: Only positions with confidence values ct greater than

some threshold tht in at least one other variety t  were used for training the SVMs of

layer 2. This threshold was determined per variety across all test sets by taking the

confidence value tht above which nt examples had transformed prediction values, where

nt is the sum of all positively labeled positions in t that passed the filter. We further used

a relaxed filter for layer 2 to take positions into account that were likely polymorphic in

at least one variety, but which did not have raw base calls identical on both strands in

x(q) ≤ V ≤ x(q +1)
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the variety and the reference, respectively. Furthermore, the raw base calls of at least

one strand had to be different to the reference sequence. For the reference raw base

calls, an inconsistency to the reference sequence in one of the strands was allowed. We

again discarded positions with a mean hybridization quality score ( )
t

pQS  less than or

equal to 5.

All positions P that passed filter 2 are described as:

where [[ ]] denotes the indicator function.

From input generation to predictions. The input vector 
1
px  from layer 1 was

extended to the input vector 
2
px  for layer 2 by a binary vector b having ones at positions

for which the corresponding confidence values were above the threshold tht. In addition

to that, the confidence values of all varieties were included. To be able to connect a

position to its target variety t, we encoded the variety information by vector of length
219 361=  with b at the 19 positions corresponding to variety t and zeros elsewhere.

Confidence values were encoded in the same way. The variety information v of a

position was omitted. As an additional feature, we included information on

polymorphisms that distinguish the ssp. indica variety 93-11 (ind) from the reference

genome sequence of the ssp. japonica variety Nipponbare, which was used in the array

design. This further facilitated the detection of SNPs at known polymorphic positions.

We aligned the two genome sequences using MUMMER

(http://mummer.sourceforge.net), a suffix-tree algorithm for large-scale genome
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alignments (25) and parsed SNPs from the alignments with more than 90% identity

within a 61 bp window. See Table S3 for more details on the layer 2 inputs.

After normalization of the input vectors, we applied the same model selection

procedure as for layer 1. Predictions were made for all positions that passed filter 2 by

exactly one layer 2 SVM.

Predictions for all arrayed positions. After having trained the five layer 1 SVMs

and five layer 2 SVMs based on the data set of known SNPs, we then used these trained

machines to make predictions for the tiled regions of the entire genome, including

unlabelled positions that were interrogated on the hybridization resequencing arrays. As

theses positions had neither been employed either for training nor evaluation, any of the

five SVMs could be used for prediction.

For all of the 19 non-reference varieties, a layer 1 SVM was chosen at random to

make a prediction for each unlabelled position that passed filter 1. We also made

predictions for positions across all varieties that met the filter criteria in at least one

other variety. Afterwards, the outputs were transformed into confidence values applying

the transformation function specific to the layer 1 machine used. This way, the

predictions could be exploited for the second prediction layer.

For all unlabelled positions that were predicted by layer 1 SVMs and passed the

second filter, predictions were made by all five layer 2 SVMs. The SVM outputs were

again transformed into confidences with the corresponding piecewise linear function.

The resulting five values for each position were averaged to assign a final probability of

being a SNP position.

c. Base calling
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As the output of the machine learning method only comprised the probability
( )C p  for being a true SNP at a given position p , the corresponding observed base
( )B p  was inferred from the hybridization data by applying the following base calling

algorithm:

• CASE 1

if ( ) ( ) ( ) ( ) ( ) ( )B p B p B p RS p B p RS p+ − + −≠ ∧ ≠ ∧ ≠

set ( ) NB p =

• CASE 2

if ( ) ( ) ( )B p B p RS p+ −= =

set ( ) ( )B p RS p=

• CASE 3

if ( ) ( ) ( ) ( ) 0 855B p B p RS p C p+ −= ≠ ∧ ≥ .

set ( ) ( )B p B p+/−=

• CASE 4

if ( ) ( ) ( ) ( ) 0 855B p B p RS p C p+ −= ≠ ∧ < .

set ( ) NB p =

• CASE 5

if ( ) ( ) ( ) ( ) ( ) 0 855B p RS p B p RS p C p+ −= ∧ ≠ ∧ ≥ .

set ( ) ( )B p B p−=
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• CASE 6

if ( ) ( ) ( ) ( ) ( ) 0 855B p RS p B p RS p C p+ −= ∧ ≠ ∧ < .

set ( ) NB p =

• CASE 7

if ( ) ( ) ( ) ( ) ( ) 0 855B p RS p B p RS p C p− += ∧ ≠ ∧ ≥ .

set ( ) ( )B p B p+=

• CASE 8

if ( ) ( ) ( ) ( ) ( ) 0 855B p RS p B p RS p C p− += ∧ ≠ ∧ < .

set ( ) NB p =

d. Performance evaluation

To investigate the accuracy and quality of the SNP detection methods, we used

two measures. The false discovery rate (FDR) measures the fraction of spuriously

predicted positives relative to all predicted positives (PP), i.e., how often the predictor is

wrong when it calls a SNP:

FP FPFDR
PP TP FP

= =
+

where TP denotes the number of true positive predictions and FP the number of false

positive predictions. The fraction of true positives and positives (P), i.e., true SNP

positions that are recovered by the predictor, is denoted by recall or sensitivity:

TP TPrecall
P TP FN

= =
+
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Repetitive positions and those with low sequencing quality were used for training,

but were excluded from performance evaluation (14). The results are shown in Table S2.

11. SNP annotation.

All SNPs were located relative to the IRGSP (6) and TIGR (9) pseudomolecules.

Because the IRGSP and TIGR pseudomolecules are not identical, a conservative

approach was taken for locating SNPs on the TIGR pseudomolecules. All of the

Perlegen PCR amplicons were located relative to the TIGR pseudomolecules by using

the program Vmatch (http://www.vmatch.de/) to place the 5' and 3' amplicon primers on

the pseudomolecules. Only alignments to the expected pseudomolecule or the TIGR

unanchored contigs were allowed, and the alignments had to produce an appropriately

sized region ± 100 bp. A total of 13,558 out of 13,582 Perlegen amplicons were

successfully mapped to the TIGR pseudomolecules. Tiled regions were also aligned to

the TIGR pseudomolecules using Vmatch. Because of sequence differences and notable

gap differences between the IRGSP and TIGR pseudomolecule sequences, a small

number of tiled regions were mapped using Gmap (26). Tiled region alignments were

only accepted when they occurred on the expected chromosome or on the TIGR

unanchored contigs pseudomolecule. Additionally, tiled regions were required to align

within Perlegen PCR amplicons that had been mapped on the TIGR pseudomolecules.

A total of 54,998 out of 55,019 tiled regions were successfully mapped to the TIGR

pseudomolecules. SNPs locations were mapped to the TIGR pseudomolecules by using

Vmatch to align 101 bp segments surrounding each SNP. Only alignments that resided

within mapped tiled regions and on the expected chromosome or the unanchored contigs

pseudomolecule were accepted. For the MBML-intersect SNP set, a total of 158,928 out

of 159,879 IRGSP localized SNPs were successfully mapped to the TIGR

pseudomolecules.
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Annotation of all SNPs was performed relative to the both the IRGSP and TIGR

pseudomolecules and to both the RAP and TIGR gene models (8, 27). A Chado-schema,

generic model organism database (28) was used to store SNP, gene model and

pseudomolecule data. Custom Perl scripts and database queries were designed to

classify all SNPs based on whether they reside within genes or within intergenic

regions; these data are viewable in the browser. For those SNPs that were located within

TIGR gene models, the SNPs were further classified as to their position within the gene:

5'-UTR, 3'-UTR, intron or CDS. SNPs that were positioned within coding sequence

were analyzed for the effect that they had on the relevant codon, and non-synonymous

and synonymous mutations were noted. Finally, major effect SNPs were also annotated

if they were located within intron donor or acceptor sites, created a premature stop

codon, destroyed a stop codon or destroyed an initiation codon (Table S4 and

summarized queries at http://www.OryzaSNP.org). All annotations were stored within

the database.

To examine the distribution of non-synonymous and synonymous SNPs within the

rice genome, several analyses were performed. All TIGR rice gene models were aligned

to Arabidopsis gene models using BLASTP (7). The best alignments with p-values

better than 10-5 were used to classify rice genes into gene families that have also been

identified within Arabidopsis (29). Pfam protein domains were identified within the

TIGR rice gene translations using iprscan (9, 30, 31). Paralogous rice genes that are

found within segmentally or tandemly duplicated regions of the rice genome have been

previously identified (9, 27, 32). The number of non-synonymous and synonymous

SNPs were identified that occurred within genes with gene family classifications, within

Pfam domains, within tandemly or segmentally duplicated genes or within genes

annotated as expressed/unexpressed and known/unknown (summarized at

http://www.OryzaSNP.org).
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SNP sites annotated as non-synonymous, synonymous or as large-effect changes

were extracted from the MBML-intersect data set, and only sites with high confidence

base calls for at least 15/20 varieties were included in calculations of allele frequencies.

For each SNP site, the number of varieites with bases different from the reference were

counted and plotted by frequency and annotation category.

12. Validation of large effect SNPs.

Sixty loci containing SNPs annotated as large effect were randomly selected for SNP

validation (additional information at http://www.OryzaSNP.org). Custom scripts were

written to automatically generate primers that could be used to amplify a region of DNA

that contained major effect SNPs that had been targeted for resequencing. A boulder

formatted file containing 800 bp regions surrounding each targeted SNP was created

and used as input to the program Primer3 (16). Each primer pair was designed to

amplify a product between 550 and 650 bp. The M13 forward

(TGTAAAACGACGGCCAGT) and reverse (CAGGAAACAGCTATGACC) primer

sequences were added to the 5' ends of each primer pair in order to allow the use of

common primers during sequencing.

PCR was performed on all cultivars predicted to contain a large effect SNP at a

given locus, and PCR products were cleaned using the Exo-sap procedure as described

by the manufacturer (USB Corporation, Cleveland, OH). Dideoxy sequencing was

performed at 2x coverage for all amplicons as described above.

Reference genome sequences containing 500 bp up and downstream of putative

SNP sites were extracted from the OryzaSNP database. Reference sequences and trace

files were entered into Lasergene, Seqman software (33), and contigs were assembled
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using a mismatch criteria of 80%. SNP reports were generated for position 500 for all

contigs and nucleotide mismatches were validated by manually inspecting the trace files

(Table S4).

13. Summary statistics and dendrogram construction.

Summary statistics the MBML-intersect were calculated by chromosome using scripts

under Microsoft Excel. The numbers of total SNP sites as well as the breakdown to

those at repetitive sites (as ascertained from the probe-by-probe analysis) and non-

repetitive sites are reported. The total number of clear genotypes across all 20 varieties

is given. The frequencies of allele classes (ignoring ambiguous calls) were calculated

for those with a frequency of 0.05 (singletons), with a frequency of 0.1 (two varieties

have the allele), and frequencies of >0.1 (three or more varieties carry the allele). The

number of sites with bi-allelic data and their breakdown into transitions and

transversions is reported. Information on the data sets is available at

http://www.OryzaSNP.org.

Pairwise distance matrices using the simple matching coefficient were calculated

for the SNPs at non-repetitive sites the MBML-interscet datasets by using scripts under

Microsoft Excel. SNPs designated as “N” were treated as missing. An unweighted

Neighbor Joining tree was constructed using DARwin 5 (http://darwin.cirad.fr/darwin,

(34) (Figure 2a). Trees for the other datasets and tables of un-ambiguous SNPs

occurring between pairs of varieties are available at http://www.OryzaSNP.org.

14. Linkage Disequilibrium analysis.

For the analysis of LD, only biallelic non-singleton SNPs in the MBML-intersect

dataset were considered. We calculated the LD as the correlation coefficient r2 between

SNP pairs. The mean r2 value was calculated for bins of size 10 kb based on all pairs of
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non-singleton SNPs. Due to the extensive population structure in the sample of 20

varieties, we examined LD decay in each subpopulation separately. Because of the

small sample size in the aus group, only the indica and japonica groups, with eight

varieties in each group, were analyzed. Only SNP pairs with no missing data at both loci

in at least six chromosomes of the eight varieties are included in the calculations (Fig.

2c).

15. Introgression analysis.

To study the component of ancestral groups along the genome in each variety,

especially those regions introgressed from other subgroups, we applied a likelihood

ratio test method. Based on the three groups, indica (8 varieties), japonica (8 varieties)

and aus (4 varieties), obtained from population structure analysis, we looked at all of the

putative introgressions between the pairs of groups. Those SNPs in the MBML-intersect

dataset with considerable missing data were removed. In addition, SNPs not segregating

in the varieties and those with less than three, three and two genotyped varieties in the

indica, japonica and aus groups, respectively, were also excluded from the analysis.

Using the introgression between indica and japonica as an example, for any given

window of 100 Kb with at least 10 SNPs, the ratio of the average sharing of each variety

with the group it belongs to and the other group is calculated. When calculating the

average sharing, at least three pairs of comparison in each group were required. If the

average sharing ratio is less than 0.5, it was defined as an introgression region.

Introgressed blocks for each accession are shown in Fig. 3 and SI Fig. 1. If the source of

an introgression is ambiguous, both potential donors are indicated. For each 100 kb

window across the genome, the maximum occurrence of the introgression types (indica,

japonica or aus with ambiguity allowed) is plotted at the top of each chromosome.
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For each variety and type of introgression, the length and number of 100 kb

windows are calculated. The number of introgressions is calculated as the total of

noncontiguuos blocks of the same type. Then, the average length in Mbp of an

introgression is tallied. For each variety, the number of introgression blocks of the same

type shared with other varieties is also given (Table S6).

16. Haplotype sharing.

The extent of haplotype sharing among accessions was examined by splitting the

genome into non-overlapping 100 kb windows and calculating the proportion of

differences between all pairs of accessions in each window. Only SNPs with calls in

both members of the pair being examined were included. All runs of more than five

consecutive 100 kb windows with fewer than 10% difference between pairs of

accessions were identified. When a 100 kb window had less than 5 SNP comparisons

for a pair, this window was not counted towards the minimum of five windows, but

were allowed to extend a run. The resulting blocks of SNP similarity between all pairs

of accessions are shown in SI Fig. 2 for chromosomes 1-12.
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