Table S3. Properties of the input vectors \mathbf{x}_p^1 for layer 1 and \mathbf{x}_p^2 for layer 2 at a given position p are shown. $\Sigma = \{A, C, G, T\}$ denotes the DNA alphabet, the strands are represented by $\mathbf{s} \in \{+,-\}$, τ is either target t or reference variety ref. Unless defined otherwise, $\Delta \mathbf{p} \in \{-4, ..., 4\}$.

	Formula	Description	Size
I_{max}	$I_{\max}^{p}(\Delta p, \tau, s) = \max_{\sigma \in \Sigma} \log(I_{\tau, s}(p + \Delta p, \sigma))$	Maximal intensities for target and reference variety, strand-wise in a 9 bp window	36
I_{sec}	$I_{\text{sec}}^{p}(\Delta p, \tau, s) = \operatorname{mean}_{\sigma \neq \sigma_{max}} \log(I_{\tau,s}(p + \Delta p, \sigma))$ where $\sigma_{max} = \operatorname{arg} \max_{\sigma \in \Sigma} \log(I_{\tau,s}(p + \Delta p, \sigma))$	Average of the non-maximal intensities for target and reference variety, strand-wise in a 9 bp window	36
Q_I	$Q_1^p(\Delta p, \tau, s) = \log \frac{I_{\max}^p(\Delta p, \tau, s)}{I_{\max}^p(0, \tau, s)}$ where $\Delta p \in \{-4, \dots, -1, 1, \dots, 4\}$	Quotients of the maximal intensities at the neighbouring positions and <i>p</i> for target and reference variety, strand-wise in a 9 bp window	32
Q_2	$Q_2^p(\Delta p, s) = \log \frac{I_{\max}^p(\Delta p, t, s)}{I_{\max}^p(\Delta p, ref, s)}$	Quotients of the maximal intensities at <i>p</i> for target and reference variety, strand-wise in a 9 bp window	18
М	$M^{p}(\Delta p, \tau, s) = \delta(B_{\tau,s}(p + \Delta p), RS(p))$ where $\delta(i, j) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$	Mismatches between the raw base calls of the target/reference variety and the reference sequence, strand-wise in a 9 bp window	36
RS	$RS^{p}(\sigma) = \delta(RS(p), \sigma)$	Binary vector indicating the presence of the base σ in the reference at p	4
f	$f^{p}(\sigma) = \sum_{\Delta=-13}^{\Delta=13} \delta(RS(p+\Delta), \sigma)$	Frequency of each base σ within the 25-mer	4
Н	$H^{p} = -\sum_{\sigma \in \Sigma} f^{p}(\sigma) \log(f^{p}(\sigma))$	Sequence entropy of the 25-mer	1
k	$k^{p}(\Delta p, \sigma) = \left[k_{type}^{p}(\Delta p, \sigma), k_{dom,type}^{p}(\Delta p)\right]$ where two so (want in want wheat bullet)	Occurrence counts of repetitive 25-mers in a 9 bp window	558
v	where $type \in \{exact, inexact, short, bulged\}$ $v^{p}(\gamma) = \begin{cases} 10 & \gamma = v(p) \\ 0 & \gamma \neq v(p) \end{cases}$	Vector indicating the variety origin of p	19
$\mathbf{x}^{1} = \left[I_{max}, I_{sec}, Q_{1}, Q_{2}, M, RS, f, H, k, v\right]^{T}$			744
b	$b^{p}(t) = [[c^{p}(t) \ge th_{t}]]$	Binary vector indicating whether p passed th_t for variety	361
c	$c_p(t)$	Confidences at p for all varieties	361
ind	$ind^{p} = \begin{cases} +1 & RS_{jap} \neq RS_{ind} \\ -1 & RS_{jap} = RS_{ind} \end{cases}$	Known polymorphism in the ssp. indica genome	2
	$\mathbf{x}^2 = [I_{max}, I_{sec}, O_1, O_2, M, RS, f, H]$	$[1, k, b, c, ind]^T$	1,449